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Abstract 

Intracranial hypertension (IH) is a key driver of secondary brain injury in patients with traumatic brain injury. Lowering 
intracranial pressure (ICP) as soon as IH occurs is important, but a preemptive approach would be more beneficial. 
We systematically reviewed the artificial intelligence (AI) models, variables, performances, risks of bias, and clinical 
machine learning (ML) readiness levels of IH prediction models using AI. We conducted a systematic search until 
12-03-2023 in three databases. Only studies predicting IH or ICP in patients with traumatic brain injury with a valida-
tion of the AI model were included. We extracted type of AI model, prediction variables, model performance, valida-
tion type, and prediction window length. Risk of bias was assessed with the Prediction Model Risk of Bias Assessment 
Tool, and we determined the clinical ML readiness level. Eleven out of 399 nonduplicate publications were included. 
A gaussian processes model using ICP and mean arterial pressure was most common. The maximum reported area 
under the receiver operating characteristic curve was 0.94. Four studies conducted external validation, and one study 
a prospective clinical validation. The prediction window length preceding IH varied between 30 and 60 min. Most 
studies (73%) had high risk of bias. The highest clinical ML readiness level was 6 of 9, indicating “real-time model test-
ing” stage in one study. Several IH prediction models using AI performed well, were externally validated, and appeared 
ready to be tested in the clinical workflow (clinical ML readiness level 5 of 9). A Gaussian processes model was most 
used, and ICP and mean arterial pressure were frequently used variables. However, most studies showed a high risk of 
bias. Our findings may help position AI for IH prediction on the path to ultimate clinical integration and thereby guide 
researchers plan and design future studies.
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Introduction
Intracranial hypertension (IH) portends a worse prog-
nosis in patients with traumatic brain injury (TBI) and 
should be treated expediently [1]. The primary brain 
injury is often accompanied by tissue edema resulting 
in IH. It is the key driver of secondary brain injury, as 
it hampers cerebral perfusion and induces ischemia [1]. 

Current practice has focused mainly on alleviation intrac-
ranial pressure (ICP) once it has occurred, by medical or 
surgical interventions [1]. A preemptive approach may 
contribute to prevention of ICP surges, by mitigation of 
contributing factors known to be able to induce second-
ary brain injury in patients at high risk for IH. Indeed, a 
rise in ICP reflects exhausted compensatory intracranial 
reserve (compliance) contributing to secondary injuries 
that would better be prevented.

Clinical variables contributing to secondary brain 
injury and IH include fever, hypoosmolality of 
serum, hyperglycemia, prolonged hyperventilation or 
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hypoventilation, and venous congestion caused by high 
positive end-expiratory pressure levels of the ventilator 
and fluid overload [2, 3]. These factors are represented by 
variables that are continuously monitored at the inten-
sive care unit (ICU) and are highly amenable to treat-
ment. Early identification of the risk of impending IH can 
enable clinicians or nurses at the bedside to correct or 
optimize such variables, and thereby decrease the risk of 
IH, but could also serve as measure to identify patients in 
need of impending rescue therapies (e.g., decompressive 
surgery).

To date, prediction of IH with such physiological vari-
ables remains understudied.

Contemporary artificial intelligence (AI) algorithms 
may outperform physicians regarding clinical prediction 
related to medical conditions [4] or image analysis [5]. In 
a data driven environment such as the ICU, the potential 
of AI to aid clinical practice decision making might even 
be higher [6]. AI is able to analyze vast amounts of data, 
recognize patterns, and make fast predictions based on 
these patterns. Hence, AI may be a valuable tool to help 
early identification of patients at risk of IH and enable 
earlier treatment to prevent its development.

Although the potential for AI to aid clinical practice 
may seem high, it is important to assess possible bias, as 
improper data or model development may result in an AI 
method that performs well in specific situations, but not 
in clinical practice. External model validation is crucial to 
either identify such biased models or endorse the gener-
alizability of a model.

Another important factor for implementation at the 
bedside is the machine learning (ML) level of readiness 
[7], which indicates the position of a model on the path 
from concept to clinical use and improvement of care 
and outcomes. Determining this level for every study will 
provide valuable information regarding how “ready” this 
technology is for real-world applications.

The aim of this systematic review was to assess the 
available literature regarding the prediction of IH in 
patients with TBI using validated AI models, and spe-
cifically we sought to determine the type of AI meth-
ods and variables that are being used to predict IH, the 
performance of these models, the risk of bias, and the 
clinical ML readiness level for integration in the clinical 
workflow.

Methods
The protocol for this systematic review has been 
registered in PROSPERO (registration number: 
CRD42020214744). This research was conducted and 
reported using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [8]. This 

article adheres to ethical guidelines and did not require 
ethical approval or use of informed consent.

Search Strategy
We searched the Embase, Ovid, and Web of Science Core 
Collection electronic databases on 12-03-2023 for publi-
cations describing studies that involved ICP or IH, TBI, 
and AI, with assistance for electronic search strategies 
from a medical information specialist. The full queries 
can be found in Supplementary file 1.

Inclusion Criteria and Study Selection
Titles and abstracts were screened by two authors (SvH, 
JV) to assess whether an article was eligible for inclu-
sion. Articles were included if they used AI with the aim 
to predict ICP/IH in patients with TBI and reported per-
formance measures on an internal, external, or prospec-
tive validation set; thus, only articles reporting validated 
models were included. We excluded non-English articles 
and nonoriginal literature. Full-text publications were 
then screened to include all studies that met the inclusion 
criteria.

Data Extraction
Data were extracted from the selected studies by two 
authors (SvH, JV), with focus on the type of AI method 
used, variables used in the model, area under the receiver 
operating characteristic curve (AUC), accuracy, sensitiv-
ity, and specificity. These concepts are explained in the 
glossary at the end of this article.

In order to properly assess the risk of bias and the 
clinical ML readiness level, we also collected the patient 
inclusion process, type of validation, prediction window 
length, and the following dataset properties: amount of 
data instances (explained subsequently) in the training 
and validation set, the data instance length, percentage of 
instances preceding IH, sample frequency, IH definition, 
and data cleaning process.

The term “(data) instance” is used to indicate a collec-
tion of data acquired during a certain time period (e.g., 
1 h). In retrospective data, it is known whether this col-
lection of data preceded a period of IH, hence a label may 
be given to the data instance that represents whether an 
IH event occurred after this period. These instances are 
subsequently used to train an AI model to recognize dis-
tinct patterns that are present in data preceding an IH 
event and absent in data not preceding an IH event, and 
vice versa. A properly trained model should subsequently 
be able to recognize such patterns in real-time data and 
thus provide predictions.



Risk of Bias
We analyzed every article using the Prediction Model 
Risk of Bias Assessment Tool (PROBAST) [9]. We plotted 
for each domain (participants, predictors, outcomes, and 
analysis) the risk of bias as percentage of the total num-
ber of articles.

Clinical ML Readiness Level
We assessed the clinical ML readiness level [6, 7], to 
determine where in the developmental process from 
concept to clinical integration every model resides. This 
scoring system indicates how “ready” a model is to use 
in clinical practice and consists of nine levels: (1) clinical 
problem identification, (2) proposal of model/solution, 
(3 and 4) model prototyping & model development, (5) 
model validation, (6) real-time model testing, (7) work-
flow implementation, (8) clinical outcome evaluation, (9) 
and model integration.

Main Outcome
The main aim of this systematic review is to evaluate and 
summarize the types of AI methods and variables used, 
performance measures, risk of bias, and clinical ML read-
iness levels.

Statistics
We did not perform a meta-analysis or any statistical 
analysis because the goal of this review is to provide a 
qualitative overview of the current literature regarding 
AI-aided prediction of IH.

Results
Study Identification
In total, we identified 399 unique records, of which 11 
[10–20] (eight articles, two conference abstracts, and 
one letter) were eligible for inclusion in this system-
atic review. A flowchart visualizing the article selection 
process is provided in Fig.  1. Table  1 summarizes the 
AI models, clinical variables, study design, and dataset 
properties.

AI Models and Clinical Variables
Eleven different model types were used. Güiza et al. [12], 
Beckers et al. [13], Güiza et al. [15], Carra et al. [16] and 
Carra et al. [18] used the same Gaussian processes (GP) 
model based on ICP and mean arterial pressure (MAP), 
on different datasets. Feng et al. [11] used eight different 
models. GP was the most commonly used model, fol-
lowed by logistic regression and random forest.

To predict ICP/IH, all articles used preceding ICP, and 
seven [11–13, 11–13, 18, 20] of 11 studies also used MAP. 
In addition to these two variables, one study [11] also 
used the brain tissue oxygenation and pressure reactivity 

index. Another study [10] used the presence of abnor-
mal ventricle size on computed tomography (CT) and 
hypotension (defined as systolic blood pressure less than 
90 mm Hg) within the first 24 h of admission, besides the 
highest preceding ICP value. One study [14] used only 
the ICP and the time since last IH event.

Study Design and Data Set Properties
Six [10–12, 14, 17, 19] studies performed internal vali-
dation and four [13, 15, 16, 20] performed external vali-
dation (Table 2). We found one report [18] on AI-based 
IH prediction being tested in clinical practice for patient 
care.

All studies investigated the prediction of IH specifi-
cally, except for one [11] study that looked at the ICP 
course independent of a specific threshold. We found six 
different definitions of IH: one study [20] defined nine 
different IH thresholds, ranging from ICP > 15 mm Hg for 
180 min up to ICP > 34 mm Hg for 10 min, whereas oth-
ers used a single threshold of ICP > 30 mm Hg for 10 min 
[12, 13, 12–13, 18], ICP > 30  mm Hg [10], ICP > 20  mm 
Hg for 15 min [14], ICP > 22 mm Hg for ≥ 75% of a 5-min 
interval [19], or ICP > 20 mm Hg [17].

The prediction windows varied from 10  min [17] to 
48 h [10], and for 82% of the articles it ranged between 30 
and 60 min.

Data instance length ranged from 10 min [17] to 24 h 
[10]. Data samples were taken every 0.008  s [17] up to 
one value per 24 h [10].

Performance
Table 3 shows the AUC, accuracy, sensitivity, and speci-
ficity for each study if reported, and additionally sum-
marizes these for the five [12, 13, 12–13, 18] studies that 
used the same model. These performance measures are 
also visualized in Fig. 2. Solely the articles by Güiza et al. 
[15] and Myers et al. [14] provided 95% confidence inter-
vals. Seven [11–16, 20] publications provided the AUC, 
ranging from 0.647 [11] to 0.94 [20], with an average of 
0.85. All publications but one [14] mentioned an accu-
racy value, ranging from 63.3 [11] to 95.3% [17], with 
an average of 81%. Seven [10, 12, 15–18, 20] articles 
also reported the sensitivity and specificity values, rang-
ing from 59.3 [10] to 91% [15] (with an average of 77%) 
and from 48 [15] to 95% [17] (with an average of 84%), 
respectively.

Data cleaning was described by seven studies [10, 11, 
10–11, 17, 10–11] and consisted of imputing missing 
data points with mean values [19, 20], removing values 
registered during an intervention [11], removing obvious 
artifacts [15, 17], excluding patients with missing data 
[10], excluding samples containing IH [10], excluding 



physiologically impossible values [14], interpolating miss-
ing data points [14], and using a smoothing filter [14].

Seven [12, 14–17, 14–17] out of 11 studies men-
tioned (partial) demographics of their cohort. Of note, 
Güiza et al. [15] studied an adult and a pediatric cohort. 
The demographic features that were reported are 

summarized in Table  4. The lowest and highest age in 
the reported interquartile ranges were 7.5 [15] and 80 
[17], respectively. The percentage of male participants 
ranged from 74 [15] to 87% [14]. For every study pop-
ulation, the median total Glasgow Coma Score (GCS) 
was 6 or 7, excluding the studies by Myers et  al. [14], 
that only reported the eye and motor components of 

Fig. 1  Flowchart of the article selection process. ICP intracranial pressure, IH intracranial hypertension, TBI traumatic brain injury



Ta
bl

e 
1 

Ch
ar

ac
te

ri
st

ic
s 

of
 e

ac
h 

ar
ti

cl
e

Pu
bl

ic
at

io
n

A
I m

et
ho

ds
Va

ri
ab

le
s

O
ut

co
m

e 
an

d
pr

ed
ic

tio
n 

w
in

do
w

Sa
m

pl
in

g
Tr

ai
ni

ng
 d

at
a

Va
lid

at
io

n 
da

ta
Cl

ea
ni

ng

Kl
au

be
r M

R 
et

 a
l. 

(1
98

4)
 

[1
0]

Lo
gR

eg
IC

P 
pe

ak
 v

al
ue

A
bn

or
m

al
 v

en
tr

ic
le

 s
iz

e 
on

 C
T

H
yp

ot
en

si
on

IH
 (I

C
P 

>
 3

0 
m

m
 H

g)
Pr

es
en

ce
 in

 fi
rs

t 2
4 

h
15

6 
24

-h
 in

st
an

ce
s, 

55
 

ev
en

ts
 (3

4%
)

93
 2

4-
h 

in
st

an
ce

s, 
29

 
ev

en
ts

 (3
1%

)
Ye

s: 
ex

cl
ud

ed
 p

at
ie

nt
s 

w
ith

 m
is

si
ng

 d
at

a 
or

 IH
 

du
rin

g 
fir

st
 2

4 
h

U
p 

to
 4

8 
h 

in
 a

dv
an

ce

Fe
ng

 M
 e

t a
l. 

(2
01

2)
 [1

1]
Lo

gR
eg

A
O

D
E

A
da

Bo
os

t-
J4

8
Ba

ye
sN

et
-K

2
Ba

ye
sN

et
-T

A
N

LB
R

na
ïv

e 
Ba

ye
s

SV
M

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

Br
ai

n 
tis

su
e 

ox
yg

en
a-

tio
n

Pr
es

su
re

 re
ac

tiv
ity

 
in

de
x

IC
P 

el
ev

at
io

n,
 s

ta
bi

lit
y,

 
or

 re
du

ct
io

n
Va

lu
e 

pe
r 5

 s
1-

h 
in

st
an

ce
s

1-
h 

in
st

an
ce

s
Ye

s: 
us

ed
 o

nl
y 

da
ta

 
po

in
ts

 b
et

w
ee

n 
in

te
r-

ve
nt

io
ns

60
 m

in
 in

 a
dv

an
ce

G
üi

za
 F

 e
t a

l. 
(2

01
3)

 [1
2]

G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 3

0 
m

m
 H

g 
fo

r 
10

 m
in

)
Va

lu
e 

pe
r 6

0 
s

2,
67

7 
4-

h 
in

st
an

ce
s, 

98
2 

ev
en

ts
 (3

7%
) f

ro
m

 
10

8/
17

8 
pa

tie
nt

s 
(6

1%
)

(p
at

ie
nt

s w
ith

 c
om

pl
et

e 
re

co
rd

s)

1,
13

5 
4-

h 
in

st
an

ce
s, 

39
2 

ev
en

ts
 (3

5%
) f

ro
m

 
33

/6
1 

pa
tie

nt
s 

(5
4%

)

N
P

30
 m

in
 in

 a
dv

an
ce

Be
ck

er
s 

M
 e

t a
l. 

(2
01

4)
 

[1
3]

G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 3

0 
m

m
 H

g 
fo

r 
10

 m
in

)
Va

lu
e 

pe
r 6

0 
s

Id
en

tic
al

 to
 G

üi
za

 F
 

et
 a

l. 
(2

01
3)

 [1
5]

67
 e

ve
nt

s
N

P

30
 m

in
 in

 a
dv

an
ce

M
ye

rs
 R

B 
et

 a
l. 

(2
01

6)
 

[1
4]

G
P

Lo
gR

eg
A

R-
O

R

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
Ti

m
e 

si
nc

e 
la

st
 c

ris
is

IH
 (I

C
P 

>
 2

0 
m

m
 H

g 
fo

r 
15

 m
in

)
Va

lu
e 

pe
r 7

2 
s

43
,3

53
 3

0-
m

in
 

in
st

an
ce

s, 
5,

97
9 

ev
en

ts
 (1

4%
)

(p
at

ie
nt

s f
ro

m
 

19
89

–1
99

6)

38
,3

49
 3

0-
m

in
 

in
st

an
ce

s, 
40

25
 

ev
en

ts
 (1

0%
)

(p
at

ie
nt

s f
ro

m
 

20
06

–2
01

3)

Ye
s: 

ex
cl

ud
ed

 p
hy

si
ol

og
i-

ca
lly

 im
po

ss
ib

le
 v

al
ue

s, 
in

te
rp

ol
at

ed
 m

is
si

ng
 

da
ta

, u
se

d 
sm

oo
th

in
g 

fil
te

r

30
 m

in
 in

 a
dv

an
ce

G
üi

za
 F

 e
t a

l. 
(2

01
7)

 [1
5]

G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 3

0 
m

m
 H

g 
fo

r 
10

 m
in

)
Va

lu
e 

pe
r 6

0 
s

Id
en

tic
al

 to
 G

üi
za

 F
 

et
 a

l. 
(2

01
3)

 [1
5]

10
51

 4
-h

 in
st

an
ce

s, 
23

1 
ev

en
ts

 (2
2%

) 
fro

m
 4

1/
12

1 
pa

tie
nt

s 
(3

4%
)a

2,
21

9 
in

st
an

ce
s, 

81
1 

ev
en

ts
 (3

7%
) f

ro
m

 
49

/7
9 

pa
tie

nt
s 

(6
2%

)b

Ye
s: 

ex
cl

ud
ed

 o
bv

io
us

 
ar

tif
ac

ts

30
 m

in
 in

 a
dv

an
ce

Ca
rr

a 
G

 e
t a

l. 
(2

02
0)

 [1
6]

G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 3

0 
m

m
 H

g 
fo

r 
10

 m
in

)
N

P
Id

en
tic

al
 to

 G
üi

za
 F

 
et

 a
l. 

(2
01

3)
 [1

5]
N

P
N

P

30
 m

in
 in

 a
dv

an
ce

W
ija

ya
tu

ng
a 

P 
et

 a
l. 

(2
02

2)
 [1

7]
na

ïv
e 

Ba
ye

s
In

tr
ac

ra
ni

al
 p

re
ss

ur
e

IH
 (I

C
P 

>
 2

0 
m

m
 H

g)
Va

lu
e 

pe
r 0

.0
08

 s
24

,1
08

 1
0-

m
in

 
in

st
an

ce
s, 

4,
41

1 
ev

en
ts

 (1
8%

)
(8

0%
 ra

nd
om

 sa
m

pl
es

)

24
,1

08
 1

0-
m

in
 

in
st

an
ce

s, 
4,

41
1 

ev
en

ts
 (1

8%
)

(2
0%

 ra
nd

om
 sa

m
pl

es
)

Ye
s: 

re
m

ov
ed

 a
rt

ifa
ct

s 
la

st
in

g 
>

 3
 s

U
p 

to
 6

0 
m

in
 in

 
ad

va
nc

e

Ca
rr

a 
G

 e
t a

l. 
(2

02
2)

 [1
8]

G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 3

0 
m

m
 H

g 
fo

r 
10

 m
in

)
Va

lu
e 

pe
r 6

0 
s

Id
en

tic
al

 to
 G

üi
za

 F
 

et
 a

l. 
(2

01
3)

 [1
5]

N
P

N
P

30
 m

in
 in

 a
dv

an
ce



Th
is

 ta
bl

e 
su

m
m

ar
iz

es
 fo

r e
ac

h 
pu

bl
ic

at
io

n 
th

e 
us

ed
 fo

re
ca

st
in

g 
m

od
el

s 
an

d 
va

ria
bl

es
, t

he
 m

od
el

 o
ut

co
m

e 
(i.

e.
, I

CP
 o

r I
H

 a
s 

fo
re

ca
st

in
g 

ou
tc

om
e,

 in
cl

ud
in

g 
IH

 th
re

sh
ol

d,
 a

nd
 th

e 
pr

ed
ic

tio
n 

w
in

do
w

), 
th

e 
us

ed
 s

am
pl

e 
fr

eq
ue

nc
y,

 s
pe

ci
fic

s 
re

ga
rd

in
g 

th
e 

da
ta

 u
se

d 
to

 tr
ai

n 
an

d 
va

lid
at

e 
th

e 
m

od
el

s, 
an

d 
w

he
th

er
 o

r n
ot

 s
om

e 
so

rt
 o

f d
at

a 
cl

ea
ni

ng
 h

as
 b

ee
n 

pe
rf

or
m

ed
, i

nc
lu

di
ng

 a
 b

rie
f d

es
cr

ip
tio

n.
 O

f n
ot

e,
 fi

ve
 s

tu
di

es
 [1

2,
 1

3,
 1

2–
13

, 1
8]

 u
se

d 
th

e 
sa

m
e 

m
od

el
 b

as
ed

 o
n 

th
e 

sa
m

e 
va

ria
bl

es

Ad
aB

oo
st

-J
48

 a
da

-b
oo

st
in

g 
w

ith
 d

ec
is

io
n 

tr
ee

, A
I a

rt
ifi

ci
al

 in
te

lli
ge

nc
e,

 A
O

D
E 

ag
gr

eg
at

in
g 

on
e-

de
pe

nd
en

ce
 e

st
im

at
or

s, 
AR

-O
R 

au
to

re
gr

es
si

ve
 o

rd
in

al
-r

eg
re

ss
io

n,
 B

ay
es

N
et

-K
2 

Ba
ye

si
an

 n
et

w
or

k 
w

ith
 K

2,
 B

ay
es

N
et

-T
AN

 
Ba

ye
si

an
 n

et
w

or
k 

w
ith

 TA
N

, G
P 

G
au

ss
ia

n 
pr

oc
es

se
s, 

IC
P 

in
tr

ac
ra

ni
al

 p
re

ss
ur

e,
 IH

 in
tr

ac
ra

ni
al

 h
yp

er
te

ns
io

n,
 L

BR
 la

zy
 B

ay
es

ia
n 

ru
le

s, 
Lo

gR
eg

 lo
gi

st
ic

 re
gr

es
si

on
, N

A 
no

t a
pp

lic
ab

le
, n

aï
ve

 B
ay

es
 n

aï
ve

 B
ay

es
ia

n 
cl

as
si

fie
r, 

N
P 

no
t 

pr
ov

id
ed

, R
F 

ra
nd

om
 fo

re
st

, S
VM

 s
up

po
rt

 v
ec

to
r m

ac
hi

ne
a  A

du
lt 

co
ho

rt
b  P

ed
ia

tr
ic

 c
oh

or
t

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Pu
bl

ic
at

io
n

A
I m

et
ho

ds
Va

ri
ab

le
s

O
ut

co
m

e 
an

d
pr

ed
ic

tio
n 

w
in

do
w

Sa
m

pl
in

g
Tr

ai
ni

ng
 d

at
a

Va
lid

at
io

n 
da

ta
Cl

ea
ni

ng

Pe
tr

ov
 D

 e
t a

l. 
(2

02
3)

 
[1

9]
RF

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
IH

 (I
C

P 
>

 2
2 

m
m

 H
g 

fo
r ≥

 7
5%

 o
f 5

-m
in

 
in

te
rv

al
)

Va
lu

e 
pe

r s
ec

on
d

2,
79

5 
1-

h 
in

st
an

ce
s, 

65
6 

ev
en

ts
 (2

3%
)

(m
od

el
 w

ith
 h

ig
he

st
 

ac
cu

ra
cy

 v
al

ue
)

N
P

Ye
s: 

im
pu

te
d 

m
is

si
ng

 
da

ta
 w

ith
 m

ea
n 

va
lu

es

U
p 

to
 2

0 
m

in
 in

 
ad

va
nc

e

Ca
rr

a 
G

 e
t a

l. 
(2

02
3)

 [2
0]

RF
 u

si
ng

 m
ul

tip
le

 G
P

In
tr

ac
ra

ni
al

 p
re

ss
ur

e
M

ea
n 

ar
te

ria
l p

re
ss

ur
e

IH
 (I

C
P 

>
 1

5 
m

m
 H

g 
fo

r 1
80

 m
in

 u
p 

to
 

IC
P 

>
 3

4 
m

m
 H

g 
fo

r 
10

 m
in

)

Va
lu

e 
pe

r 6
0 

s
20

,9
38

 4
-h

 in
st

an
ce

s
25

,2
61

 in
st

an
ce

s, 
8,

42
1 

ev
en

ts
 (5

0%
)

Ye
s: 

im
pu

te
d 

m
is

si
ng

 
da

ta
 w

ith
 m

ea
n 

va
lu

es

30
 m

in
 in

 a
dv

an
ce



the GCS, and by Petrov et al. [19], that only mentioned 
a GCS of < 8.

None of the included studies reported that their data 
or models were publicly available.

Risk of Bias
The results of the PROBAST assessment can be found in 
Table 2 and are visualized in Fig. 3. The overall risk of bias 
was found to be high in all but three articles [12, 18, 20], 
mainly caused by the participants and analysis domains. 
The full PROBAST assessments are provided in Supple-
mentary file 2.

Clinical ML Readiness Level
The clinical ML readiness level of the models (Table  2) 
was at least level 3 and 4 (five out of 11 studies) and at 
most level 6 (one out of 11 studies).

Discussion
In this systematic review on AI algorithms to predict 
ICP/IH in patients with TBI, we found that GP was the 
most commonly used model, followed by logistic regres-
sion and random forest. Only limited variables were used 
(mainly ICP and MAP). Validated models perform well, 
with the best AUC being 0.94. Most studies (73%) were 
classified as having a high risk of bias. The clinical ML 
readiness level was level 6 for one [18] study, and level 
5 at most for all other studies, implying that most mod-
els have not left the validation phase and have yet to be 
tested in clinical practice. Still, these findings indicate 
that AI-aided prediction of IH in patients with TBI has a 
very good predictive potential and appears ready for the 
next steps to achieve clinical integration.

The validated models included in this study perform 
well and seem robust enough to be subsequently tested 

in real-time, representing clinical ML readiness level 6. 
This means that theoretically they appear ready for test-
ing after integration in clinical patient data management 
systems with the aim to establish their real-life perfor-
mance, but not yet with the aim to test usability/feasi-
bility (clinical ML readiness level 7), performing phase 
3 randomized clinical trials (clinical ML readiness level 
8) or to be actually used for and integrated into patient 
management (clinical ML readiness level 9).

The random forest model by Carra et al. [20], based on 
the ICP and MAP, achieved the best AUC (0.94) when 
used on an external validation data set. Of note, the 
model by Güiza et  al. [12] achieved a very similar AUC 
of 0.93. Although the model used in that study was devel-
oped on patient data from 2003 to 2005 (AUC 0.872) [12] 
and was initially only internally validated, it still accom-
plished good results when validated externally on data 
from the AVERT-IT database (AUC 0.83) [13], data from 
2009 to 2013 (AUC 0.90 [adult cohort] and 0.79 [pediat-
ric cohort]) [15] and 2015 to 2017 (AUC 0.93) [16], indi-
cating the robustness of this model.

Of note, the AI algorithms mainly used pressure-
related variables, with some studies also using brain tis-
sue oxygenation [11], abnormal ventricle size on CT [10], 
and the time since last IH event [14]. Conspicuously, the 
most used variables (ICP and MAP) are the determi-
nants for the assessment of cerebral autoregulation with 
the pressure reactivity index, and therefore the findings 
of this study may indicate that early changes in cerebral 
autoregulation predict IH, which from a pathophysiologi-
cal point of view, is understandable.

Of the included publications, 73% was judged to be 
high risk of bias. We found a similar pattern regarding the 
risk of bias per individual domain as Van de Sande et al. 
[6], who studied AI applications in general critical care. 

Table 2  Study characteristics

This table summarizes for each publication the validation type, machine learning (ML) readiness level, and Prediction Model Risk of Bias Assessment Tool (PROBAST) 
score

Publication Validation ML readiness level PROBAST score

Klauber MR et al. (1984) [10] Internal 3 and 4 High

Feng M et al. (2012) [11] Internal 3 and 4 High

Güiza F et al. (2013) [12] Internal 3 and 4 Low

Beckers M et al. (2014) [13] External 5 High

Myers RB et al. (2016) [14] Internal 3 and 4 High

Güiza F et al. (2017) [15] External 5 High

Carra G et al. (2020) [16] External 5 High

Wijayatunga P et al. (2022) [17] Internal 3 and 4 High

Carra G et al. (2022) [18] Prospective 6 Low

Petrov D et al. (2023) [19] Internal 3 and 4 High

Carra G et al. (2023) [20] External 5 Low



That is, mainly the participants and the analysis domain 
were classified as high risk. This may be improved by 
avoiding exclusion of patients and their data as much as 
possible, in order to mimic clinical practice and build 
large datasets.

Furthermore, we found that the clinical ML readi-
ness level of only one model [18] was level 6 (real-time 
model testing in clinical practice), but this concerned an 
abstract publication. In contrast, the other models that 
were published did not exceed level 5, i.e., external vali-
dation, preceding the first steps toward clinical real-time 

testing. Thus, this next step of prospective clinical assess-
ment (corresponding to clinical ML readiness level 6) is 
required in order to reach the next levels [7].

In a recent article, McNamara et al. [21] provided a nar-
rative review including an in-depth theoretical and tech-
nical discussion of various ICP forecasting methods and 
IH prediction algorithms. In our current article, we fur-
ther built on the review by McNamara et al. [21] in sev-
eral distinct ways: (1) we performed a systematic rather 
than a nonsystematic review following the PRISMA 
guidelines; (2) we only included validated AI models; (3) 

Table 3  Model performances, including summary of identical models

This table summarizes for each publication the performance measures. This table also summarizes the performance measures of the five studies that used the same 
model. The 95% confidence intervals are provided between brackets if they were reported

AdaBoost-J48 ada-boosting with decision tree, AI artificial intelligence, AODE aggregating one-dependence estimators, AR-OR autoregressive ordinal-regression, AUC​ 
area under the receiver operating characteristic curve, BayesNet-K2 Bayesian network with K2, BayesNet-TAN Bayesian network with TAN, GP Gaussian processes, LBR 
lazy Bayesian rules, LogReg logistic regression, NA not applicable, naïve Bayes naïve Bayesian classifier, NP not provided, RF random forest, SVM support vector machine
a  Performance of model with highest accuracy value
b  Adult cohort
c  Pediatric cohort
d  Performance of model with lowest overall error rate

Publication AI methods AUC​ Accuracy Sensitivity Specificity

Klauber MR et al. (1984) [10] LogReg NP 80.2% 59.3% 89.1%

Feng M et al. (2012) [11] LogReg
AODE
AdaBoost-J48
BayesNet-K2
BayesNet-TAN
LBR
naïve Bayes
SVM
Besta

0.645
0.66
0.632
0.648
0.644
0.647
0.638
0.613
0.647

62.1%
62.4%
61.5%
62.3%
62.0%
63.3%
61.9%
62.4%
63.3%

NP
NP
NP
NP
NP
NP
NP
NP
NA

NP
NP
NP
NP
NP
NP
NP
NP
NA

Güiza F et al. (2013) [12] GP 0.872 77.4% 81.6% 75.2%

Beckers M et al. (2014) [13] GP 0.83 77% NP NP

Myers RB et al. (2016) [14] GP
LogReg
AR-OR

NP
NP
0.86 (0.85–0.86)

NP
NP
NP

NP
NP
NP

NP
NP
NP

Güiza F et al. (2017) [15] GP
GP

0.90 (0.87–0.91)b

0.79 (0.77–0.81)c
86% (84–88)b

64% (62–66)c
70% (64–76)b

91% (90–93)c
90% (88–92)b

48% (45–51)c

Carra G et al. (2020) [16] GP 0.93 88% 83% 91%

Wijayatunga P et al. (2022) [17] naïve Bayes NP 95.3%d 87.1%d 95%d

Carra G et al. (2022) [18] GP NP 87% 69% 91%

Petrov D et al. (2023) [19] RF NP 86% NP NP

Carra G et al. (2023) [20] RF using multiple GP 0.94 89% 78% 94%

Average 0.85 81% 77% 84%

Original model

  Güiza F et al. (2013) [12] GP 0.872 77.4% 81.6% 75.2%

External validation studies of original 
model

 Beckers M et al. (2014) [13] GP 0.83 77% NP NP

 Güiza F et al. (2017) [15] GP
GP

0.90 (0.87–0.91)b

0.79 (0.77–0.81)c
86% (84–88)b

64% (62–66)c
70% (64–76)b

91% (90–93)c
90% (88–92)b

48% (45–51)c

 Carra G et al. (2020) [16] GP 0.93 88% 83% 91%

 Carra G et al. (2022) [18] GP N.P 87% 69% 91%

Average 0.86 80.4% 78% 80%



we assessed the risk of bias using the PROBAST guide-
lines; (4) we focused on establishing the positioning of 
the current status of AI prediction models within the 
framework of clinical ML readiness levels as proposed by 
Fleuren et al. [7], with the aim to inform the clinical and 
scientific community on further concrete steps on the 
pathway toward clinical integration, as described in the 
second paragraph of this discussion.

The limitations of this study are that the most robust 
results to date come from several studies from the same 
research group [12, 13, 12–13, 18], which may hamper 
generalizability of the findings, despite reported external 
validations. Seven [12, 14–17, 14–17] out of 11 included 
studies (partially) described their population demograph-
ics. No study explicitly stated that all patient data from 
a specific time period were used, so we were unable to 
rule out cherry picking of patient data. Selection bias 
could therefore be a concern, because selecting patients 
without missing data or artifacts and with very evident 
trends in the data may lead to flattering results, whereas 
using real-world data might yield different prediction 
properties. Furthermore, no articles stated exactly how 
many data instances were sampled per patient, which 
hampers comparability of studies and insight into data 
collections underlying the AI algorithms. Moreover, the 

included studies differed regarding the definition of IH, 
the used sample frequency and the used data instance 
length. Finally, the lack of external validation of five mod-
els [10, 11, 14, 17, 19] reduces the generalizability of their 
reported results.

Several considerations can be made regarding future 
research and next steps, based on our findings. First, 
mainly the ICP and MAP, which are pressure-related fea-
tures, are used as variables in the included studies. It may 
be useful to also take other homeostasis-related variables 
into account, such as serum osmolality or blood glucose 
levels, to try and improve prediction. Importantly, these 
variables can be mitigated by clinical treatment, making 
them interesting from a therapeutic perspective. Second, 
the use of imaging (especially CT-scan) features in the 
prediction of ICP/IH in patients with TBI holds promise 
in relation to AI. Only one study [10] used an imaging-
related feature; the presence of abnormal ventricle size 
on CT. Future studies should explore the use of imaging 
features to train a predicting method, since AI may espe-
cially be able to outperform human interpretation [22]. 
Third, although the required sample frequency was a 
value per minute for the best performing model by Carra 
et al. [20], another recent large validation study by Sch-
weingruber et al. [23] that was excluded in this systematic 

Fig. 2  Performance measures of the included articles. AUC​ area under the receiver operating characteristic curve. *Adult cohort. **Pediatric cohort



Table 4  Patient demographics of the training cohorts and validation cohorts

GCS Glasgow Coma Scale, IQR interquartile range, NA not applicable, NP not provided
a  Same patients used for training and validation
b  Eye score
c  Motor score
d  Adult cohort
e  Pediatric cohort

Publication Patients in data set Age in years, median [IQR] or 
mean (range)

Male sex GCS score, median (IQR)

Klauber MR et al. (1984) [10] Training: 156 NP NP NP

Validation: 93 NP NP NP

Feng M et al. (2012) [11] Training: 82a NP NP NP

Validation: 82a NP NP NP

Güiza F et al. (2013) [12] Training: 178 33.1 (19–49) 80.9% 7 (4–10)

Validation: 61 24 (13–44) 77.1% 7 (4–9)

Beckers M et al. (2014) [13] Training: NA NA NA NA

Validation: 43 NP NP NP

Myers RB et al. (2016) [14] Training: 368 29 (21–40) 87% 7 (4–9)b, 5 (2–5)c

Validation: 261 30 (23–46) 85% 7 (3–8)b, 5 (2–5)c

Güiza F et al. (2017) [15] Training: NAd

Training: NAe
NAd

NAe
NAd

NAe
NAd

NAe

Validation: 121d

Validation: 79e
50 (28.5–65)d

10.4 (7.5–14.2)e
78%d

74%e
7 (3–12)d

6 (5–8)e

Carra G et al. (2020) [16] Training: NA NA NA NA

Validation: 257 47 (30–61) 81% 6 (3–10)

Wijayatunga P et al. (2022) [17] Training: 29 56 [20–80] 76% NP

Validation: 1 56 [20–80] 76% NP

Carra G et al. (2022) [18] Training: NA NA NA NA

Validation: 14 NP NP NP

Petrov D et al. (2023) [19] Training: 30 NP NP  < 8

Validation: 5 NP NP  < 8

Carra G et al. (2023) [20] Training: 290 42 (27–56) 80 7 (4–11)

Validation: 264 47 (29–61) 81 6 (3–10)

Fig. 3  Risk of bias of the included articles, for each PROBAST domain. PROBAST Prediction model Risk of Bias Assessment Tool



review given that the minority (less than a third) of 
included patients with brain injury were actually TBI, 
found that hourly sampling and missing data could still 
result in a high AUC (0.94–0.98 with 1 h prediction win-
dow). Using a higher sample frequency results in many 
data points and may be challenging to analyze, and there-
fore using lower frequency sampling is appealing when 
predictive properties could be maintained. Fourth, the 
training data instances varied from 10  min [17] to 24  h 
[10]. The necessary data instance length likely depends on 
the type of model. More importantly, prediction window 
length (the time between a data instance and the actual 
IH event) will need to be guided by clinical reasoning: 
which prediction time window will be required to per-
form timely interventions that may effectively and dura-
bly prevent IH and/or cerebral edema and/or progressive 
traumatic intracranial hemorrhage? Ultimately, interven-
tion studies aimed at improving clinical outcomes will be 
able to provide the answer, but until then, we should base 
this on clinical reasoning alone. Whether a time window 
is appropriate in a particular case will also be influenced 
by the underlying pathophysiology. The validation study 
by Schweingruber et al. [23], mainly in patients without 
TBI, indicated that longer prediction windows up to 24 h 
appeared possible, albeit with a somewhat lower AUC of 
0.78–0.83 compared with shorter prediction windows 
of 1  h. Fifth, whether the clinical ML readiness level is 
such that prospective clinical studies should be designed 
based on prediction windows of up to 1  h, or that fur-
ther research should first be done in the lower readiness 
levels of up to 5 (external validation studies) to evaluate 
models with longer prediction windows, is uncertain at 
this time since it is as yet uncertain whether preventive 
interventions within 1 h of IH are as effective as interven-
tions beyond that window. A possible barrier that should 
also be taken into account is whether clinicians could 
be persuaded that preventive actions could be effective 
to abolish IH from occurring later. For instance, in spite 
of recent evidence from a large prospective multicenter 
study, showing that careful ICU management including 
avoiding positive fluid balances [3] in patients with TBI 
appears beneficial, embracing actions to adapt clinical 
practice and uptake of research findings may lag behind.

In the context of managing ICP/IH, it is crucial to con-
sider the delicate balance between treatment intensity, 
the risk of escalating therapies and their potential com-
plications against the expected harm from IH. Balancing 
treatment intensity and risk against expected harm is an 
ongoing and dynamic process. When AI tools are thor-
oughly validated in the future, these tools can support 
clinicians in their decision-making process by providing 
predictive capabilities.

Conclusions
Artificial intelligence–aided prediction of IH in patients 
with TBI is not yet ready for clinical integration, although 
predictive properties are good, and the number of exter-
nal validation studies is growing.

Some well-performing models have been developed, 
mainly GP using ICP and MAP, with performance up 
to an AUC of 0.94. There is potential for improvement 
regarding the risk of bias, and there is a lack of transla-
tion of these models toward clinical application. Based on 
these findings, we summarized and discussed steps that 
may contribute to eventual integration of these models 
into the clinical workflow of treating patients with TBI 
based on the recently proposed framework of clinical ML 
readiness levels.
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