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Abstract 

Background: We conducted a preliminary phase I, dose-escalating, safety, and tolerability trial in the population of 
patients with acute intracerebral hemorrhage (ICH) by using human allogeneic bone marrow–derived mesenchymal 
stem/stromal cells.

Methods: Eligibility criteria included nontraumatic supratentorial hematoma less than 60 mL and Glasgow Coma 
Scale score greater than 5. All patients were monitored in the neurosciences intensive care unit for safety and toler-
ability of mesenchymal stem/stromal cell infusion and adverse events. We also explored the use of cytokines as bio-
markers to assess responsiveness to the cell therapy. We screened 140 patients, enrolling 9 who met eligibility criteria 
into three dose groups: 0.5 million cells/kg, 1 million cells/kg, and 2 million cells/kg.

Results: Intravenous administration of allogeneic bone marrow–derived mesenchymal stem/stromal cells to treat 
patients with acute ICH is feasible and safe.

Conclusions: Future larger randomized, placebo-controlled ICH studies are necessary to validate this study and 
establish the effectiveness of this therapeutic approach in the treatment of patients with ICH.
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Introduction
Intracerebral hemorrhage (ICH) is a common and dis-
proportionately deadly stroke subtype characterized by 
bleeding into the brain parenchyma and potentially the 
ventricles [1–3]. ICH accounts for only about 10–15% 
of all strokes but is one of the most lethal subtypes, with 
less than 50% of affected patients surviving by 1 year after 
stroke [4]. ICH also disproportionately affects Black and 
Asian American populations [3, 4]. Major risk factors 

for ICH include smoking, high alcohol consumption, 
and hypertension [5–8]. Neurologic deterioration is ini-
tially mediated by hematoma expansion and mass effect 
with the destruction of functional neuronal tissue and 
increase in intracranial pressure (ICP) [9]. In addition, 
edema, oxidative stress, neuroinflammation with sys-
temic inflammation, localized microglia activation, and 
blood–brain barrier leakage are often present within the 
ICH site or surrounding tissue [10]. Early ICH interven-
tion strategies include endotracheal intubation for airway 
protection and stabilization to prevent and possibly treat 
aspiration pneumonia [11], acute blood pressure control 
[12], anticoagulation reversal in those taking anticoagu-
lants [2], ICP treatment, and, in select patients, possible 
neurosurgical evacuation of the hematoma or external 
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ventricular drain (EVD) placement for cerebrospinal fluid 
diversion and ICP reduction.

Despite these existing ICH intervention strategies, 
mortality and morbidity after ICH remains high. US 
Food and Drug Administration–approved human trials 
of drugs and other experimental therapies, to date, have 
failed to yield a suitable candidate that improves ICH 
outcomes [1]. ICH triggers damage-associated molecu-
lar pattern HMGB-TLR4 pathway inflammation [13], 
inflammasome pathways of NLRC4 pyroptosis [14], and 
NLRP3-mediated neutrophil netosis [15]. Elevated neu-
trophil–lymphocyte ratio (NLR) in peripheral blood is 
increasingly observed with ICH [16], subarachnoid hem-
orrhage [17], and many other human diseases, including 
the coronavirus disease of 2019 (COVID-19) and colo-
rectal cancer [18].

Mesenchymal stem/stromal cells (MSCs) have dem-
onstrated several potential therapeutic benefits in ICH, 
including regeneration, immunomodulation, and anti-
microbial activity, via paracrine-mediated signaling of 
cytokines, growth factors, extracellular vesicles, and 
antimicrobial peptides [19, 20]. MSCs also exhibit an 
immune-evasive phenotype [21] and can be isolated from 
multiple tissue types (e.g., bone marrow, adipose tissue, 
umbilical cord). Data obtained from preclinical animal 
models and human clinical studies have established that 
MSCs appear relatively safe and produce few adverse 
events (AEs) when delivered in vivo [22]. The efficacy of 
MSCs has been evaluated in multiple conditions, includ-
ing heart failure, graft-versus-host disease, and Crohn’s 
fistula disease, with varying levels of effectiveness [23]. 
Patients with ICH may benefit from MSC therapy, as 
it has the potential to balance a deleterious inflamma-
tory cascade, inhibit immune cell activation, and induce 
regeneration of damaged cells, neurons, and tissue at 
both the hematoma site and systemically. Administra-
tion of MSCs in preclinical ICH models have produced 
favorable results [10, 24]. Neurologic improvement in 
ICH rat models following administration of human bone 
marrow–derived MSCs (BM-MSCs) has been shown to 
be associated with synaptogenesis, neuronal migration, 
and reduced tissue loss [25, 26]. In addition, MSC deliv-
ery in preclinical ICH models attenuates inflammation in 
a manner that is dependent on the reduction of systemic 
proinflammatory cytokines such as interleukin 6 (IL-6) 
and interferon-γ [25].

The overall long-term goal of this study is to develop 
BM-MSC therapy for the treatment of acute ICH. The 
primary objective of this pilot study was to establish the 
safety and feasibility of administering allogeneic BM-
MSCs to hospitalized patients with ICH within 7 days of 
onset. The safety of BM-MSC therapy was evaluated by 
assessing tolerance of the cell infusion and development 

of AEs. Feasibility was assessed by evaluating ease of 
recruitment and technical issues associated with cell 
preparation and infusion. Clinical parameters and bio-
markers for future outcome assessment in larger studies 
using MSC therapy for recent ICHs were also identified.

Methods
Patient Population and Study Design
The study was a prospective dose-escalation, safety, and 
tolerability trial using MSC in human patients with ICH. 
Study patients were recruited from the inpatient services 
of the Mayo Clinic Comprehensive Stroke Center in Jack-
sonville, Florida. Inclusion criteria included patients aged 
18 years or older with acute (< 168 h from onset) sponta-
neous supratentorial ICH, an ICH score of 1 to 4, hema-
toma volume less than 60  mL on admission via ABC/2 
[27], and ability of patient or surrogate to provide written 
consent. Exclusion criteria included deep coma defined 
by a 5 or lower Glasgow Coma Scale (GCS) score, second-
ary ICH related to aneurysm, arteriovenous malforma-
tion, brain tumor or oral anticoagulants beside warfarin, 
active pregnancy, preexisting disability characterized by 
prestroke modified Rankin Scale (mRS) score greater 
than 2, history of malignancy within the last 5 years, evi-
dence of significant liver or cardiac dysfunction as judged 
by the treating physician team, septicemia with fever 
and hemodynamic instability, or use of any experimental 
therapy within 3 months of study enrollment. A Consoli-
dated Standards of Reporting Trials diagram and detailed 
eligibility criteria are listed in Supplemental Fig.  1 and 
Supplemental Table  1 [28]. This study was conducted 
under Investigational New Drug# 16510 from the US 
Food and Drug Administration, approved by the Mayo 
Clinic Institutional Review Board (Protocol # 15-003524) 
and registered at ClinicalTrials.gov (NCT03371329). 
Institutional review board–approved written informed 
consent was required from every participant or their 
legally authorized representative.

MSC Manufacturing
Bone marrow–derived MSC manufacturing, process-
ing, and delivery was performed by the Human Cel-
lular Therapy Laboratory (HCTL) at the Mayo Clinic 
in Jacksonville, Florida, to the Mayo Clinic Hospital on 
the same campus [29]. The HCTL obtained bone mar-
row from a healthy donor who completed a comprehen-
sive medical examination and institutionally approved 
Donor History Questionnaire. Infectious disease test-
ing including human immunodeficiency virus 1 and 
2 antibodies, human immunodeficiency virus nucleic 
acid testing (NAT), human T-lymphotropic virus type 
I and II antibodies, syphilis screening, hepatitis B sur-
face antigen, hepatitis B core antibody, hepatitis B NAT, 



hepatitis C antibody, hepatitis C NAT, Trypanosoma 
cruzi antibody, West Nile virus NAT, Zika virus using 
enzyme-linked immunosorbent assay, and Zika using 
polymerase chain reaction was performed by a Clinical 
Laboratory Improvement–approved laboratory. After 
review of the medical evaluation of the donor, review of 
the negative infectious disease testing results and Donor 
History Questionnaire, donor eligibility determination 
was made by the HCTL Medical Director. After perform-
ing a bone marrow aspiration, we  generated BM-MSCs 
from the approved donor by using manual methods of 
expansion.

MSC cultures were grown in Gibco Minimum Essential 
Medium α (Thermo Fisher Scientific) and supplemented 
with 5% Stemulate xeno-free and heparin-free pooled 
platelet lysate (Sexton Biotechnologies) along with 1X 
Gibco GlutaMAX supplement (Thermo Fisher Scientific). 
The final cell products were cryopreserved at 5 ×  106 
MSCs/mL in CryoStor CS10 (10% dimethyl sulfoxide; 
STEMCELL Technologies Inc). The MSCs were stored in 
vapor phase liquid nitrogen at less than − 150 °C. We per-
formed quality control testing on the cryopreserved cell 
product prior to release and patient delivery and infusion 
(Supplemental Table 2) [29].

MSC Preparation and Infusion
On the day of infusion, frozen BM-MSCs were thawed 
and diluted fivefold with PlasmaLyte A (Baxter) to yield 
a final concentration of 2.0% dimethyl sulfoxide. We 
infused 0.5 million to 2 million MSCs/kg intravenously, 
according to patient group. An aliquot of the final formu-
lated product was reserved for quality control testing. We 
used 7-amino-actinomycin D to determine the number 
of viable cells present in the final formulated product. A 
minimum of 30,000 events were collected on a BD Accuri 
C6 Plus Flow Cytometer, and a gating strategy was used 
to separate the dead cells from the live cells. Gram stain-
ing and bacterial and fungal cultures were performed by 
Mayo Clinic’s Clinical Microbiology Lab.

MSC infusion was performed in the neurosciences 
intensive care unit; cells were infused at a rate of 2 to 
3 mL/min during the first 15 min, with the option to be 
adjusted up to 5 mL/min if tolerated. Patients were moni-
tored for AEs, and infusion toxicity was evaluated by 
monitoring the patient’s vital signs before, during, and up 
to 2 h after the MSC infusion. Patients were assigned to 
one of three dosing groups: group 1 received 0.5 million 
MSC/kg, group 2 received 1 million MSCs/kg, and group 
3 received 2 million MSCs/kg (Table 1).

Outcomes and Patient Monitoring
Safety was evaluated by assessing patients for their capac-
ity to tolerate intravenous infusion without acute clinical 

or physiological deterioration. Additionally, AEs were 
coded using Medical Dictionary for Regulatory Activi-
ties standards [30] and categorized as mild, medium, or 
severe. Feasibility was evaluated by assessing the ability 
to recruit patients, determination of practical issues asso-
ciated with cell product administration, and evaluation 
of patient compliance with study parameters. Labora-
tory testing, including complete blood count, liver func-
tion tests, and renal function tests were performed for all 
patients prior to MSC infusion (day 0) and on days 1, 2, 
3, and 7 after infusion. Neurologic function tests includ-
ing GCS, mRS [31], and the National Institutes of Health 
Stroke Scale (NIHSS) scores were evaluated on days 0, 
1, 2, 3, 7, and 30. NIHSS was performed by either a neu-
rologist or an experienced clinical research coordinator 
trained and certified in performing the scale.

Biomarker Monitoring
Blood samples were collected on days 0 and 3 to evalu-
ate quality and quantity of cytokines present by using a 
multiplex bead assay. Plasma was isolated from whole 
blood and stored at − 80  °C until cytokine analysis was 
performed. Plasma was analyzed by Eve Technologies for 
the presence and concentration of cytokines and growth 
factors using the Human Cytokine/Chemokine 65-Plex 
Discovery Assay Array (Eve Technologies Corp).

Hematoma Volumetric Imaging by ABC/2 and Volumetric 
Segmentation
Given the importance of hemorrhage volume on prog-
nosis [32], we graded the volume of ICH and intraven-
tricular hemorrhage (IVH) by two methods we defined as 
model 1 and model 2. Model 1 used the ABC/2 method 
for estimating intracerebral (intraparenchymal) hema-
toma volume and the semiquantitative modified Graeb 
for IVH volume [33], which are both semiquantitative 
scales. For model 2, we used manually segmentation tech-
niques for estimating both ICH and IVH volumes. We 
used the initial noncontrast computed tomography (CT) 
of the ICH or the noncontrast CT at hospital admission 
if there was hematoma expansion by 24  h. The ABC/2 
method uses orthogonal linear measurements: A and B 
in the axial plane to capture the largest ICH cross-section 
and C, the vertical span, in increments of slice thickness. 
The halved product of these values ([A × B × C]/2) is a 
simplified formula that approximates ellipsoid hemor-
rhage. The ABC/2 is a well-known, easily implemented, 
and familiar method of ICH volume estimation. Model 2 
or segmentation is a potentially more accurate method, 
but it is manually labor-intensive and requires dedicated 
volumetric segmentation software (RIL-Contour) [34]. 
However, segmentation of ICH and IVH volumetric 
methods are becoming increasingly automated [19, 35, 



36] and benefit from machine and deep learning tech-
niques such as convolutional neural networks. We also 
measured perihematomal edema (PHE) as an explora-
tory variable using segmentation methods around the 
hypodense areas on noncontrast CT relative to the ICH 
by manual segmentation. PHE was not measurable by 
ABC/2. ICH volume was measured by both methods in 
millimeters, and IVH volume measured by segmentation 
in millimeters were treated as continuous variables. ICH 
and IVH volume by ABC/2 and semiquantitative modi-
fied Graeb method for IVH measurements were estab-
lished by a board-certified neuroradiologist (VNP), and 
segmentations were performed by a trained rater, fol-
lowed by neuroradiologist validation. ABC/2 measure-
ments were averaged among three trained raters (WDF, 
HKG, and VNP).

Biostatistical Analysis
Descriptive and study population statistics were per-
formed by using Microsoft Excel and SAS version 9.4. 
Linear regression models were performed by using 
GraphPad Prism 9.4.1, with confidence interval lines 
shown around the line of best fit by the R2 method.

Results
Patient Population
Patients with acute ICH within 168  h from onset from 
January 1, 2018, to October 31, 2020, were enrolled in 
this study. MSCs were intravenously administered to nine 
patients (five women, four men), with a mean (range) age 
of 61 (36–84) years. Demographic and clinical charac-
teristics are summarized in Table 1. Patients were given 
numbers in order of enrollment for descriptive purposes 
and consecutively assigned to one of the three groups, 
three to each group. ICH volumes ranged from 0.1 to 
54.9  mL by model 2 segmentation (mean ICH volume 
of 23.5 mL). Five ICHs had localized lobar involvement, 
with the rest being deep in either the basal ganglia or 
external capsule. In three patients, the ICH was localized 
in the thalamus (Fig.  1), and in one patient, the hema-
toma was localized to multiple brain structures (i.e., cau-
date, putamen, and globus pallidus). On average, MSCs 
were administered 3 days after ICH.

MSC Characteristics
The mean (range) viability of the cell product prior 
to infusion was established as 78.2% (70.0–91.5%) by 
7-amino-actinomycin D. No significant differences in 
viability were observed among the three groups. All 
post-thaw bacterial and fungal cultures were negative, 

Fig. 1 Original noncontrast computed tomography and segmentation results for each MSC-treated patient by group. a, Group 1, patients 1–3. 
b, Group 2, patients 4–6. c, Group 3, patients 7–9. The M1 ABC/2 [27] and modified Graeb measures used the hyperdense blood on the original 
images. Colors on the M2 segmentations represent intracerebral hemorrhage (orange), perihematomal edema (crimson), and intraventricular hem-
orrhage (pink). M1, model 1, M2, model 2, MSC, mesenchymal stem/stromal cell



and gram stain evaluations did not detect any  organisms 
(Supplemental Table 2).

Tolerance and Outcome of MSC Infusion
Patient vital signs remained stable following infusion. 
Compared with baseline values, systolic blood pressure, 
diastolic blood pressure, heart rate, oxygen saturation, 
and temperature measured 15  min, 30  min, 1  h, 1.5  h, 
and 2 h after infusion were not notably different (Fig. 2a). 
Figure 2b displays laboratory values measured on days 0, 
1, 2, 3, and 7. White blood cell count, total protein, cre-
atinine, and potassium were within normal physiological 
ranges, with no appreciable change between days 0 and 
7. Throughout the evaluation period, glucose and creati-
nine levels were higher than the established thresholds 
but did not vary considerably from day to day. Platelet 
count was the only laboratory value exhibiting a notable 
increase from day 0 to day 7. No major changes in GCS, 
NIHSS, and mRS scores were observed between days 0 
and 7 (Fig. 2c).

Fifteen AEs were reported, with four of nine patients 
experiencing at least one AE (Table 2). Two AEs (13.3%) 
were mild, seven (46.7%) were moderate, and six (40.0%) 
were severe. Only one patient experienced an AE possi-
bly related to the MSC infusion. This patient developed a 
fever that resolved within 6 days with acetaminophen; no 
source could be identified on infectious disease workup. 
Most AEs (10 [66.7%]) were determined to be unrelated 
to MSC infusion. Patient 9 died 7  days after discharge; 
however, the cause of death was unrelated to the MSC 
infusion as determined by an independent medical 
examiner.

Exploratory Imaging Volumetric Model Analysis 
with Clinical Characteristics
Both ABC/2 model 1 and model 2 segmentation meth-
ods showed good correlation by linear regression for 
ICH and IVH volumes (Fig.  3a, b). Model 1 ABC/2 
derived semiquantitative methods, and modified Graeb 
IVH methods took less time to complete (e.g., 2–5 min) 
compared with model 2 segmentation volumetric meth-
ods (e.g., 15–20 min per CT). Interestingly, comparison 
of the NIHSS score to the IVH volumetric M2 method 
showed a linear correlation (R2 = 0.7217), and there 
appeared to be clustering of NIHSS scores when IVH 
was less than 20 mL or greater than 20 mL (Fig. 3c). PHE 
analysis revealed a slight negative relationship between 
MSC injection dosage and PHE volume.

Analysis of Biomarkers in Blood Plasma
Blood plasma was analyzed for presence and concentra-
tion of key cytokines and chemokines on days 0 and 3 
(Fig.  4). Cytokines evaluated include anti-inflammatory 
mediators such as soluble CD40  ligand, interleukin 1 
receptor antagonist, and interleukin 10; proinflammatory 
cytokines, such as interferon-γ, IL-6, and interleukin 16 
(IL-16); and regenerative epidermal growth factor (EGF), 
platelet-derived growth factor AA, and vascular endothe-
lial growth factor A. Overall, the concentration of anti-
inflammatory cytokines increased from day 0 to day 3. 
The uniform response pattern noted for anti-inflamma-
tory cytokines was not observed for proinflammatory or 
regenerative cytokines; however, there was a decrease in 
proinflammatory IL-16 and increase in regenerative EGF 
from day 0 to day 3.

Discussion
We describe preliminary safety and tolerability data 
for BM-MSC used in patients with acute ICH in a 

Table 1 Patient characteristics and dose allocation

F, female, ICH, intracerebral hemorrhage, IVH, intraventricular hemorrhage, M, male, mRS, modified Rankin Scale, M1, model 1, M2, model 2, MSC, mesenchymal stem/
stromal cell, NA, not available, NIHSS, National Institutes of Health Stroke Scale, NLR, neutrophil–lymphocyte ratio, vol, volume

MSC group 
 (106 cells/kg)

Patient Age Sex Admit NIHSS Admit 
ICH 
score

Admit 
ICH vol 
M1

Admit 
ICH vol 
M2

Admit 
IVH vol 
M1

Admit 
IVH vol 
M2

Total 
blood vol 
M2

NLR Dis-
charge 
mRS

Group 1, 0.5 1 65 F 4 2 13.4 12.7 14 6.6 19.3 7.50 5

2 60 M 8 2 53.1 54.9 3 4.6 59.5 NA 3

3 65 M 4 1 45.7 44.1 0 0.0 44.1 7.90 2

Group 2, 1.0 4 84 F 2 2 26.3 26.4 10 9.7 36.1 14.28 4

5 36 F 34 3 29.5 20.7 21 29 49.7 24.90 4

6 47 F 35 3 0.24 0.1 29 60.9 61.0 8.80 5

Group 3, 2.0 7 51 F 13 1 18.9 13.3 1 0.3 13.6 17.96 0

8 72 M 13 1 35.5 22.2 4 1.6 23.8 2.52 5

9 72 M 25 2 21.2 17.4 17 33.6 51.0 8.56 5
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prospective, single-arm, dose-escalation clinical trial. 
Based on our preclinical work [24, 25, 37], we hypoth-
esized BM-MSC may provide a pleiotropic benefit for 
patients with ICH with both primary-injury and second-
ary brain-injury mechanisms, given increasing evidence 
that central nervous system and systemic inflammation 
exist. A multipronged approach to ICH using BM-MSC 
seems reasonable given that no single therapy alone has 
been shown to improve ICH outcomes [1]. Efforts remain 
focused on providing multipronged, multidisciplinary 
ICH care by using a systems-engineering approach [38], 
starting in the prehospital phase, followed by intrahos-
pital and intensive care, posthospital rehabilitation care, 
and secondary ICH prevention phases.

Our preliminary results appear to support our hypoth-
esis that MSC therapy is generally safe and tolerable 
when given intravenously, and overall, the data appear 
consistent with other preclinical MSC data [24, 29]. 
The preliminary results suggest MSC therapy should be 
tested in a larger, prospective, placebo-controlled clini-
cal trial. A future phase I or II trial could further validate 
the hypothesis that BM-MSCs are safe and tolerable, and 
if powered appropriately, begin to assess differences in 
outcomes.

We acknowledge several limitations in this small pilot 
study, including the lack of a randomized control arm. 
However, we introduced and evaluated various biomark-
ers and neuroimaging techniques that can be translated 

Fig. 2 Safety and adverse event monitoring. a, Vitals measured at MSC infusion. b, Laboratory values measured before and after MSC infusion. c, 
Neurologic function test results before and after MSC infusion. MSC, mesenchymal stem/stromal cell

Fig. 3 Imaging comparisons. a, Linear regression of neuroimaging ICH vol by model 1 ABC/2 derived method versus vol model 2 (segmentation). 
b, IVH modified Graeb by model 1 and quantitative segmentation model 2 method. c, Hemorrhage vol and NIHSS score compared with IVH vol by 
segmentation. ICH, intracerebral hemorrhage, IVH, intraventricular hemorrhage, M2, model 2, NIHSS, National Institutes of Health Stroke Scale, vol, 
volume



to a larger-scale phase I or II trial to further test safety, 
tolerability, and whether there is signal for potential effi-
cacy. Our preliminary biomarker analysis revealed a sig-
nificant reduction in IL-16. Although the exact role of 
IL-16 in ICH is not defined, in patients with focal cer-
ebral infarctions, IL-16 accumulates in the perivascular 
region to promote inflammation [39]. If a similar mech-
anism exits in ICH, our data suggest that MSCs might 
play a role in decreasing IL-16 expression or secretion. 
The neuroprotective effect of EGF is well established [40, 
41], and the significant increase in EGF noted in these 
patients 3  days after MSC treatment aligns with this 
mechanism of action. Although we have noted overall 
trends across cytokine classes and differences for specific 
cytokines, the lack of a control group makes it difficult to 
quantify the extent of these changes mediated by MSC 
treatment. Ahn et al. [4] revealed potential biomarkers of 
interest, such as cerebrospinal fluid IL-6, that should be 
further investigated in future human ICH phase II trials. 
Furthermore, during our clinical study, we saw the litera-
ture evolve to highlight the growing importance of NLR 
in hemorrhagic stroke. NLR is a promising, low-cost, 

systemic inflammation biomarker that can be derived 
from the complete blood cell count on most admission 
blood tests, assuming a differential has been obtained. 
NLR can predict clinical progression for cancers and has 
been shown to predict worse outcomes for patients with 
ICH [16, 42, 43] and subarachnoid hemorrhage [17].

Another limitation of our trial is its single-center design 
because it relied on referring hospitals to call and request 
transport of their patients with ICH after being admitted 
at their hospital hours to days earlier. To address this, we 
created awareness of the trial in our stroke community 
and screened a large number of ICH cases at our com-
prehensive stroke center that mirrored the eligibility cri-
teria derived from prior ICH trials. Early in the trial, we 
received feedback that the requirement of within 72 h of 
ICH onset was too restrictive and not practical for most 
hospitals to transport patients with ICH to our center. 
In reviewing screening logs, extending the ICH window 
did help recruitment, and this became especially true 
during 2020 when the COVID-19 pandemic began. We 
learned that many patients with ICH were admitted on 
nights and weekends and were being actively stabilized 

Fig. 4 Analysis of anti-inflammatory, proinflammatory, and regenerative cytokines in the plasma of patients with ICH on day 0 before infusion 
and on day 3 post infusion. ICH, intracerebral hemorrhage, IVH, intraventricular hemorrhage, NIHSS, National Institutes of Health Stroke Scale, vol, 
volume



at their local hospital for 48 to 72  h, and we were fre-
quently called after that timeframe. Because hyperdense 
ICH blood remains visible for up to a week or longer, we 
thought it was biologically plausible to extend the MSC 
treatment window to include up to 168 h from onset to 
recruit more patients. We also discovered challenges in 
off-hours obtaining formal informed consent, and we 
could not pursue Exception From Informed Consent 
during emergencies from our institutional review board 
because we did not have human safety and tolerability 
data [44]. We learned that future BM-MSC trials will 
require an onsite cell therapy laboratory ready to pro-
cess these bioactive cells under stringent quality control 
measures and with the appropriate level of nursing and 
infusion safety monitoring for AE reporting. Most of 
these practical challenges were overcome by extending 
the ICH MSC time window up to 168 h. As mentioned, 
when the COVID-19 pandemic began, study recruitment 
was limited by a critical hospital census and overcapac-
ity issues in the intensive care unit and difficulties obtain-
ing written informed consent from surrogates who were 
not allowed to enter the hospital. This hospital policy 
was later overturned to allow one family member or legal 
surrogate into the patient’s room, but by the time this 
occurred, the trial was beyond the midpoint of enroll-
ment. In addition, we had initially planned to include a 
4th dose group in which three study participants would 
receive 0.5 million cells/Kg intraventricularly. However, 
patients in this group would need to have an EVD cath-
eter already in place; this requirement coupled with the 
COVID-19 pandemic, resulted in the elimination of this 
intervention group.

Regarding neurosurgical intervention for ICH, we 
acknowledge that since we began the trial, new minimally 
invasive surgery (MIS) techniques have been introduced, 
including parafascicular and tubular retractor methods 
of ICH extraction. These MIS ICH extraction techniques 
have shown promising preliminary results compared 
with open craniotomy ICH evacuation methods [45]. In 
our trial, the neurosurgeon was allowed to choose either 
an MIS approach or open craniotomy and to place an 
EVD per standard of care when deemed appropriate for 
hydrocephalus. Patients 1, 5, 6, and 9 received EVDs. 
Patient 5, a 36-year-old woman with an initial NIHSS 
score of 34, had an EVD initially placed but ICP became 
refractory, and the neurosurgeon performed a right fron-
tal MIS tubular retractor method of ICH removal with 
successful ICH evacuation [46]. This patient’s outcome 
exceeded our expectations based on her initial GCS and 
ICH scores of 7 and 3, respectively (> 70% mortality). 
During outpatient follow-up, her NIHSS score decreased 
to 2 [46]. However, given the preliminary nature of this 
trial, we cannot make any claims about efficacy based on 

a single data point. This patient’s case illustrates the need 
to find the right signal in the large amount of multidi-
mensional data for a biologically complex cerebrovascu-
lar disease such as ICH.

Finally, as alluded to in the recent American Heart 
Association ICH 2022 guideline, a redesign of our ICH 
systems of care [38, 47] is needed to identify and act with 
greater immediacy in both prehospital and early hos-
pital phases of care. The phrase, “time is brain,” applies 
to patients with ICH, too, with mathematical estimates 
suggesting that a 33-mL ICH equates to about 2.2 bil-
lion neurons lost, and may explain why patients with 
ICH have a disproportionately higher 30-day mortal-
ity and disability [1, 48]. To advance the science in ICH 
stroke care, we must recognize that there is a lack of an 
evidence-based drug therapy, and the role of neurosurgi-
cal intervention remains unclear. We must also examine 
emerging data that patients with ICH may have cov-
ert consciousness similar to other severe forms of brain 
injury from disrupted neuronal interconnections, and 
health care teams should be cautious in placing unneces-
sary or early do not resuscitate orders that could create 
a sense of hopelessness [49] and foster clinical nihilism 
[50] for future patients with ICH. The time is now to 
advance the science for patients with ICH by testing 
future therapies. Given the relatively lower epidemiologic 
incidence of ICH in the stroke population, we believe a 
future randomized, multicenter trial should consider 
using an adaptive Bayesian design to optimize patient 
selection given numerous covariates. Such a trial should 
include a secondary multiomics approach arm to inves-
tigate the potential role of NLR, cytokines, and newer 
machine learning neuroimaging and high-dimensional 
data analysis techniques that may be able to find possi-
ble ICH endophenotypes responsive to new therapeutic 
interventions.

Conclusions
We report the preliminary safety and tolerability data of 
three doses of BM-MSC in patients with acute ICH. The 
most common AE reported was fever, which was treata-
ble with acetaminophen. Further large, randomized trials 
are warranted to test the hypothesis that BM-MSC infu-
sion is a safe, tolerable, and potentially efficacious therapy 
to reduce the deleterious inflammatory cascade, improve 
outcomes in conjunction with newer MIS neurosurgical 
interventions, and possibly reduce PHE around the ICH.
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