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Abstract Autophagy maintains cellular homeostasis by stim-
ulating the lysosomal degradation of cytoplasmic structures,
including damaged organelles and dysfunctional proteins. The
role of autophagy in the renewal and regeneration of injured
peripheral nerves remains poorly understood. The current study
investigated the role of autophagy in peripheral nerve regener-
ation and motor function recovery following sciatic nerve crush
injury in rats by stimulating or suppressing autophagy and de-
tecting the presence of autophagosomes and LC3-II expression
by electron microscopy and Western blotting, respectively.
Neurobehavioral function was tested by CatWalk gait analysis
1, 2, 3, and 6 weeks after injury, and the expression of neuro-
filament (NF)-200 and myelin basic protein (MBP) at the injury
site was examined by immunocytochemistry. Apoptosis at the
lesion site was determined by the terminal deoxynucleotidyl
transferase dUTP nick end labeling assay. Treatment of injured
rats with the autophagy inducer rapamycin increased the num-
ber of autophagosomes and LC3-II expression while reducing
the number of apoptotic cells at the lesion; this was associated
with an upregulation of MBP and NF-200 expression and in-
creased motor function recovery as compared to sham-operated
rats and those that were subjected to crush injury but untreated.
The opposite effects were observed in rats treated with the
autophagy inhibitor 3-methyladenine. These data indicate that
the modulation of autophagy in peripheral nerve injury could be
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an effective pharmacological approach to promote nerve regen-
eration and reestablish motor function.
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Introduction

Damage to peripheral nerves leads to Wallerian degeneration
and disruption of axonal connections at the lesion site (Sta et al.
2014; Chen et al. 2007; Fahr and Sauser 1988; Koltzenburg
2004), while a strong inflammatory response, oxidative stress,
and nutritional deficiency further exacerbate the negative im-
pact at early stages. Previous studies have shown that Schwann
cells (SCs) occupy the most part of the peripheral nervous
system, accounting for 70~80 % (Madduri and Gander 2010).
Also, Schwann cells (SCs) play a key role in nerve regeneration
and the recovery of motor function (Madduri and Gander 2010;
Raivich and Makwana 2007), by secreting a variety of neuro-
trophic factors such as neurotrophin-3, soluble protein-100,
myelin basic protein (MBP) (Forghani et al. 2001), and neuro-
filament (NF)-200 (Sotelo-Silveira et al. 2000)—all of which
promote myelination and axonal growth—and also by phago-
cytosis of damaged axons and myelin, thereby restoring a fa-
vorable growth environment (Fu and Gordon 1997).
Autophagy is a conserved intracellular mechanism for
maintaining cellular homeostasis in which damaged or dys-
functional proteins, lipids, and organelles are degraded by the
lysosome (Levine and Klionsky 2004). Digested components
are recycled and provide energy for cell repair (Mizushima
and Komatsu 2011). Autophagy is associated with both nor-
mal and disease states, such as starvation, neurodegeneration,
infection, and aging (Mizushima et al. 2008; Choi et al. 2013).
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Under conditions of stress, autophagy enhances cellular adap-
tation to prolong survival (Bergmann 2007).

In the early stages of peripheral nerve injury (PNI), damaged
or dysfunctional proteins, lipids, and organelles accumulate at
the lesion site, creating local stress that hinders the ability of SCs
to stimulate nerve repair (Pereira et al. 2012). Autophagic clear-
ance mechanisms can improve the microenvironment and pro-
vide basal energy for SC survival. Various studies have demon-
strated the protective role of autophagy in the central nervous
system with respect to cerebral trauma (Clark et al. 2008), hyp-
oxia—ischemia brain injury (Carloni et al. 2008; Carloni et al.
2010; Jiang et al. 2010; Balduini et al. 2012; Carloni et al. 2014),
and acute spinal cord injury (Wang et al. 2014; Hou et al. 2014).
Autophagy was found to prevent neurodegeneration in the pe-
ripheral nervous system (PNS) in animal models of neuropathy
(Kosacka etal. 2013; Qu et al. 2014); in one study, autophagy by
SCs blocked the onset and recurrence of neuropathic pain, pos-
sibly via a nerve regeneration mechanism (Marinelli et al. 2014).
However, the molecular mechanisms of autophagy in the PNS
are only partially understood.

This study examined autophagy in the context of peripheral
nerve regeneration and its effect on motor function in a rat
model of sciatic nerve crush injury (NCI).

Materials and Methods
Animals and Surgical Procedures

All protocols were approved by the animal experimental
ethics committee of Southern Medical University. Adult fe-
male Sprague—Dawley rats weighing 180-220 g were pur-
chased from the Laboratory Animal Centre at the Southern
Medical University. Rats were subjected to sciatic NCI as
previously described (Raducan et al. 2013). Briefly, rats were
deeply anesthetized with sodium pentobarbital (50 mg/kg
body weight by intraperitoneal injection), and the sciatic nerve
in the right mid-thigh was exposed and clamped with a pair of
forceps three times for 10 s each at 10-s intervals. Animals
were housed in controlled conditions on a 12:12 h light/dark
cycle, with free access to food and water.

Drug Treatment

Animals were divided into four groups: sham + vehicle (v),
crush + v, crush + rapamycin (rapa), and crush +3-
methyladenine (3-MA). Rapamycin and 3-MA were obtained
from Sigma—Aldrich (St. Louis, MO, USA) and dissolved in
0.5 % dimethyl sulfoxide (DMSO). Animals received daily in-
traperitoneal injections of rapamycin at a dose of 1 mg/kg (crush
+ rapa group), 3-MA at a dose of 50 mg/kg (crush +3-MA
group), or DMSO (crush + v group) for 5 days after the surgery.
Sham-operated rats (sham + v group), in which the sciatic nerve

was exposed but not subjected to crush injury, received daily
intraperitoneal injections of an equal volume (1 mL) 0.5 %
DMSO for 5 days. Drug dosages were selected based on data
from previous studies and preliminary experiments (Maeda et al.
2013; Chen et al. 2013; Sekiguchi et al. 2012).

Tissue Preparation

Sciatic nerves were dissected and harvested 1 and 6 weeks
post-injury (n = 6 for each time point and group). Animals
were decapitated and perfused via the left ventricle with cold
saline followed by 4 % paraformaldehyde in 0.01 M
phosphate-buffered saline (PBS; pH 7.35). The injured sciatic
nerve was then removed and frozen at —80 °C for histological
or Western blot analysis.

Immunocytochemistry

Transverse frozen sections (10-pum thickness) of sciatic nerve
were dried, mounted onto slides, and washed in 0.1 M PBS
and then blocked in 10 % goat serum and 3 % bovine serum
albumin (BSA) for 1 h at 37 °C. After two washes with PBS,
the slides were incubated with primary antibodies against
MBP (1:1000; Sigma), NF-200 (1:500; Sigma), or LC3B-II
(1: 500; Cell Signaling Technology, Danvers, MA, USA) at
4 °C for 12 h, followed by repeated washes with PBS, and
then incubated with Alexa 488- or Cy3-conjugated secondary
antibodies (1:1000; Invitrogen, Shanghai, China) for 2 h at
room temperature. Sections were visualized under an
epifluorescence microscope (Leica, DM6000B, Wetzlar, Ger-
many) and imaged at x400 magnification.

Western blot Analysis

LC3-II protein expression at the lesion site following sciatic
NCI was analyzed by Western blotting. Nerve tissue samples
were homogenized in tissue lysis buffer (20 mM Tris-HCI,
pH 7.5; 150 mM NaCl; 1 % Triton X-100; 25 mM NaPPi;
80 mM {3-glycerophosphate; 2 mM EDTA; 0.2 mM Na3VO4
and protease inhibitor cocktail) and centrifuged at 12,000g for
15 min at 4 °C. The protein concentration in the supernatant
was measured with a bicinchoninic assay kit (Beyotime Insti-
tute of Biotechnology, Shanghai, China), and the supernatant
was mixed with sample buffer (50 mM Tris-HCI, 10 % sodi-
um dodecyl sulfate, 10 % glycerol, 10 % 2-mercaptoethanol,
and 2 mg/ml bromophenol blue) at a 1:1 ratio and boiled for
5 min. A total of 20 pg of each sample was separated on a
15 % acrylamide gel and transferred to a nitrocellulose mem-
brane (BioScience, Shanghai, China) by electroblotting (Bio-
Rad, Hercules, California, USA) at 120 V for 1.5 h followed
by 70 V for 0.5 h at 4 °C. Membranes were blocked with 3 %
BSA and incubated with rabbit anti-LC3B-II antibody (1:000)
overnight at 4 °C, followed by incubation with an anti-rabbit
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secondary antibody (1:2000; Biosynthesis Biotechnology Co.
Ltd., Beijing, China) for 1.5 h at room temperature. The blots
were visualized using Scanmaker 3836 (Microtek Technology
Co. Ltd., Shanghai, China) and quantified with Quantity One
software (Bio-Rad). The expression level of LC3-II was de-
termined by calculating band intensity relative to (3-actin.

Electron Microscopy

Sciatic nerve segments were removed 1 week after NCI and
fixed with 2.5 % glutaraldehyde overnight at 4 °C. The seg-
ments were cut with a sharp razor blade into serial 1-mm
transverse sections around the site of injury, which were
post-fixed in 1 % osmium tetroxide for 1 h at 4 °C, rinsed in
PBS, dehydrated in a graded series of alcohol and propylene
oxide, and embedded in Epon. Blocks showing a predomi-
nantly transverse orientation of the injured sciatic nerve were
selected from toluidine blue—stained thick sections. Ultrathin
(70-nm) sections were prepared on an ultramicrotome
(Ultracut R, Leica, Heerbrugg, Switzerland) with a diamond
knife, stained with uranyl acetate and lead citrate, and visual-
ized using an a JEM-1010 electron microscope (Jeol, Tokyo,
Japan) at x1500 or x30,000 magnification.

TUNEL

DNA fragmentation resulting from cell death was detected in
transverse frozen sections (10 wm) of sciatic nerves at the
lesion site by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) staining using the TUNEL apo-
ptosis assay kit (Beyotime Institute of Biotechnology) accord-
ing to the manufacturer’s protocol 1 week post-injury. Sam-
ples were counterstained with DAPI (blue color illustrates

The number of
autophagosomes

Fig. 1 Autophagosomes in the sciatic nerve following PNI.
Representative electron micrographs showing autophagosomes and
lysosomes (indicated by broad and narrow arrows, respectively) in
axons from the sciatic nerve of rats in the following groups: a sham + v
(sham-operated and injected with the vehicle 0.5 % DMSO), b crush + v
(subjected to NCI and injected with vehicle), ¢ crush + rapa (subjected to
NCI and injected with 1 mg/kg rapamycin), and d crush + 3-MA

@ Springer

cellular nuclei) and imaged at x400 magnification, and the
number of TUNEL-positive cells in each section was counted.

Behavioral Analysis

Experimenters performing the behavioral tests were blinded to
the drug treatment conditions. Motor function was determined
by stand time and footprint intensity using the CatWalk system
(Noldus Inc., Wageningen, Netherlands). Animals crossed a
walkway with an illuminated glass floor, and a GP-3360
high-speed video camera (Gevicam, Milpitas, CA, USA)
equipped with an 8.5-mm wide-angle lens (Fujicon Corp.,
Shenzhen, China) positioned underneath the walkway automat-
ically recorded paw prints as the animals moved across. The
test was performed 1, 2, 3, and 6 weeks after injury.

Statistical Analysis

Data is presented as the mean £ SEM. Comparisons within
groups were made by one-way analysis of variance
(ANOVA), and between-groups comparisons were made by
one-way ANOVA and, if significant, were followed by dis-
crete comparisons using a post hoc test with a Bonferroni
correction for multiple comparisons. P < 0.05 was considered
statistically significant. All analyses were performed using
GraphPad Prism 5 software (GraphPad Software, Inc., San
Diego, CA, USA).

Results

Autophagy is enhanced by rapamycin and suppressed by 3-
MA at the acute stage of PNI. Autophagosomes were visual-
ized by electron microscopy 1 week after sciatic NCI. A
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(subjected to NCI and injected with 50 mg/kg 3-MA). Triangle:
Degenerated myelin sheath and axon. Crush + v group, crush + rapa
group, crush + 3-MA group were compared with sham + v group
respectively. *P < 0.05, ***P < 0.001, ns means no significance
(between-groups comparison with Bonferroni correction; n = 3
rats/group). Scale bar =500 nm
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greater number of autophagosomes were present in the
rapamycin-treated (Fig. 1¢) and crush + v groups (Fig. 1b);
the numbers were eightfold and threefold higher, respectively,
than in the sham (Fig. 1a) group and were also higher than in
the 3-MA-treated group (Fig. 1d). These data are correlated
with an increase of autophagy after NCI. Western blot
(Fig. 2b) and immunocytochemical (Fig. 2a) analyses of the
expression of the autophagy marker LC3-II revealed higher
protein levels in rapamycin-treated animals, and lower levels
in the 3-MA group (P < 0.05) compared to controls. These
results indicate that autophagy is enhanced by rapamycin and
suppressed by 3-MA at the acute stage after sciatic NCL

Autophagy Promotes Motor Function Recovery Following
PNI

The recovery of motor function was assessed using the Cat-
Walk system. The stand time and footprint intensity of the
operated limbs were applied to analyze motor function 1, 2,
3, and 6 weeks post-injury (Fig. 3¢, d). The mean stand time in
the rapamycin-treated group was twofold higher than in the

Fig. 2 Expression of the A
autophagy marker LC3-I1
following PNI and drug
treatment. The experimental
groups are as defined in Fig. 1
caption. LC3-II expression was
detected by a
immunocytochemistry (red,
nuclei are stained with DAPI and
appear as blue) and b Western
blotting. ¢ The level of autophagy
was determined by calculating the
relative ratio of LC3-II to -1
expression. Crush + v group,
crush + rapa group, and crush + 3-
MA group were compared with
sham + v group, respectively.
*¥*P <0.01, ¥**P<0.001, ns
means no significance (between-
groups comparison with
Bonferroni correction; n = 6
rats/group). Scale bar =10 um
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Merge
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crush + v group at 1 and 2 weeks post-injury (P < 0.05), while
the mean footprint intensity was comparable between the two
groups at 2 weeks. These results indicate that animals treated
with rapamycin were better able to support their body weight
on injured limbs starting 2 weeks after injury, possibly as a
result of the enhanced autophagy at the acute stage. In con-
trast, in the 3-MA group, the mean stand time was significant-
ly lower at 1 and 2 weeks post-injury (45 and 15 %, respec-
tively), while the mean footprint intensity was about 20-30 %
lower at 1, 2, and 3 weeks post-injury as compared to sham-
operated animals (P < 0.05).

Autophagy Promotes Axonal Regeneration and SC
Remyelination

MBP is a major constituent of the myelin sheath produced by
SCs in the peripheral nervous system, while the expression of
NF-200—an axon-specific intermediate filament—is critical
for axon stabilization during their maturation. To investigate
the effects of autophagy on nerve regeneration, the expression
of MBP and NF-200 was evaluated by immunocytochemistry.
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Fig. 3 Recovery of motor function following PNI. Representative
CatWalk analysis trace from a a sham-operated rat (sham + v) and b a
post-injury rat. Groups are as defined in Fig. 1 caption. LF, left forelimb;
LH, left hind limb; RF, right forelimb; RH, right hind limb. ¢ Footprint

At 1 week post-injury, at the peak of nerve regeneration, MBP
and NF-200 immunoreactivity was 1.4- and 2-fold higher,
respectively, in rats treated with rapamycin as compared to
those treated with 3-MA or were subjected to injury but un-
treated (P < 0.001; Fig. 4). In addition, MBP and NF-200
expression was lower in the 3-MA-treated group relative to
the crush + v group (P > 0.05).

>

Fig. 4 MBP and NF-200
expression following NCIL.
Protein expression of MBP
(green) and NF-200 (red) at the
site of injury was evaluated by
immunocytochemistry in each
experimental group (defined in
the Fig. 1 caption). Fluorescence
intensity was calculated by the
integrated density of pixels for b
MBP and ¢ NF-200. Crush + v
group, crush + rapa group, and
crush + 3-MA group were
compared with sham + v group,
respectively. *P < 0.05,

**P < (.01, ns means no
significance (between-groups
comparison of integrated
fluorescence intensity with
Bonferroni correction; n =6
rats/group). Scale bar =20 um
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intensity and d stand time were evaluated 1, 2, 3, and 6 weeks after injury
(1W,2W, 3 W, and 6 W, respectively). *P < 0.05, **P < 0.01,
*¥**P < 0.001 (between-groups comparison at different time points with
Bonferroni correction; n = 6 rats/group)

The lesion site of the sciatic nerve was examined 6 weeks
post-injury by electron microscopy (Fig. 5). Axon number and
G-ratio—which is the ratio of inner to outer diameter of the
myelin sheath—differed in the four groups (Fig. 4b). There
was a greater number of smaller axons (diameter <4 pm)
while larger axons (diameter >4 pm) were more abundant in
the rapamycin-treated and sham-operated groups than in the
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crush + v and 3-MA groups, indicating that axon
remyelination was delayed in the former two groups. The G
ratio of large axons was 0.59—0.68 in the crush + v and 3-MA
groups, suggesting that axonal maturation was inhibited,
whereas in the rapamycin-treated and sham-operated groups,
the G ratio was 0.73-0.83, indicating that axonal maturation
was enhanced by activating and suppressed by inhibiting au-
tophagy. Thus, the activation of autophagy improves the
remyelination function of SCs as well as axon regeneration.

Fig. 6 Autophagy decreases cell
death following sciatic PNIL. a
Cell death in SCs was detected in
each experimental group (defined
in the Fig. 1 caption) by DAPI
(blue) and TUNEL (green)
double staining. b Quantitative
analysis of TUNEL-positive cells.
*P <0.05, ***P < 0.001
(between-groups comparison of
TUNEL-positive cells with
Bonferroni correction; n = 6
rats/group). Scale bar =10 um

crush+3-ma crsh+rapa crush+v shamtv X>

Autophagy Decreases Cell Death Following Sciatic PNI

The cytoprotective role of autophagy was investigated
by TUNEL staining (Fig. 6). A marked decrease of
apoptotic cells was detected in rapamycin-treated ani-
mals 1 week post-injury as compared to the crush + v
and 3-MA groups, indicating that the activation of au-
tophagy reduced the number of apoptotic cells following
sciatic NCI.
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Discussion

PNI is a common type of trauma that involves Wallerian de-
generation and disruption of axonal connections at the lesions
site (Sta et al. 2014; Pereira et al. 2012). The mammalian
target of rapamycin (mTOR) signaling pathway plays an im-
portant role in mediating the regenerative response and func-
tional recovery following injury by regulating cell metabo-
lism, proliferation, death, and survival as well as autophagy
(Laplante & Sabatini 2009), and has also been linked to trau-
matic brain injury (Clark et al. 2008), neonatal hypoxia—ische-
mia-induced brain injury (Carloni et al. 2008), and spinal cord
injury (Wang et al. 2014). Recent studies have reported that
inhibition of mTOR signaling by rapamycin results in the
activation of autophagy, which functions to remove damaged
cellular components and maintain cell homeostasis (Pattingre
et al. 2008; Dunlop and Tee 2014; Xue et al. 2013).

The current study investigated the role of lysosomal clear-
ance mechanisms of autophagy in the injured rat sciatic nerve.
We found that rapamycin treatment induced an upregulation
of LC3-II expression following injury, consistent with the ac-
tivation of autophagy via mTOR inhibition. In addition, cell
death at the lesion site was reduced in rapamycin-treated rats,
corresponding to a greater degree of neuroregeneration and
increased recovery of motor function relative to the vehicle
treatment group. The opposite result was observed upon ad-
ministration of 3-MA. These results demonstrate that negative
regulation of mTOR signal caused by rapamycin induces au-
tophagy and promotes peripheral nerve regeneration and mo-
tor recovery after sciatic NCIL.

In the present study, autophagy was demonstrated via de-
tection autophagosomes by electron microscopy, which is
considered as the gold standard (Klionsky et al. 2007). In
addition, the protein expression of LC3-II was used to assess
autophagy (Mizushima 2009). Aside from those treated with
3-MA, all rats showed an increase in autophagy 1 week after
NCI. The pathophysiological processes that occur in the in-
jured nerves, including ischemia, inflammation, oxidative
stress, and disruption of the blood supply, deplete essential
cellular nutrients and are likely responsible for autophagy
activation.

SCs provide trophic support for the remyelination of in-
jured axons to reestablish nerve function (Madduri and
Gander 2010; Stassart et al. 2013). In the present study,
rapamycin-treated rats showed a greater number of SCs and
improved remyelination 1 and 6 weeks post-injury as com-
pared to control animals, indicating that mTOR inhibition by
rapamycin activated autophagy to promote SC survival and
nerve recovery. Autophagy has a protective role after injury
under various circumstances with respect to oxidative stress
(Moore 2008), inflammatory response (Jan et al. 2012), acute
liver injury (Lu et al. 2014), and ischemic preconditioning
(Yan etal. 2013). The timeline of the improvement in outcome
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of the rapamycin-treated group suggests that enhanced au-
tophagy at the acute stage after injury helps to reestablish
motor function in the long term. In addition, the results dem-
onstrated that inhibiting autophagy delayed remyelination by
Schwann cells and the regeneration of injured axons, indicat-
ing that a basal level of autophagy is required to maintain
nerve homeostasis, which is consistent with the conclusions
of other studies (Carloni et al. 2008; Jiang et al. 2010; Sheng et
al. 2010). Thus, while studies have variously reported that
inhibiting mTOR signaling with rapamycin can have both
beneficial and detrimental effects for nervous system recovery
(Chen etal. 2013; Rami et al. 2008; Leibinger et al. 2012; Wen
et al. 2008; Wang et al. 2012), the results of the current study
indicate that activating autophagy in injured peripheral nerves
by mTOR inhibition serves a protective function in the early
post-injury stages that can ensure the recovery of motor func-
tion later on.

In summary, the findings presented here provide evidence
supporting a role for autophagy in nerve regeneration and
motor function recovery in the PNS and can serve as a basis
for the development of therapeutics that improve the outcome
of PNI via pharmacological induction of autophagy.
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