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Introduction

Alzheimer’s disease (AD) is an illness of progressive intellec-
tual decline, presenting the most common age-related neuro-
degenerative disorder. AD is the most common cause of de-
mentia and is characterized pathologically by the presence of
extracellular plaques and intracellular neurofibrillary tangles
(NFT) and by a selective loss of neurons and decreased syn-
aptic density. In the middle 1980s, the major component of
plaques was found to be β-amyloid (Aβ) (Glenner and Wong
1984a, b; Masters et al. 1985), generated by cleavage of am-
yloid precursor protein (APP) (Tanzi et al. 1987, 1992; Shoji
et al. 1992). Later, tau protein was found to be the major
component of NFT (Delacourte and Defossez 1986;
Grundke-Iqbal et al. 1986a, b; Kosik et al. 1986; Goedert
et al. 1988; Wischik et al. 1988; Lee et al. 1991; Bramblett
et al. 1993). Substantial efforts have been made to find a cure
or disease-modifying therapy for AD. However, whether a
single target is sufficient to treat AD has come into question

since the failure of all phase III clinical trials that used Aβ-
centric approaches (for a review, Karran et al. 2011). In this
review, it is aimed to present multiple factors that may be
associated with AD concentrating on microtubules (MTs)/
tau toward combinatorial therapeutics.

Zinc in Alzheimer’s Disease

There is current evidence for a relative increase in intracellular
zinc in vulnerable regions of the AD brain (Charton et al.
1985; Frederickson et al. 2005; Berti et al. 2015). Zinc is the
second most abundant metal in the body after iron. The con-
centration of free zinc ions in the extracellular space of healthy
brain tissue is in the range of 1 to 10 nM, and the cytosolic
zinc concentration is in the picomolar range (Frederickson
et al. 2005). But in the proximity of axon terminals, zinc rises
to micromolar levels following release from synaptic vesicles
that contain zinc in the millimolar concentration (Shen et al.
2007; Linkous et al. 2008). Synaptic zinc is involved in signal
transmission/transduction across synapses and therefore mod-
ulates synaptic transmission and plasticity (Frederickson et al.
2005; Besser et al. 2009). Besides its physiological functions,
zinc dyshomeostasis can contribute to neuronal and astrocytic
cell death (Koh et al. 1996; Rossi et al. 2001; Bossy-Wetzel
et al. 2004). It has been found that NFT and Aβ plaques
contain abnormally high levels of zinc at millimolar concen-
trations (Bush et al. 1994a, b). In addition, it has been dem-
onstrated that Aβ 1–40 (a major component of AD cerebral
amyloid) specifically and saturably binds zinc (Bush et al.
1994a, b) that could accelerate the Aβ plaque formation
(Bush et al. 1994a, b; Nair et al. 2010). Zinc can also interact
with tau (Huang et al. 2014) and increase tau phosphorylation
through activation of Erk1/2 (Yu and Fraser 2001; Harris et al.
2004; Boom et al. 2009; Kim et al. 2011) via increasing
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phosphorylation by GSK-3β, a major tau kinase (Lei et al.
2011), on tyrosine 216 (Björkdahl et al. 2005).

Microtubules and Tau

Microtubules (MTs) are the major component of the neuronal
cytoskeleton, and MT dynamics plays a key regulatory role
during axon regeneration. MT stability and organization are
sufficient to induce axon formation (Witte et al. 2008). The
MT shaft is composed of the heterodimer protein tubulin, the
major protein in the brain, that exhibits developmentally de-
termined microheterogeneity (Gozes et al. 1975; Gozes and
Littauer 1978) and is decorated by the microtubule-associated
proteins (MAPs). One of the major proteins of this family is
the microtubule-associated protein tau. Tau is a MT-assembly
factor that appears to be enriched in neuronal axons (Tucker
et al. 1988; Trojanowski et al. 1989; Lee et al. 1991).
Alternative splicing around exon 10 of the tau transcript yields
tau protein variants including tau protein containing either 3 or
4 MT binding repeat domains (Tau 3R or 4R), associated with
dynamic and stable MT, respectively (Goedert and Jakes
1990). The healthy human brain exhibits a 1/1 ratio of tau
3R/4R, and deviation from this ratio is a pathological feature
of frontotemporal dementia (FTD) taupathies (Kalbfuss et al.
2001).

MT binding repeat domains are localized in the C-terminal
region of tau protein, followed by a basic proline-rich region
and an acidic N-terminal region (the last does not contribute to
tau-MT binding). Tau proline-rich domain includes many
phosphorylation sites (Biernat et al. 1992; Augustinack et al.
2002) and can associate with SH3 domains of other proteins
(Reynolds et al. 2008), including the tyrosine kinase Fyn (Lee
et al. 1998). When tau was first purified from porcine brain, it
was found in association with tubulin (Weingarten et al.
1975). Later, tau was shown to be a regulator of tubulin as-
sembly in vitro (Witman et al. 1976; Cleveland et al. 1977)
and in vivo (Drubin and Kirschner 1986). Tau is predominant-
ly expressed in neuronal cells and was shown to be co-
localized with tubulin in the brain stem and basal ganglia
(Migheli et al. 1988). MT binding ability appears to be depen-
dent on the three or four repeat regions of tau (Lewis et al.
1988), although a single repeat is sufficient for MT binding
(Lee et al. 1989). The ability of tau to bind MTs is also depen-
dent on its phosphorylation status (Grundke-Iqbal et al.
1986b; Bramblett et al. 1993; Harada et al. 1994; Seubert
et al. 1995). Tau hyperphosphorylation reduces its affinity to
MTs, which leads to the destabilization of MTs; this process
has been suggested to be a loss-of-function toxicity pathway
in AD (Hanger et al. 2009; Spires-Jones et al. 2009).

Neurons possess long, highly branched axons and den-
drites, which require a precise transportation system between
pre-synaptic sites and cell bodies. This long-range MT-based

system is required for neuronal survival; dysfunction of this
system could lead to cell death and contribute to diseases, such
as AD and PD (Morfini et al. 2007; Dixit et al. 2008). Tau has
been shown to interact with kinesin and dynein, both of which
are integral to this process. Overexpression of tau inhibits
kinesin-dependent trafficking in neuroblastoma N2a cells
(Ebneth et al. 1998) and primary neuronal cells (Stamer
et al. 2002). Tau can bind to the light chain of kinesin-1
(Utton et al. 2005), and an 18-amino acid sequence of tau is
required for the inhibitory activity upon kinesin (LaPointe
et al. 2009). On the other hand, tau also binds to the dynein-
activator complex, dynactin, which enhances its attachment to
MTs (Magnani et al. 2007), and the 3-R isoform of tau is a
more potent inhibitor of dynein binding to MTs (Vershinin
et al. 2008). Therefore, tau differentially regulates MT-based
axonal transportation. Lower levels of tau in the cell body
enable kinesin to bind to MT (Dixit et al. 2008), which facil-
itates transportation of cargo along axons, which include tau
itself (Utton et al. 2005). At the synapse, high concentrations
of tau promote kinesin to release its cargo and facilitate dynein
binding to MT (Dixit et al. 2008). Although this process has
been well recognized, contradictory in vivo studies have
shown that general rates of axonal transportation are not sig-
nificantly affected by genetical overexpression or deletion of
tau (Yuan et al. 2008; Vossel et al. 2010).

Since its discovery, tau has been recognized as a MT bind-
ing protein and thought to function in regulating the dynamics
of MT assembly and associated axonal transport. However,
the lack of overt phenotype in mice with gene deletion of
tau up to 6 months of age (Roberson et al. 2007; Dawson
et al. 2010; Ittner et al. 2010; Lei et al. 2012, 2014; Li et al.
2014, 2015; Ma et al. 2014) has led to the understanding that
tau function is redundant. This supposition has been chal-
lenged by studies that revealed prominent motor and cognitive
phenotypes in aged tau knockout mice (Lei et al. 2012, 2014;
Ma et al. 2014). These observations were supported by the fact
that in a Caenorhabditis elegansmodel, reduction in PTL-1, a
tau homolog, significantly shortened the life span of the strain
(Chew et al. 2013) and tau knockout Drosophila exhibited
progressive neuronal degeneration (Bolkan and Kretzschmar
2014).

Tau has traditionally been considered an axonal protein;
however, dendritic localization and functions of tau are evi-
denced by altered long-term depression (LTD) (Kimura et al.
2014) and long-term potentiation (LTP) (Ahmed et al. 2014)
in tau knockout brain slices. Regan et al. showed that tau
knockout mice had uninterrupted spatial learning (Regan
et al. 2015) using the Barnes maze test, which confirms pre-
vious studies investigating tau knockout mice at the same age
(4–5 months) in other learning paradigms (Morris Water
Maze, Y-Maze, T-Maze) (Roberson et al. 2007; Ittner et al.
2010; Lei et al. 2012, 2014; Ahmed et al. 2014; Ma et al.
2014). While tau knockout mice had unimpaired learning in
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this initial setup, these knockout mice had defective reversal
of this learning when the location of the escape hole was
changed. In light of these findings, and compounded by the
fact that tau mutations lead to various forms of non-AD de-
mentia (Hutton et al. 1998; Spillantini et al. 1998; Goedert and
Spillantini 2011), targeting tau function may be able to restore
the microtubule network and prove beneficial for AD and
related neurodegenerations.

Activity-Dependent Neuroprotective Protein, NAP,
and Tau

Using small molecules to stabilize microtubules is hypothe-
sized to offset loss of tau function in AD. Several stabilizers
were tested in animal models and showed promising results,
including preventing Aβ toxicity (Zempel et al. 2010), im-
proving microtubule density (Divinski et al. 2006; Brunden
et al. 2010), reducing tau phosphorylation (Vulih-Shultzman
et al. 2007), and ameliorating behavioral disability (Zhang
et al. 2005; Brunden et al. 2010). One of those drug candi-
dates, NAP, showed a beneficial effect in a phase II clinical
trial in amnestic mild cognitive impaired patients preceding
AD (Gozes et al. 2009; Morimoto et al. 2013; Magen and
Gozes 2014).

NAP (NAPVSIPQ), an eight-amino-acid peptide, identi-
fied as the smallest active element of activity-dependent neu-
roprotective protein (ADNP) (Bassan et al. 1999; Zamostiano
et al. 2001). ADNP is vital for brain formation (Pinhasov et al.
2003; Mandel et al. 2007) and neurite outgrowth in vitro
(Mandel et al. 2008). Furthermore, ADNP also provides glial
protection (Pascual and Guerri 2007; Vulih-Shultzman et al.
2007). ADNP is a member of the SWI/SNF chromatin remod-
eling complex (Mandel and Gozes 2007), which is associated
with transcription and splicing (Batsche et al. 2006). ADNP
expression was previously shown to be correlated with tau 3R
expression (Schirer et al. 2014). We also showed a direct in-
teraction of ADNP with protein associated splicing factor
(PSF) (Schirer et al. 2014), which was found to associate with
the SWI/SNF-like complex (Ito et al. 2008) and also with tau
splicing. PSF suppresses tau exon 10 inclusion by interacting
with a stem-loop structure downstream of exon 10 (Ray et al.
2011). Moreover, Adnp+/− mice exhibit tauopathy (significant
increase in phosphorylated tau and tangle-like structures), re-
duced neuronal survival, and age-driven neurodegeneration
and behavioral deficits (Vulih-Shultzman et al. 2007).

NAP protects against ADNP deficiencies (Vulih-
Shultzman et al. 2007) and exhibits potent neuroprotective
activities against a number of toxic insults, including several
relevant to neurodegenerative diseases such as the Aβ peptide
(Bassan et al. 1999; Gozes et al. 2008), excitotoxicity (Bassan
et al. 1999), oxidative stress (Steingart et al. 2000), and oxy-
gen glucose deprivation-associated apoptosis (Zemlyak et al.

2009), which is paralleled by protection against tau
hyperphosphorylation (Idan-Feldman et al. 2012). NAP was
further identified as a neurotrophic factor, stimulating neurite
outgrowth and dendrite formation (Smith-Swintosky et al.
2005; Oz et al. 2012, 2014). These results were corroborated
by other investigators worldwide (Pascual and Guerri 2007;
Chen and Charness 2008; Jehle et al. 2008).

High zinc concentration (from 200 μM and more) caused
significant increase in cell death (Oz et al. 2012). These results
are compatible with previous publications reporting that an
increase in the intracellular free zinc is neurotoxic and its
accumulation may contribute to neuronal injury in several
diseases, including neurodegenerative conditions such as
AD. Moreover, aberrant zinc metal homeostasis has been re-
ported in the brains of AD patients and this metal could con-
tribute to the development of the lesions (Religa et al. 2006).
However, NAP treatment, added together with zinc, signifi-
cantly increased cell viability under zinc toxic condition
(Divinski et al. 2004, 2006; Oz et al. 2012, 2014) and that
proved again its neuroprotective ability (Bassan et al. 1999;
Wilkemeyer et al. 2003; Busciglio et al. 2007; Gozes and
Divinski 2007; Pascual and Guerri 2007; Gozes et al. 2008).

Zinc activity onMTs may contribute to the development of
tau pathology (Pei et al. 2006; Boom et al. 2009). Zinc toxicity
decreased tubulin and tau content in the polymerized fraction
of MTs in the PC12 cell line, and NAP treatment protected
against tubulin and tau loss from assembled MTs in the PC12
cells in the face of the toxic agent—zinc (Oz et al. 2012).
Similarly, in a Drosophila model of tauopathy in which ab-
normal human tau mediates neuronal dysfunction, NAP en-
hanced tau-MT interaction (Quraishe et al. 2013).

Binding of tau to MTs is regulated through phosphor-
ylation, and increased GSK-3β activity reduces the asso-
ciation of tau with MT (Lovestone et al. 1999; Leroy
et al. 2000). We (Vulih-Shultzman et al. 2007) demonstrat-
ed a NAP-dependent reduction in activated GSK-3β that
is associated with the pathological hyperphosphorylation of
tau. In this respect, ADNP deficiency resulted in increased
GSK-3β active form, tau hyperphosphorylation, and neu-
rofibrillary tangle-like structure formation, which have
been prevented by NAP treatment. Corroborating results
showed that NAP requires Fyn kinase for activity (Chen
and Charness 2008). NAP requires the neuronal marker,
tubulin β3 for MT interactions in neurons (Divinski et al.
2006; Sudo and Baas 2011), and NAP treatment enhances
tubulin β3 expression (Oz et al. 2012). ADNP deficiency
was associated with deregulation of tubulin expression, in
a developmental and sex-dependent manner, in vivo
(Amram et al. 2016), and in depletion of the axonal mark-
er MAP2, in vitro (Mandel et al. 2008), while NAP in-
creased MAP2 expression (Smith-Swintosky et al. 2005).
Together, these results suggest the NAP can serve as a
multi-targeting compound to treat AD.

J Mol Neurosci (2016) 58:145–152 147



Mechanism and Future Horizons

Our most recent work (Gozes laboratory) identified the SIP
(Ser-Ile-Pro) motif in NAP (NAPVSIPQ) as the NAP binding
site for MT fortification, namely, binding to the MTend bind-
ing proteins EB1 and EB3 (Oz et al. 2014). NAP enhances
ADNP interaction with EB3 and also with a key component of
the autophagy process, the initiator of the autophagosome
formation, MT-associated protein 1 light chain 3
(Merenlender-Wagner et al. 2015). Thus, NAP protects MTs
and the autophagy process (Esteves et al. 2014) inhibiting
apoptosis. Importantly, NAP protects MT-dependent axonal
transport (Jouroukhin et al. 2013; Quraishe et al. 2013), with
postmortem AD brains showing depletion in MTs (Cash et al.
2003). Capitulating on the NAP target, we have designed
SKIP (Ser-Lys-Ile-Pro) and shown that it mimics NAP protec-
tion, as well as protects ADNP-deficient impairment in axonal
transport (Amram et al. 2016). Together with new diagnostic
tools, such as changes in blood ADNP in parallel to brain
cognitive decline (Malishkevich et al. 2015), this and other
pipeline products (Shiryaev et al. 2011; Gozes et al.
2014a, b) are ready for future development, at the basic
mechanistic understanding and at the clinical frontiers.
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