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Abstract

Intracranial hypertension (IH) is a key driver of secondary brain injury in patients with traumatic brain injury. Lowering
intracranial pressure (ICP) as soon as IH occurs is important, but a preemptive approach would be more beneficial.
We systematically reviewed the artificial intelligence (Al) models, variables, performances, risks of bias, and clinical
machine learning (ML) readiness levels of IH prediction models using Al. We conducted a systematic search until
12-03-2023 in three databases. Only studies predicting IH or ICP in patients with traumatic brain injury with a valida-
tion of the Al model were included. We extracted type of Al model, prediction variables, model performance, valida-
tion type, and prediction window length. Risk of bias was assessed with the Prediction Model Risk of Bias Assessment
Tool, and we determined the clinical ML readiness level. Eleven out of 399 nonduplicate publications were included.
A gaussian processes model using ICP and mean arterial pressure was most common. The maximum reported area
under the receiver operating characteristic curve was 0.94. Four studies conducted external validation, and one study
a prospective clinical validation. The prediction window length preceding IH varied between 30 and 60 min. Most
studies (73%) had high risk of bias. The highest clinical ML readiness level was 6 of 9, indicating “real-time model test-
ing”stage in one study. Several IH prediction models using Al performed well, were externally validated, and appeared
ready to be tested in the clinical workflow (clinical ML readiness level 5 of 9). A Gaussian processes model was most
used, and ICP and mean arterial pressure were frequently used variables. However, most studies showed a high risk of
bias. Our findings may help position Al for IH prediction on the path to ultimate clinical integration and thereby guide

researchers plan and design future studies.
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Introduction

Intracranial hypertension (IH) portends a worse prog-
nosis in patients with traumatic brain injury (TBI) and
should be treated expediently [1]. The primary brain
injury is often accompanied by tissue edema resulting
in IH. It is the key driver of secondary brain injury, as
it hampers cerebral perfusion and induces ischemia [1].
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Current practice has focused mainly on alleviation intrac-
ranial pressure (ICP) once it has occurred, by medical or
surgical interventions [1]. A preemptive approach may
contribute to prevention of ICP surges, by mitigation of
contributing factors known to be able to induce second-
ary brain injury in patients at high risk for IH. Indeed, a
rise in ICP reflects exhausted compensatory intracranial
reserve (compliance) contributing to secondary injuries
that would better be prevented.

Clinical variables contributing to secondary brain
injury and IH include fever, hypoosmolality of
serum, hyperglycemia, prolonged hyperventilation or
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hypoventilation, and venous congestion caused by high
positive end-expiratory pressure levels of the ventilator
and fluid overload [2, 3]. These factors are represented by
variables that are continuously monitored at the inten-
sive care unit (ICU) and are highly amenable to treat-
ment. Early identification of the risk of impending IH can
enable clinicians or nurses at the bedside to correct or
optimize such variables, and thereby decrease the risk of
IH, but could also serve as measure to identify patients in
need of impending rescue therapies (e.g., decompressive
surgery).

To date, prediction of IH with such physiological vari-
ables remains understudied.

Contemporary artificial intelligence (AI) algorithms
may outperform physicians regarding clinical prediction
related to medical conditions [4] or image analysis [5]. In
a data driven environment such as the ICU, the potential
of Al to aid clinical practice decision making might even
be higher [6]. Al is able to analyze vast amounts of data,
recognize patterns, and make fast predictions based on
these patterns. Hence, AI may be a valuable tool to help
early identification of patients at risk of IH and enable
earlier treatment to prevent its development.

Although the potential for AI to aid clinical practice
may seem high, it is important to assess possible bias, as
improper data or model development may result in an Al
method that performs well in specific situations, but not
in clinical practice. External model validation is crucial to
either identify such biased models or endorse the gener-
alizability of a model.

Another important factor for implementation at the
bedside is the machine learning (ML) level of readiness
[7], which indicates the position of a model on the path
from concept to clinical use and improvement of care
and outcomes. Determining this level for every study will
provide valuable information regarding how “ready” this
technology is for real-world applications.

The aim of this systematic review was to assess the
available literature regarding the prediction of IH in
patients with TBI using validated AI models, and spe-
cifically we sought to determine the type of Al meth-
ods and variables that are being used to predict IH, the
performance of these models, the risk of bias, and the
clinical ML readiness level for integration in the clinical
workflow.

Methods

The protocol for this systematic review has been
registered in PROSPERO (registration number:
CRD42020214744). This research was conducted and
reported using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [8]. This

article adheres to ethical guidelines and did not require
ethical approval or use of informed consent.

Search Strategy

We searched the Embase, Ovid, and Web of Science Core
Collection electronic databases on 12-03-2023 for publi-
cations describing studies that involved ICP or IH, TBI,
and Al, with assistance for electronic search strategies
from a medical information specialist. The full queries
can be found in Supplementary file 1.

Inclusion Criteria and Study Selection

Titles and abstracts were screened by two authors (SvH,
JV) to assess whether an article was eligible for inclu-
sion. Articles were included if they used Al with the aim
to predict ICP/IH in patients with TBI and reported per-
formance measures on an internal, external, or prospec-
tive validation set; thus, only articles reporting validated
models were included. We excluded non-English articles
and nonoriginal literature. Full-text publications were
then screened to include all studies that met the inclusion
criteria.

Data Extraction

Data were extracted from the selected studies by two
authors (SvH, JV), with focus on the type of Al method
used, variables used in the model, area under the receiver
operating characteristic curve (AUC), accuracy, sensitiv-
ity, and specificity. These concepts are explained in the
glossary at the end of this article.

In order to properly assess the risk of bias and the
clinical ML readiness level, we also collected the patient
inclusion process, type of validation, prediction window
length, and the following dataset properties: amount of
data instances (explained subsequently) in the training
and validation set, the data instance length, percentage of
instances preceding IH, sample frequency, IH definition,
and data cleaning process.

The term “(data) instance” is used to indicate a collec-
tion of data acquired during a certain time period (e.g.,
1 h). In retrospective data, it is known whether this col-
lection of data preceded a period of IH, hence a label may
be given to the data instance that represents whether an
IH event occurred after this period. These instances are
subsequently used to train an Al model to recognize dis-
tinct patterns that are present in data preceding an IH
event and absent in data not preceding an IH event, and
vice versa. A properly trained model should subsequently
be able to recognize such patterns in real-time data and
thus provide predictions.



Risk of Bias

We analyzed every article using the Prediction Model
Risk of Bias Assessment Tool (PROBAST) [9]. We plotted
for each domain (participants, predictors, outcomes, and
analysis) the risk of bias as percentage of the total num-
ber of articles.

Clinical ML Readiness Level

We assessed the clinical ML readiness level [6, 7], to
determine where in the developmental process from
concept to clinical integration every model resides. This
scoring system indicates how “ready” a model is to use
in clinical practice and consists of nine levels: (1) clinical
problem identification, (2) proposal of model/solution,
(3 and 4) model prototyping & model development, (5)
model validation, (6) real-time model testing, (7) work-
flow implementation, (8) clinical outcome evaluation, (9)
and model integration.

Main Outcome

The main aim of this systematic review is to evaluate and
summarize the types of AI methods and variables used,
performance measures, risk of bias, and clinical ML read-
iness levels.

Statistics

We did not perform a meta-analysis or any statistical
analysis because the goal of this review is to provide a
qualitative overview of the current literature regarding
Al-aided prediction of IH.

Results

Study Identification

In total, we identified 399 unique records, of which 11
[10-20] (eight articles, two conference abstracts, and
one letter) were eligible for inclusion in this system-
atic review. A flowchart visualizing the article selection
process is provided in Fig. 1. Table 1 summarizes the
Al models, clinical variables, study design, and dataset
properties.

Al Models and Clinical Variables

Eleven different model types were used. Giiiza et al. [12],
Beckers et al. [13], Giiiza et al. [15], Carra et al. [16] and
Carra et al. [18] used the same Gaussian processes (GP)
model based on ICP and mean arterial pressure (MAP),
on different datasets. Feng et al. [11] used eight different
models. GP was the most commonly used model, fol-
lowed by logistic regression and random forest.

To predict ICP/IH, all articles used preceding ICP, and
seven [11-13, 11-13, 18, 20] of 11 studies also used MAP.
In addition to these two variables, one study [11] also
used the brain tissue oxygenation and pressure reactivity

index. Another study [10] used the presence of abnor-
mal ventricle size on computed tomography (CT) and
hypotension (defined as systolic blood pressure less than
90 mm Hg) within the first 24 h of admission, besides the
highest preceding ICP value. One study [14] used only
the ICP and the time since last IH event.

Study Design and Data Set Properties

Six [10-12, 14, 17, 19] studies performed internal vali-
dation and four [13, 15, 16, 20] performed external vali-
dation (Table 2). We found one report [18] on Al-based
IH prediction being tested in clinical practice for patient
care.

All studies investigated the prediction of IH specifi-
cally, except for one [11] study that looked at the ICP
course independent of a specific threshold. We found six
different definitions of IH: one study [20] defined nine
different IH thresholds, ranging from ICP > 15 mm Hg for
180 min up to ICP >34 mm Hg for 10 min, whereas oth-
ers used a single threshold of ICP > 30 mm Hg for 10 min
[12, 13, 12-13, 18], ICP>30 mm Hg [10], ICP>20 mm
Hg for 15 min [14], ICP >22 mm Hg for >75% of a 5-min
interval [19], or ICP >20 mm Hg [17].

The prediction windows varied from 10 min [17] to
48 h [10], and for 82% of the articles it ranged between 30
and 60 min.

Data instance length ranged from 10 min [17] to 24 h
[10]. Data samples were taken every 0.008 s [17] up to
one value per 24 h [10].

Performance

Table 3 shows the AUC, accuracy, sensitivity, and speci-
ficity for each study if reported, and additionally sum-
marizes these for the five [12, 13, 12—13, 18] studies that
used the same model. These performance measures are
also visualized in Fig. 2. Solely the articles by Giiiza et al.
[15] and Myers et al. [14] provided 95% confidence inter-
vals. Seven [11-16, 20] publications provided the AUC,
ranging from 0.647 [11] to 0.94 [20], with an average of
0.85. All publications but one [14] mentioned an accu-
racy value, ranging from 63.3 [11] to 95.3% [17], with
an average of 81%. Seven [10, 12, 15-18, 20] articles
also reported the sensitivity and specificity values, rang-
ing from 59.3 [10] to 91% [15] (with an average of 77%)
and from 48 [15] to 95% [17] (with an average of 84%),
respectively.

Data cleaning was described by seven studies [10, 11,
10-11, 17, 10-11] and consisted of imputing missing
data points with mean values [19, 20], removing values
registered during an intervention [11], removing obvious
artifacts [15, 17], excluding patients with missing data
[10], excluding samples containing IH [10], excluding
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Fig. 1 Flowchart of the article selection process. ICP intracranial pressure, IH intracranial hypertension, TB/ traumatic brain injury

physiologically impossible values [14], interpolating miss-
ing data points [14], and using a smoothing filter [14].
Seven [12, 14-17, 14—17] out of 11 studies men-
tioned (partial) demographics of their cohort. Of note,
Giiiza et al. [15] studied an adult and a pediatric cohort.
The demographic features that were reported are

summarized in Table 4. The lowest and highest age in
the reported interquartile ranges were 7.5 [15] and 80
[17], respectively. The percentage of male participants
ranged from 74 [15] to 87% [14]. For every study pop-
ulation, the median total Glasgow Coma Score (GCS)
was 6 or 7, excluding the studies by Myers et al. [14],
that only reported the eye and motor components of
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Table 2 Study characteristics

ML readiness level

Validation
Klauber MR et al. (1984) [10] Internal
Feng M et al. (2012) [11] Internal
Guiza F et al. (2013) [12] Internal
Beckers M et al. (2014) [13] External
Myers RB et al. (2016) [14] Internal
Guiza Fetal. (2017) [15] External
Carra G et al. (2020) [16] External
Wijayatunga P et al. (2022) [17] Internal
CarraGetal. (2022) [18] Prospective
Petrov D et al. (2023) [19] Internal
Carra G et al. (2023) [20] External

3and 4 High
3and 4 High
3and 4 Low
5 High
3and 4 High
5 High
5 High
3and 4 High
6 Low
3and 4 High
5 Low

This table summarizes for each publication the validation type, machine learning (ML) readiness level, and Prediction Model Risk of Bias Assessment Tool (PROBAST)

score

the GCS, and by Petrov et al. [19], that only mentioned
a GCS of < 8.

None of the included studies reported that their data
or models were publicly available.

Risk of Bias

The results of the PROBAST assessment can be found in
Table 2 and are visualized in Fig. 3. The overall risk of bias
was found to be high in all but three articles [12, 18, 20],
mainly caused by the participants and analysis domains.
The full PROBAST assessments are provided in Supple-
mentary file 2.

Clinical ML Readiness Level

The clinical ML readiness level of the models (Table 2)
was at least level 3 and 4 (five out of 11 studies) and at
most level 6 (one out of 11 studies).

Discussion
In this systematic review on Al algorithms to predict
ICP/IH in patients with TBI, we found that GP was the
most commonly used model, followed by logistic regres-
sion and random forest. Only limited variables were used
(mainly ICP and MAP). Validated models perform well,
with the best AUC being 0.94. Most studies (73%) were
classified as having a high risk of bias. The clinical ML
readiness level was level 6 for one [18] study, and level
5 at most for all other studies, implying that most mod-
els have not left the validation phase and have yet to be
tested in clinical practice. Still, these findings indicate
that Al-aided prediction of IH in patients with TBI has a
very good predictive potential and appears ready for the
next steps to achieve clinical integration.

The validated models included in this study perform
well and seem robust enough to be subsequently tested

in real-time, representing clinical ML readiness level 6.
This means that theoretically they appear ready for test-
ing after integration in clinical patient data management
systems with the aim to establish their real-life perfor-
mance, but not yet with the aim to test usability/feasi-
bility (clinical ML readiness level 7), performing phase
3 randomized clinical trials (clinical ML readiness level
8) or to be actually used for and integrated into patient
management (clinical ML readiness level 9).

The random forest model by Carra et al. [20], based on
the ICP and MAP, achieved the best AUC (0.94) when
used on an external validation data set. Of note, the
model by Giiiza et al. [12] achieved a very similar AUC
of 0.93. Although the model used in that study was devel-
oped on patient data from 2003 to 2005 (AUC 0.872) [12]
and was initially only internally validated, it still accom-
plished good results when validated externally on data
from the AVERT-IT database (AUC 0.83) [13], data from
2009 to 2013 (AUC 0.90 [adult cohort] and 0.79 [pediat-
ric cohort]) [15] and 2015 to 2017 (AUC 0.93) [16], indi-
cating the robustness of this model.

Of note, the Al algorithms mainly used pressure-
related variables, with some studies also using brain tis-
sue oxygenation [11], abnormal ventricle size on CT [10],
and the time since last IH event [14]. Conspicuously, the
most used variables (ICP and MAP) are the determi-
nants for the assessment of cerebral autoregulation with
the pressure reactivity index, and therefore the findings
of this study may indicate that early changes in cerebral
autoregulation predict IH, which from a pathophysiologi-
cal point of view, is understandable.

Of the included publications, 73% was judged to be
high risk of bias. We found a similar pattern regarding the
risk of bias per individual domain as Van de Sande et al.
[6], who studied AI applications in general critical care.



Table 3 Model performances, including summary of identical models

Al methods Accuracy Sensitivity Specificity
Klauber MR et al. (1984) [10] LogReg NP 80.2% 59.3% 89.1%
Feng M et al. (2012) [11] LogReg 0.645 62.1% NP NP
AODE 0.66 62.4% NP NP
AdaBoost-J48 0.632 61.5% NP NP
BayesNet-K2 0.648 62.3% NP NP
BayesNet-TAN 0.644 62.0% NP NP
LBR 0.647 63.3% NP NP
naive Bayes 0.638 61.9% NP NP
SVM 0613 62.4% NP NP
Best® 0.647 63.3% NA NA
Guiza F etal. (2013) [12] GP 0.872 774% 81.6% 75.2%
Beckers M et al. (2014) [13] GP 0.83 77% NP NP
Myers RB et al. (2016) [14] GP NP NP NP NP
LogReg NP NP NP NP
AR-OR 0.86 (0.85-0.86) NP NP NP
Guiza F et al. (2017) [15] GP 0.90 (0.87-0.91)° 86% (84-88)° 70% (64-76) 90% (88-92)°
GP 0.79 (0.77-0.81)° 64% (62-66)° 91% (90-93)° 48% (45-51)°
Carra G et al. (2020) [16] GP 0.93 88% 83% 91%
Wijayatunga P et al. (2022) [17] naive Bayes NP 95.3% 87.1% 9504
Carra Getal. (2022) [18] GP NP 87% 69% 91%
Petrov D et al. (2023) [19] RF NP 86% NP NP
Carra G et al. (2023) [20] RF using multiple GP 0.94 89% 78% 94%
Average 0.85 81% 77% 84%
Original model
Guiza F et al. (2013) [12] GP 0.872 77.4% 81.6% 75.2%
External validation studies of original
model
Beckers M et al. (2014) [13] GP 0.83 77% NP NP
GUiza F et al. 2017) [15] GP 0.90 (0.87-0.91)° 86% (84-88)° 70% (64-76)° 90% (88-92)°
GP 0.79(0.77-0.81)¢ 64% (62-66)° 91% (90-93)° 48% (45-51)°
Carra G et al. (2020) [16] GP 093 88% 83% 91%
Carra G et al. (2022) [18] GP N.P 87% 69% 91%
Average 0.86 80.4% 78% 80%

This table summarizes for each publication the performance measures. This table also summarizes the performance measures of the five studies that used the same
model. The 95% confidence intervals are provided between brackets if they were reported

AdaBoost-J48 ada-boosting with decision tree, Al artificial intelligence, AODE aggregating one-dependence estimators, AR-OR autoregressive ordinal-regression, AUC
area under the receiver operating characteristic curve, BayesNet-K2 Bayesian network with K2, BayesNet-TAN Bayesian network with TAN, GP Gaussian processes, LBR
lazy Bayesian rules, LogReg logistic regression, NA not applicable, naive Bayes naive Bayesian classifier, NP not provided, RF random forest, SVM support vector machine

2 Performance of model with highest accuracy value
® Adult cohort
¢ Pediatric cohort

4 performance of model with lowest overall error rate

That is, mainly the participants and the analysis domain
were classified as high risk. This may be improved by
avoiding exclusion of patients and their data as much as
possible, in order to mimic clinical practice and build
large datasets.

Furthermore, we found that the clinical ML readi-
ness level of only one model [18] was level 6 (real-time
model testing in clinical practice), but this concerned an
abstract publication. In contrast, the other models that
were published did not exceed level 5, i.e., external vali-
dation, preceding the first steps toward clinical real-time

testing. Thus, this next step of prospective clinical assess-
ment (corresponding to clinical ML readiness level 6) is
required in order to reach the next levels [7].

In a recent article, McNamara et al. [21] provided a nar-
rative review including an in-depth theoretical and tech-
nical discussion of various ICP forecasting methods and
IH prediction algorithms. In our current article, we fur-
ther built on the review by McNamara et al. [21] in sev-
eral distinct ways: (1) we performed a systematic rather
than a nonsystematic review following the PRISMA
guidelines; (2) we only included validated AI models; (3)
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Fig. 2 Performance measures of the included articles. AUC area under the receiver operating characteristic curve. *Adult cohort. **Pediatric cohort

we assessed the risk of bias using the PROBAST guide-
lines; (4) we focused on establishing the positioning of
the current status of Al prediction models within the
framework of clinical ML readiness levels as proposed by
Fleuren et al. [7], with the aim to inform the clinical and
scientific community on further concrete steps on the
pathway toward clinical integration, as described in the
second paragraph of this discussion.

The limitations of this study are that the most robust
results to date come from several studies from the same
research group [12, 13, 12-13, 18], which may hamper
generalizability of the findings, despite reported external
validations. Seven [12, 14—17, 14—17] out of 11 included
studies (partially) described their population demograph-
ics. No study explicitly stated that all patient data from
a specific time period were used, so we were unable to
rule out cherry picking of patient data. Selection bias
could therefore be a concern, because selecting patients
without missing data or artifacts and with very evident
trends in the data may lead to flattering results, whereas
using real-world data might yield different prediction
properties. Furthermore, no articles stated exactly how
many data instances were sampled per patient, which
hampers comparability of studies and insight into data
collections underlying the AI algorithms. Moreover, the

included studies differed regarding the definition of IH,
the used sample frequency and the used data instance
length. Finally, the lack of external validation of five mod-
els [10, 11, 14, 17, 19] reduces the generalizability of their
reported results.

Several considerations can be made regarding future
research and next steps, based on our findings. First,
mainly the ICP and MAP, which are pressure-related fea-
tures, are used as variables in the included studies. It may
be useful to also take other homeostasis-related variables
into account, such as serum osmolality or blood glucose
levels, to try and improve prediction. Importantly, these
variables can be mitigated by clinical treatment, making
them interesting from a therapeutic perspective. Second,
the use of imaging (especially CT-scan) features in the
prediction of ICP/IH in patients with TBI holds promise
in relation to AL Only one study [10] used an imaging-
related feature; the presence of abnormal ventricle size
on CT. Future studies should explore the use of imaging
features to train a predicting method, since AI may espe-
cially be able to outperform human interpretation [22].
Third, although the required sample frequency was a
value per minute for the best performing model by Carra
et al. [20], another recent large validation study by Sch-
weingruber et al. [23] that was excluded in this systematic



Table 4 Patient demographics of the training cohorts and validation cohorts

Klauber MR et al. (1984) [10]

Feng M et al. (2012) [11]

Guiza Fetal. (2013) [12]

Beckers M et al. (2014) [13]

Myers RB et al. (2016) [14]

Guiza F et al. (2017) [15]

Carra G et al. (2020) [16]

Wijayatunga P et al. (2022) [17]

CarraGetal. (2022) [18]

Petrov D et al. (2023) [19]

Carra G et al. (2023) [20]

Patients in data set

Training: 156
Validation: 93
Training: 82°
Validation: 82°
Training: 178
Validation: 61
Training: NA
Validation: 43
Training: 368
Validation: 261
Training: NAY
Training: NA®
Validation: 121¢
Validation: 79¢

Training: NA
Validation: 257
Training: 29
Validation: 1
Training: NA
Validation: 14
Training: 30
Validation: 5
Training: 290
Validation: 264

Age in years, median [IQR] or

mean (range)

NP

NP

NP

NP
33.1(19-49)
24 (13-44)
NA

NP

29 (21-40)
30 (23-46)

NA?
NA®

50 (28.5-65)¢
104 (7.5-14.2)°

NA
47 (30-61)
56 [20-80]
56 [20-80]
NA
NP
NP
NP
42 (27-56)
47 (29-61)

NP
NP
NP
NP
80.9%
77.1%
NA
NP
87%
85%

NAC
NA®
78%°
74%°
NA
81%
76%
76%
NA
NP
NP
NP
80
81

Male sex

GCS score, median (IQR)

NP
NP

NP

NP

7 (4-10)

7 (4-9)

NA

NP

7 (4-9)°, 5 (2-5)°
7 (3-8)P, 5 (2-5)°

NA?
NA®

7 (3-12)¢
6 (5-8)°

NA
6(3-10)
NP
NP
NA
NP
<8
<8
7 (4-11)
6 (3-10)

GCS Glasgow Coma Scale, IQR interquartile range, NA not applicable, NP not provided

? Same patients used for training and validation

b Eye score

¢ Motor score
4 Adult cohort

Pediatric cohort

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Participants

® Low risk of bias

Outcome

Predictors

Analysis

m High risk of bias
Fig. 3 Risk of bias of the included articles, for each PROBAST domain. PROBAST Prediction model Risk of Bias Assessment Tool

Overall




review given that the minority (less than a third) of
included patients with brain injury were actually TBI,
found that hourly sampling and missing data could still
result in a high AUC (0.94-0.98 with 1 h prediction win-
dow). Using a higher sample frequency results in many
data points and may be challenging to analyze, and there-
fore using lower frequency sampling is appealing when
predictive properties could be maintained. Fourth, the
training data instances varied from 10 min [17] to 24 h
[10]. The necessary data instance length likely depends on
the type of model. More importantly, prediction window
length (the time between a data instance and the actual
IH event) will need to be guided by clinical reasoning:
which prediction time window will be required to per-
form timely interventions that may effectively and dura-
bly prevent IH and/or cerebral edema and/or progressive
traumatic intracranial hemorrhage? Ultimately, interven-
tion studies aimed at improving clinical outcomes will be
able to provide the answer, but until then, we should base
this on clinical reasoning alone. Whether a time window
is appropriate in a particular case will also be influenced
by the underlying pathophysiology. The validation study
by Schweingruber et al. [23], mainly in patients without
TBI indicated that longer prediction windows up to 24 h
appeared possible, albeit with a somewhat lower AUC of
0.78-0.83 compared with shorter prediction windows
of 1 h. Fifth, whether the clinical ML readiness level is
such that prospective clinical studies should be designed
based on prediction windows of up to 1 h, or that fur-
ther research should first be done in the lower readiness
levels of up to 5 (external validation studies) to evaluate
models with longer prediction windows, is uncertain at
this time since it is as yet uncertain whether preventive
interventions within 1 h of IH are as effective as interven-
tions beyond that window. A possible barrier that should
also be taken into account is whether clinicians could
be persuaded that preventive actions could be effective
to abolish IH from occurring later. For instance, in spite
of recent evidence from a large prospective multicenter
study, showing that careful ICU management including
avoiding positive fluid balances [3] in patients with TBI
appears beneficial, embracing actions to adapt clinical
practice and uptake of research findings may lag behind.

In the context of managing ICP/IH, it is crucial to con-
sider the delicate balance between treatment intensity,
the risk of escalating therapies and their potential com-
plications against the expected harm from IH. Balancing
treatment intensity and risk against expected harm is an
ongoing and dynamic process. When Al tools are thor-
oughly validated in the future, these tools can support
clinicians in their decision-making process by providing
predictive capabilities.

Conclusions

Artificial intelligence—aided prediction of IH in patients
with TBI is not yet ready for clinical integration, although
predictive properties are good, and the number of exter-
nal validation studies is growing.

Some well-performing models have been developed,
mainly GP using ICP and MAP, with performance up
to an AUC of 0.94. There is potential for improvement
regarding the risk of bias, and there is a lack of transla-
tion of these models toward clinical application. Based on
these findings, we summarized and discussed steps that
may contribute to eventual integration of these models
into the clinical workflow of treating patients with TBI
based on the recently proposed framework of clinical ML
readiness levels.
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