Skip to main content

Advertisement

Log in

The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers.

Methods

We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers.

Results

Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome.

Conclusion

The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

WHO:

World Health Organization

MALT:

Mucosa-associated lymphoid tissue

CRC:

Colorectal cancer

MeSH:

Medical subject headings

COPD:

Chronic obstructive pulmonary disease

HOMD:

Human oral microbiome database

HMP:

Human Microbiome Project

MMP:

Matrix metalloproteinase

OSCC:

Oral squamous cell carcinoma

TNF-α:

Tumor necrosis factor-α

HNSCC:

Head and neck squamous cell carcinoma

OPSCC:

Oropharyngeal squamous cell carcinoma

GSCC:

Gingival squamous cell carcinoma

OCC:

Oral cavity cancer

OPC:

Oropharyngeal cancer

EAC:

Esophageal adenocarcinoma

ESCC:

Esophageal squamous cell carcinoma

PDAC:

Pancreatic ductal adenocarcinoma

CA 19–9:

Cancer antigen 19–9

TLR:

Toll-like receptor

AG:

Atrophic gastritis

SG:

Superficial gastritis

AUC:

Area under the curve

ELISA:

Enzyme-linked immunosorbent assay

qPCR:

Quantitative polymerase chain reaction

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: Cancer J Clin. 2013;63(1):11–30. https://doi.org/10.3322/caac.21166.

  2. Chocolatewala N, Chaturvedi P, Desale R. The role of bacteria in oral cancer. Indian J Med Paediatr Oncol Off J Indian Soc Med Paediatr Oncol. 2010;31(4):126–31. https://doi.org/10.4103/0971-5851.76195.

    Article  Google Scholar 

  3. Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med. 2006;4:14. https://doi.org/10.1186/1479-5876-4-14.

  4. Quéro L, Labidi M, Bollet M, Bommier C, Guillerm S, Hennequin C, et al. Radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma. World J Gastrointest Oncol. 2021;13(10):1453–65. https://doi.org/10.4251/wjgo.v13.i10.1453.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagaraja V, Eslick GD. Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther. 2014;39(8):745–50. https://doi.org/10.1111/apt.12655.

    Article  CAS  PubMed  Google Scholar 

  6. Markowska J, Fischer N, Markowski M, Nalewaj J. The role of Chlamydia trachomatis infection in the development of cervical neoplasia and carcinoma. Med Wieku Rozwoj. 2005;9(1):83–6.

    PubMed  Google Scholar 

  7. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8. https://doi.org/10.1101/gr.126573.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2006;12(8):782–6. https://doi.org/10.1111/j.1469-0691.2006.01494.x.

    Article  CAS  Google Scholar 

  9. Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 2011;305(2):228–38. https://doi.org/10.1016/j.canlet.2010.07.014.

    Article  CAS  PubMed  Google Scholar 

  10. Whitmore S, Lamont R. Oral bacteria and cancer. PLoS pathogens. 2014;10:e1003933. https://doi.org/10.1371/journal.ppat.1003933.

  11. Sohail MU, Hedin L, Al-Asmakh M. Dysbiosis of the salivary microbiome is associated with hypertension and correlated with metabolic syndrome biomarkers. Diabetes Metab Syndr Obes Targets Ther. 2021;14:4641–53. https://doi.org/10.2147/dmso.s325073.

  12. Sundh J, Tanash H, Arian R, Neves-Guimaraes A, Broberg K, Lindved G, et al. Advanced dental cleaning is associated with reduced risk of COPD exacerbations - a randomized controlled trial. Int J Chron Obstruct Pulmon Dis. 2021;16:3203–15. https://doi.org/10.2147/copd.s327036.

  13. Moskovitz M, Nassar M, Moriel N, Cher A, Faibis S, Ram D, et al. Characterization of the oral microbiome among children with type 1 diabetes compared with healthy children. Front Microbiol. 2021;12:756808. https://doi.org/10.3389/fmicb.2021.756808.

  14. Maitre Y, Mahalli R, Micheneau P, Delpierre A, Amador G, Denis F. Evidence and therapeutic perspectives in the relationship between the oral microbiome and Alzheimer’s disease: a systematic review. Int J Environ Res Public Health. 2021;18(21). https://doi.org/10.3390/ijerph182111157.

  15. Zaura E, Nicu EA, Krom BP, Keijser BJF. Acquiring and maintaining a normal oral microbiome: current perspective. Frontiers in cellular and infection microbiology. 2014; 4:85 p. Available from: http://europepmc.org/abstract/MED/25019064; https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25019064/?tool=EBI ; https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25019064/pdf/?tool=EBI ; https://doi.org/10.3389/fcimb.2014.00085 ; https://europepmc.org/articles/PMC4071637 ; https://europepmc.org/articles/PMC4071637?pdf=render.

  16. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19. https://doi.org/10.1111/j.2041-1014.2012.00663.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA: Cancer J Clin. 2017;67(4):326–44. https://doi.org/10.3322/caac.21398.

  18. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37. https://doi.org/10.1038/nature12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9. https://doi.org/10.1016/j.jcrpr.2017.07.001.

    Article  Google Scholar 

  20. Perera M, Al-Hebshi NN, Speicher DJ, Perera I, Johnson NW. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. J Oral Microbiol. 2016;8:32762. https://doi.org/10.3402/jom.v8.32762.

  21. Chattopadhyay I, Verma M, Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat. 2019;18:1533033819867354. https://doi.org/10.1177/1533033819867354.

  22. Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, et al. The oral microbiome - an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66. https://doi.org/10.1038/sj.bdj.2016.865.

    Article  CAS  PubMed  Google Scholar 

  23. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. https://doi.org/10.1128/jb.00542-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim Y, Totsika M, Morrison M, Punyadeera C. Oral Microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics. 2017;7(17):4313–21. https://doi.org/10.7150/thno.21804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escapa I, Chen T, Huang Y, Gajare P, Dewhirst F, Lemon K. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018;3. https://doi.org/10.1128/mSystems.00187-18.

  26. Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69(1):137–43. https://doi.org/10.1016/j.phrs.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  27. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010;2010:baq013. https://doi.org/10.1093/database/baq013.

  28. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32. https://doi.org/10.1128/jcm.43.11.5721-5732.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature. 2007;449(7164):804–10. https://doi.org/10.1038/nature06244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23. https://doi.org/10.1101/gr.096651.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin Cancer Biol. 2018;52(Pt 1):1–8. https://doi.org/10.1016/j.semcancer.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  32. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  33. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12(1):5–9. https://doi.org/10.1038/ni0111-5.

    Article  CAS  PubMed  Google Scholar 

  34. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47–64. https://doi.org/10.1007/s00253-016-8006-6.

    Article  CAS  PubMed  Google Scholar 

  35. von Rosenvinge EC, O’May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis. 2013;67(1):25–38. https://doi.org/10.1111/2049-632x.12020.

    Article  Google Scholar 

  36. Xu X, Chen F, Huang Z, Ma L, Chen L, Pan Y, et al. Meeting report: a close look at oral biofilms and microbiomes. Int J Oral Sci. 2018;10(3):28. https://doi.org/10.1038/s41368-018-0030-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cammarota G, Branca G, Ardito F, Sanguinetti M, Ianiro G, Cianci R, et al. Biofilm demolition and antibiotic treatment to eradicate resistant Helicobacter pylori: a clinical trial. Clin Gastroenterol Hepatol. 2010;8(9):817-20.e3. https://doi.org/10.1016/j.cgh.2010.05.006.

    Article  PubMed  Google Scholar 

  38. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649–69. https://doi.org/10.1093/femsre/fuv015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75. https://doi.org/10.1038/nrmicro.2016.94.

    Article  CAS  PubMed  Google Scholar 

  40. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–43. https://doi.org/10.1128/mmbr.00013-14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cornejo Ulloa P, van der Veen MH, Krom BP. Review: modulation of the oral microbiome by the host to promote ecological balance. Odontology. 2019;107(4):437–48. https://doi.org/10.1007/s10266-019-00413-x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 2021;19:1335–60. https://doi.org/10.1016/j.csbj.2021.02.010.

  43. La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett. 2020;19(4):3045–58. https://doi.org/10.3892/ol.2020.11441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H. Oral bacterial and fungal microbiome impacts colorectal carcinogenesis. Front Microbiol. 2018;9:774. https://doi.org/10.3389/fmicb.2018.00774.

  45. Takahashi Y, Park J, Hosomi K, Yamada T, Kobayashi A, Yamaguchi Y, et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing. J Oral Biosci. 2019;61(2):120–8. https://doi.org/10.1016/j.job.2019.03.003.

    Article  PubMed  Google Scholar 

  46. Minarovits J. Anaerobic bacterial communities associated with oral carcinoma: intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 2020:102300. https://doi.org/10.1016/j.anaerobe.2020.102300.

  47. Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol. 1998;34(4):304–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lee W-H, Chen H-M, Yang S-F, Liang C, Peng C-Y, Lin F-M, et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep. 2017;7(1):16540. https://doi.org/10.1038/s41598-017-16418-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leonardi R, Talic NF, Loreto C. MMP-13 (collagenase 3) immunolocalisation during initial orthodontic tooth movement in rats. Acta Histochem. 2007;109(3):215–20. https://doi.org/10.1016/j.acthis.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  50. Szkaradkiewicz AK, Karpiński TM. Microbiology of chronic periodontitis. J Biol Earth Sci. 2013;3(1):14–20.

    Google Scholar 

  51. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448. https://doi.org/10.3389/fphys.2012.00448.

  52. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005;3(1):27. https://doi.org/10.1186/1479-5876-3-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liao P-H, Chang Y-C, Huang M-F, Tai K-W, Chou M-Y. Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol. 2000;36(3):272–6. https://doi.org/10.1016/S1368-8375(00)00005-1.

    Article  PubMed  Google Scholar 

  54. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz EL, et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE. 2014;9(6): e98741. https://doi.org/10.1371/journal.pone.0098741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou X, Hao Y, Peng X, Li B, Han Q, Ren B, et al. The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas. Front Cell Infect Microbiol. 2021;11:728933. https://doi.org/10.3389/fcimb.2021.728933.

  56. Sarkar P, Malik S, Laha S, Das S, Bunk S, Ray JG, et al. Dysbiosis of oral microbiota during oral squamous cell carcinoma development. Front Oncol. 2021;11:614448. https://doi.org/10.3389/fonc.2021.614448.

  57. Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2019;9:476. https://doi.org/10.3389/fcimb.2019.00476.

  58. Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, et al. Variations in oral microbiota associated with oral cancer. Sci Rep. 2017;7(1):11773. https://doi.org/10.1038/s41598-017-11779-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsiao JR, Chang CC, Lee WT, Huang CC, Ou CY, Tsai ST, et al. The interplay between oral microbiome, lifestyle factors and genetic polymorphisms in the risk of oral squamous cell carcinoma. Carcinogenesis. 2018;39(6):778–87. https://doi.org/10.1093/carcin/bgy053.

    Article  CAS  PubMed  Google Scholar 

  60. Yang SF, Huang HD, Fan WL, Jong YJ, Chen MK, Huang CN, et al. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer. Oral Oncol. 2018;77:1–8. https://doi.org/10.1016/j.oraloncology.2017.12.005.

  61. Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018;9:862. https://doi.org/10.3389/fmicb.2018.00862.

  62. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012;12:144. https://doi.org/10.1186/1471-2180-12-144.

  63. Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11(3):151–6. https://doi.org/10.1111/j.1601-0825.2005.01051.x.

    Article  CAS  PubMed  Google Scholar 

  64. Amer A, Galvin S, Healy CM, Moran GP. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for fusobacterium, leptotrichia, campylobacter, and rothia species. Front Microbiol. 2017;8:2391. https://doi.org/10.3389/fmicb.2017.02391.

  65. Kageyama S, Takeshita T, Takeuchi K, Asakawa M, Matsumi R, Furuta M, et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019;10:1780. https://doi.org/10.3389/fmicb.2019.01780.

  66. Li Y, Tan X, Zhao X, Xu Z, Dai W, Duan W, et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol. 2020;107:104710. https://doi.org/10.1016/j.oraloncology.2020.104710.

  67. Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci. 2011;3(4):209–15. https://doi.org/10.4248/ijos11075.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci Rep. 2017;7(1):5867. https://doi.org/10.1038/s41598-017-06361-2.

  69. Lim Y, Fukuma N, Totsika M, Kenny L, Morrison M, Punyadeera C. The performance of an oral microbiome biomarker panel in predicting oral cavity and oropharyngeal cancers. Front Cell Infect Microbiol. 2018;8:267. https://doi.org/10.3389/fcimb.2018.00267.

  70. Börnigen D, Ren B, Pickard R, Li J, Ozer E, Hartmann EM, et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci Rep. 2017;7(1):17686. https://doi.org/10.1038/s41598-017-17795-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliva M, Schneeberger PHH, Rey V, Cho M, Taylor R, Hansen AR, et al. Transitions in oral and gut microbiome of HPV+ oropharyngeal squamous cell carcinoma following definitive chemoradiotherapy (ROMA LA-OPSCC study). Br J Cancer. 2021;124(9):1543–51. https://doi.org/10.1038/s41416-020-01253-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Debelius JW, Huang T, Cai Y, Ploner A, Barrett D, Zhou X, et al. Subspecies niche specialization in the oral microbiome is associated with nasopharyngeal carcinoma risk. mSystems. 2020;5(4). https://doi.org/10.1128/mSystems.00065-20.

  73. Chen Z, Wong PY, Ng CWK, Lan L, Fung S, Li JW, et al. The intersection between oral microbiota, host gene methylation and patient outcomes in head and neck squamous cell carcinoma. Cancers. 2020;12(11). https://doi.org/10.3390/cancers12113425.

  74. Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4(3):358–65. https://doi.org/10.1001/jamaoncol.2017.4777.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodríguez-Hilario A, González H, Bondy J, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7(32):51320–34. https://doi.org/10.18632/oncotarget.9710.

  76. Shiga K, Tateda M, Saijo S, Hori T, Sato I, Tateno H, et al. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep. 2001;8(2):245–8.

    CAS  PubMed  Google Scholar 

  77. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

  78. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Can Res. 2017;77(23):6777–87. https://doi.org/10.1158/0008-5472.can-17-1296.

    Article  CAS  Google Scholar 

  79. Gupta B, Kumar N. Worldwide incidence, mortality and time trends for cancer of the oesophagus. Eur J Cancer Prev Off J Euro Cancer Prev Org. 2016;26. https://doi.org/10.1097/CEJ.0000000000000249.

  80. Gao S, Li S, Ma Z, Liang S, Shan T, Zhang M, et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer. 2016;11:3. https://doi.org/10.1186/s13027-016-0049-x.

  81. Wang Q, Rao Y, Guo X, Liu N, Liu S, Wen P, et al. Oral microbiome in patients with oesophageal squamous cell carcinoma. Sci Rep. 2019;9(1):19055. https://doi.org/10.1038/s41598-019-55667-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen X, Winckler B, Lu M, Cheng H, Yuan Z, Yang Y, et al. oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PloS one. 2015;10(12):e0143603-e. https://doi.org/10.1371/journal.pone.0143603.

  83. Snider EJ, Compres G, Freedberg DE, Giddins MJ, Khiabanian H, Lightdale CJ, et al. Barrett's esophagus is associated with a distinct oral microbiome. Clin Transl Gastroenterol. 2018;9(3):135. https://doi.org/10.1038/s41424-018-0005-8.

  84. Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95(7):569–74. https://doi.org/10.1111/j.1349-7006.2004.tb02488.x.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Q, Yang T, Yan Y, Zhang Y, Li Z, Wang Y, et al. Alterations of Oral Microbiota in Chinese patients with esophageal cancer. Front Cell Infect Microbiol. 2020;10(563). https://doi.org/10.3389/fcimb.2020.541144.

  86. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. The Lancet. 2004;363(9414):1049–57. https://doi.org/10.1016/S0140-6736(04)15841-8.

    Article  CAS  Google Scholar 

  87. De La Cruz MS, Young AP, Ruffin MT. Diagnosis and management of pancreatic cancer. Am Fam Physician. 2014;89(8):626–32.

    PubMed  Google Scholar 

  88. Yeo CJ, Cameron JL, Lillemoe KD, Sitzmann JV, Hruban RH, Goodman SN, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg. 1995;221(6):721–31; discussion 31–3. https://doi.org/10.1097/00000658-199506000-00011.

  89. Michaud DS, Joshipura K, Giovannucci E, Fuchs CS. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst. 2007;99(2):171–5. https://doi.org/10.1093/jnci/djk021.

  90. Yamanaka W, Takeshita T, Shibata Y, Matsuo K, Eshima N, Yokoyama T, et al. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS ONE. 2012;7(8): e42806. https://doi.org/10.1371/journal.pone.0042806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8. https://doi.org/10.1136/gutjnl-2011-300784.

    Article  CAS  PubMed  Google Scholar 

  92. Sun H, Zhao X, Zhou Y, Wang J, Ma R, Ren X, et al. Characterization of oral microbiome and exploration of potential biomarkers in patients with pancreatic cancer. BioMed Res Int. 2020;2020:4712498. https://doi.org/10.1155/2020/4712498.

  93. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7. https://doi.org/10.1136/gutjnl-2016-312580.

    Article  CAS  PubMed  Google Scholar 

  94. Wei AL, Li M, Li GQ, Wang X, Hu WM, Li ZL, et al. Oral microbiome and pancreatic cancer. World J Gastroenterol. 2020;26(48):7679–92. https://doi.org/10.3748/wjg.v26.i48.7679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vogtmann E, Han Y, Caporaso JG, Bokulich N, Mohamadkhani A, Moayyedkazemi A, et al. Oral microbial community composition is associated with pancreatic cancer: a case-control study in Iran. Cancer Med. 2020;9(2):797–806. https://doi.org/10.1002/cam4.2660.

    Article  CAS  PubMed  Google Scholar 

  96. Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 2015;3:e1373. https://doi.org/10.7717/peerj.1373.

  97. Olson SH, Satagopan J, Xu Y, Ling L, Leong S, Orlow I, et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control CCC. 2017;28(9):959–69. https://doi.org/10.1007/s10552-017-0933-8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lu H, Ren Z, Li A, Li J, Xu S, Zhang H, et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J Oral Microbiol. 2019;11(1):1563409. https://doi.org/10.1080/20002297.2018.1563409.

  99. Gaiser RA, Halimi A, Alkharaan H, Lu L, Davanian H, Healy K, et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut. 2019;68(12):2186–94. https://doi.org/10.1136/gutjnl-2018-317458.

    Article  CAS  PubMed  Google Scholar 

  100. Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J (Sudbury, Mass). 2014;20(3):203–6. https://doi.org/10.1097/ppo.0000000000000046.

    Article  CAS  Google Scholar 

  101. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32. https://doi.org/10.1038/s41575-019-0189-8.

    Article  PubMed  Google Scholar 

  102. Wang Y, Zhang Y, Qian Y, Xie YH, Jiang SS, Kang ZR, et al. Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors. Int J Cancer. 2021. https://doi.org/10.1002/ijc.33596.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang S, Kong C, Yang Y, Cai S, Li X, Cai G, et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Theranostics. 2020;10(25):11595–606. https://doi.org/10.7150/thno.49515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454–63. https://doi.org/10.1136/gutjnl-2017-314814.

    Article  CAS  PubMed  Google Scholar 

  105. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11. https://doi.org/10.1093/jnci/djt300.

  106. Uchino Y, Goto Y, Konishi Y, Tanabe K, Toda H, Wada M, et al. Colorectal cancer patients have four specific bacterial species in oral and gut microbiota in common-a metagenomic comparison with healthy subjects. Cancers. 2021;13(13). https://doi.org/10.3390/cancers13133332.

  107. Kato I, Vasquez AA, Moyerbrailean G, Land S, Sun J, Lin HS, et al. Oral microbiome and history of smoking and colorectal cancer. J Epidemiol Res. 2016;2(2):92–101. https://doi.org/10.5430/jer.v2n2p92.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. https://doi.org/10.1101/gr.126516.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis Off Publ Euro Soc Clin Microbiol. 2014;33(8):1381–90. https://doi.org/10.1007/s10096-014-2081-3.

    Article  CAS  Google Scholar 

  110. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Can Res. 2014;74(5):1311–8. https://doi.org/10.1158/0008-5472.can-13-1865.

    Article  CAS  Google Scholar 

  111. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20. https://doi.org/10.3389/fmicb.2015.00020.

  112. Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, et al. Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev Biol. 2021;9:710165. https://doi.org/10.3389/fcell.2021.710165.

  113. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res CR. 2020;39(1):202. https://doi.org/10.1186/s13046-020-01677-w.

    Article  CAS  PubMed  Google Scholar 

  115. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO reports. 2019;20(4). https://doi.org/10.15252/embr.201847638.

  116. Chen Y, Peng Y, Yu J, Chen T, Wu Y, Shi L, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8(19):31802–14. https://doi.org/10.18632/oncotarget.15992.

  117. Wu J, Xu S, Xiang C, Cao Q, Li Q, Huang J, et al. Tongue coating microbiota community and risk effect on gastric cancer. J Cancer. 2018;9(21):4039–48. https://doi.org/10.7150/jca.25280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang Y, Long J, Wang C, Blot WJ, Pei Z, Shu X, et al. Prospective study of oral microbiome and gastric cancer risk among Asian, African American and European American populations. Int J Cancer. 2022;150(6):916–27. https://doi.org/10.1002/ijc.33847.

    Article  CAS  PubMed  Google Scholar 

  119. Huang K, Gao X, Wu L, Yan B, Wang Z, Zhang X, et al. Salivary microbiota for gastric cancer prediction: an exploratory study. Front Cell Infect Microbiol. 2021;11:640309. https://doi.org/10.3389/fcimb.2021.640309.

  120. Hu J, Han S, Chen Y, Ji Z. Variations of tongue coating microbiota in patients with gastric cancer. BioMed Res Int. 2015;2015:173729. https://doi.org/10.1155/2015/173729.

  121. Sun JH, Li XL, Yin J, Li YH, Hou BX, Zhang Z. A screening method for gastric cancer by oral microbiome detection. Oncol Rep. 2018;39(5):2217–24. https://doi.org/10.3892/or.2018.6286.

    Article  CAS  PubMed  Google Scholar 

  122. Lu H, Ren Z, Li A, Zhang H, Jiang J, Xu S, et al. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci Rep. 2016;6(1):33142. https://doi.org/10.1038/srep33142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Inman KS, Francis AA, Murray NR. Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol. 2014;20(32):11160–81. https://doi.org/10.3748/wjg.v20.i32.11160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother Biomed Pharmacother. 2017;89:918–25. https://doi.org/10.1016/j.biopha.2017.02.102.

  125. Zhou J, Wang L, Yuan R, Yu X, Chen Z, Yang F, et al. Signatures of mucosal microbiome in oral squamous cell carcinoma identified using a random forest model. Cancer Manag Res. 2020;12:5353–63. https://doi.org/10.2147/cmar.s251021.

  126. Wang L, Yin G, Guo Y, Zhao Y, Zhao M, Lai Y, et al. Variations in oral microbiota composition are associated with a risk of throat cancer. Front Cell Infect Microbiol. 2019;9:205. https://doi.org/10.3389/fcimb.2019.00205.

  127. Zuo HJ, Fu MR, Zhao HL, Du XW, Hu ZY, Zhao XY, et al. Study on the Salivary Microbial Alteration of Men With Head and Neck Cancer and Its Relationship With Symptoms in Southwest China. Front Cell Infect Microbiol. 2020;10:514943. https://doi.org/10.3389/fcimb.2020.514943.

  128. Guven DC, Dizdar O, Alp A, Akdoğan Kittana FN, Karakoc D, Hamaloglu E, et al. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark Med. 2019;13(9):725–35. https://doi.org/10.2217/bmm-2019-0020.

    Article  CAS  PubMed  Google Scholar 

  129. Wang Y, Zhang Y, Wang Z, Tang J, Cao DX, Qian Y, et al. A clinical nomogram incorporating salivary Desulfovibrio desulfuricans level and oral hygiene index for predicting colorectal cancer. Ann Transl Med. 2021;9(9):754. https://doi.org/10.21037/atm-20-8168.

  130. Liu F, Liu M, Liu Y, Guo C, Zhou Y, Li F, et al. Oral microbiome and risk of malignant esophageal lesions in a high-risk area of China: a nested case-control study. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. 2020;32(6):742–54. https://doi.org/10.21147/j.issn.1000-9604.2020.06.07.

  131. Xu S, Xiang C, Wu J, Teng Y, Wu Z, Wang R, et al. Tongue coating bacteria as a potential stable biomarker for gastric cancer independent of lifestyle. Dig Dis Sci. 2021;66(9):2964–80. https://doi.org/10.1007/s10620-020-06637-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pooria Asili: conceptualization, methodology, writing—original draft preparation; Maryam Mirahmad: investigation, writing—original draft preparation; Parisa Rezaei: Writing—Original draft preparation; Seyed Mohammad Tavangar: supervision, writing-reviewing and editing; Mohammad Mahdavi: writing—reviewing and editing; Bagher Larijani: project administration, writing—reviewing and editing; all the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Seyed Mohammad Tavangar.

Ethics declarations

Ethics Approval and Consent to Participate

This study was performed according to the principles of the Declaration of Helsinki.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pooria Asili and Maryam Mirahmad contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asili, P., Mirahmad, M., Rezaei, P. et al. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Canc 54, 1082–1101 (2023). https://doi.org/10.1007/s12029-022-00901-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-022-00901-4

Keywords

Navigation