Skip to main content

Advertisement

Log in

Neuromonitoring in Children with Cerebrovascular Disorders

  • Pediatric Neuromonitoring
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis.

Methods

Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders.

Results

Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans.

Conclusions

Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from Tomko SR, Hahn C, Guerriero RM, Quantitative EEG in the pediatric intensive care unit, in Sansevere AJ, Harrar DB, Atlas of pediatric and neonatal ICU EEG, New York: NY, Demos Medical Publishing. Copyright Springer Publishing Company, LLC.; 2021. p. 363)

Fig. 3
Fig. 4
Fig. 5

(Reproduced with permission from Tomko SR, Hahn C, Guerriero RM, Quantitative EEG in the pediatric intensive care unit, in Sansevere AJ, Harrar DB, Atlas of pediatric and neonatal ICU EEG, New York: NY, Demos Medical Publishing. Copyright Springer Publishing Company, LLC.; 2021. p. 356)

Similar content being viewed by others

References

  1. Ferriero DM, Fullerton HJ, Bernard TJ, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke. 2019;50(3):e51–96. https://doi.org/10.1161/STR.0000000000000183.

    Article  PubMed  Google Scholar 

  2. Lehman LL, Khoury JC, Taylor JM, et al. Pediatric stroke rates over 17 years: report from a population-based study. J Child Neurol. 2018;33(7):463–7. https://doi.org/10.1177/0883073818767039.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Steinlin M, Pfister I, Pavlovic J, et al. The first three years of the Swiss Neuropaediatric Stroke Registry (SNPSR): a population-based study of incidence, symptoms and risk factors. Neuropediatrics. 2005;36(2):90–7. https://doi.org/10.1055/s-2005-837658.

    Article  CAS  PubMed  Google Scholar 

  4. Christerson S, Strömberg B. Childhood stroke in Sweden I: incidence, symptoms, risk factors and short-term outcome. Acta Paediatr Oslo Nor. 2010;99(11):1641–9. https://doi.org/10.1111/j.1651-2227.2010.01925.x.

    Article  CAS  Google Scholar 

  5. Mallick AA, Ganesan V, Kirkham FJ, et al. Childhood arterial ischaemic stroke incidence, presenting features, and risk factors: a prospective population-based study. Lancet Neurol. 2014;13(1):35–43. https://doi.org/10.1016/S1474-4422(13)70290-4.

    Article  PubMed  Google Scholar 

  6. Wintermark M, Hills NK, deVeber GA, et al. Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study. Stroke. 2014;45(12):3597–605. https://doi.org/10.1161/STROKEAHA.114.007404.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Yock-Corrales A, Mackay MT, Mosley I, Maixner W, Babl FE. Acute childhood arterial ischemic and hemorrhagic stroke in the emergency department. Ann Emerg Med. 2011;58(2):156–63. https://doi.org/10.1016/j.annemergmed.2010.10.013.

    Article  PubMed  Google Scholar 

  8. Simma B, Martin G, Müller T, Huemer M. Risk factors for pediatric stroke: consequences for therapy and quality of life. Pediatr Neurol. 2007;37(2):121–6. https://doi.org/10.1016/j.pediatrneurol.2007.04.005.

    Article  PubMed  Google Scholar 

  9. deVeber GA, Kirton A, Booth FA, et al. Epidemiology and outcomes of arterial ischemic stroke in children: the Canadian pediatric ischemic stroke registry. Pediatr Neurol. 2017;69:58–70. https://doi.org/10.1016/j.pediatrneurol.2017.01.016.

    Article  PubMed  Google Scholar 

  10. Lanthier S, Carmant L, David M, Larbrisseau A, de Veber G. Stroke in children: the coexistence of multiple risk factors predicts poor outcome. Neurology. 2000;54(2):371–8. https://doi.org/10.1212/wnl.54.2.371.

    Article  CAS  PubMed  Google Scholar 

  11. Goeggel Simonetti B, Cavelti A, Arnold M, et al. Long-term outcome after arterial ischemic stroke in children and young adults. Neurology. 2015;84(19):1941–7. https://doi.org/10.1212/WNL.0000000000001555.

    Article  PubMed  Google Scholar 

  12. Fox CK, Johnston SC, Sidney S, Fullerton HJ. High critical care usage due to pediatric stroke: results of a population-based study. Neurology. 2012;79(5):420–7. https://doi.org/10.1212/WNL.0b013e3182616fd7.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mallick AA, Ganesan V, Kirkham FJ, et al. Outcome and recurrence 1 year after pediatric arterial ischemic stroke in a population-based cohort. Ann Neurol. 2016;79(5):784–93. https://doi.org/10.1002/ana.24626.

    Article  PubMed  Google Scholar 

  14. Fullerton HJ, Wu YW, Zhao S, Johnston SC. Risk of stroke in children: ethnic and gender disparities. Neurology. 2003;61(2):189–94. https://doi.org/10.1212/01.wnl.0000078894.79866.95.

    Article  PubMed  Google Scholar 

  15. Beslow LA, Licht DJ, Smith SE, et al. Predictors of outcome in childhood intracerebral hemorrhage: a prospective consecutive cohort study. Stroke. 2010;41(2):313–8. https://doi.org/10.1161/STROKEAHA.109.568071.

    Article  PubMed  Google Scholar 

  16. Livingston JH, Brown JK. Intracerebral haemorrhage after the neonatal period. Arch Dis Child. 1986;61(6):538–44. https://doi.org/10.1136/adc.61.6.538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Friefeld SJ, Westmacott R, Macgregor D, Deveber GA. Predictors of quality of life in pediatric survivors of arterial ischemic stroke and cerebral sinovenous thrombosis. J Child Neurol. 2011;26(9):1186–92. https://doi.org/10.1177/0883073811408609.

    Article  PubMed  Google Scholar 

  18. De Schryver ELLM, Blom I, Braun KPJ, et al. Long-term prognosis of cerebral venous sinus thrombosis in childhood. Dev Med Child Neurol. 2004;46(8):514–9. https://doi.org/10.1017/s0012162204000866.

    Article  PubMed  Google Scholar 

  19. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84. https://doi.org/10.1056/NEJMra072149.

    Article  CAS  PubMed  Google Scholar 

  20. McGlennan C, Ganesan V. Delays in investigation and management of acute arterial ischaemic stroke in children. Dev Med Child Neurol. 2008;50(7):537–40. https://doi.org/10.1111/j.1469-8749.2008.03012.x.

    Article  PubMed  Google Scholar 

  21. Srinivasan J, Miller SP, Phan TG, Mackay MT. Delayed recognition of initial stroke in children: need for increased awareness. Pediatrics. 2009;124(2):e227-234. https://doi.org/10.1542/peds.2008-3544.

    Article  PubMed  Google Scholar 

  22. Wycliffe ND, Holshouser BA, Bartnik-Olson B, Ashwal S. Pediatric Neuroimaging. In: Swaiman’s Pediatric Neurology: Principle and Practice. 6th ed.; 2018.

  23. De Jong G, Kannikeswaran N, DeLaroche A, Farooqi A, Sivaswamy L. Rapid sequence MRI Protocol in the evaluation of pediatric brain attacks. Pediatr Neurol. 2020;107:77–83. https://doi.org/10.1016/j.pediatrneurol.2019.12.007.

    Article  PubMed  Google Scholar 

  24. Mirsky DM, Beslow LA, Amlie-Lefond C, et al. Pathways for neuroimaging of childhood stroke. Pediatr Neurol. 2017;69:11–23. https://doi.org/10.1016/j.pediatrneurol.2016.12.004.

    Article  PubMed  Google Scholar 

  25. Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86. https://doi.org/10.1016/S1474-4422(11)70192-2.

    Article  PubMed  Google Scholar 

  26. Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22. https://doi.org/10.1056/NEJMoa1804355.

    Article  PubMed  Google Scholar 

  27. Rafay MF, Armstrong D, Deveber G, Domi T, Chan A, MacGregor DL. Craniocervical arterial dissection in children: clinical and radiographic presentation and outcome. J Child Neurol. 2006;21(1):8–16. https://doi.org/10.1177/08830738060210010101.

    Article  PubMed  Google Scholar 

  28. Bhatia KD, Briest R, Goetti R, et al. Incidence and natural history of pediatric large vessel occlusion stroke: a population study. JAMA Neurol. 2022. https://doi.org/10.1001/jamaneurol.2022.0323.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Demchuk AM, Menon BK, Goyal M. Comparing vessel imaging: noncontrast computed tomography/computed tomographic angiography should be the new minimum standard in acute disabling stroke. Stroke. 2016;47(1):273–81. https://doi.org/10.1161/STROKEAHA.115.009171.

    Article  PubMed  Google Scholar 

  30. Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the american society of neuroradiology. AJNR Am J Neuroradiol. 2017;38(2):218–29. https://doi.org/10.3174/ajnr.A4893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Donahue MJ, Dlamini N, Bhatia A, Jordan LC. Neuroimaging advances in pediatric stroke. Stroke. 2019;50(2):240–8. https://doi.org/10.1161/STROKEAHA.118.020478.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ma H, Campbell BCV, Parsons MW, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803. https://doi.org/10.1056/NEJMoa1813046.

    Article  PubMed  Google Scholar 

  34. Visser MJ, Yang JYM, Calamante F, et al. Automated perfusion-diffusion magnetic resonance imaging in childhood arterial ischemic stroke. Stroke. 2021;52(10):3296–304. https://doi.org/10.1161/STROKEAHA.120.032822.

    Article  CAS  PubMed  Google Scholar 

  35. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging JMRI. 2010;32(5):1024–37. https://doi.org/10.1002/jmri.22338.

    Article  PubMed  Google Scholar 

  36. Lee S, Heit JJ, Albers GW, et al. Neuroimaging selection for thrombectomy in pediatric stroke: a single-center experience. J Neurointerventional Surg. 2019;11(9):940–6. https://doi.org/10.1136/neurintsurg-2019-014862.

    Article  Google Scholar 

  37. Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW. Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke. 2012;43(7):1843–8. https://doi.org/10.1161/STROKEAHA.111.639773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Huang YC, Liu HL, Lee JD, et al. Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion mri in patients with acute stroke. PLoS ONE. 2013;8(7):e69085. https://doi.org/10.1371/journal.pone.0069085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kussman BD, Imaduddin SM, Gharedaghi MH, Heldt T, LaRovere K. Cerebral emboli monitoring using transcranial doppler ultrasonography in adults and children: a review of the current technology and clinical applications in the perioperative and intensive care setting. Anesth Analg. 2021;133(2):379–92. https://doi.org/10.1213/ANE.0000000000005417.

    Article  PubMed  Google Scholar 

  40. Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11. https://doi.org/10.1056/NEJM199807023390102.

    Article  CAS  PubMed  Google Scholar 

  41. Adams R, McKie V, Nichols F, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326(9):605–10. https://doi.org/10.1056/NEJM199202273260905.

    Article  CAS  PubMed  Google Scholar 

  42. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48. https://doi.org/10.1001/jama.2014.10517.

    Article  CAS  PubMed  Google Scholar 

  43. DeBaun MR, Jordan LC, King AA, et al. American Society of Hematology 2020 guidelines for sickle cell disease: prevention, diagnosis, and treatment of cerebrovascular disease in children and adults. Blood Adv. 2020;4(8):1554–88. https://doi.org/10.1182/bloodadvances.2019001142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Demchuk AM, Christou I, Wein TH, et al. Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion. Stroke. 2000;31(1):140–6. https://doi.org/10.1161/01.str.31.1.140.

    Article  CAS  PubMed  Google Scholar 

  45. Saqqur M, Uchino K, Demchuk AM, et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke. 2007;38(3):948–54. https://doi.org/10.1161/01.STR.0000257304.21967.ba.

    Article  PubMed  Google Scholar 

  46. Demchuk AM, Burgin WS, Christou I, et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001;32(1):89–93. https://doi.org/10.1161/01.STR.32.1.89.

    Article  CAS  PubMed  Google Scholar 

  47. Mackay MT, Wiznitzer M, Benedict SL, et al. Arterial ischemic stroke risk factors: the International Pediatric Stroke Study. Ann Neurol. 2011;69(1):130–40. https://doi.org/10.1002/ana.22224.

    Article  PubMed  Google Scholar 

  48. Felling RJ, Sun LR, Maxwell EC, Goldenberg N, Bernard T. Pediatric arterial ischemic stroke: epidemiology, risk factors, and management. Blood Cells Mol Dis. 2017;67:23–33. https://doi.org/10.1016/j.bcmd.2017.03.003.

    Article  PubMed  Google Scholar 

  49. Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis Basel Switz. 2000;10(6):490–6. https://doi.org/10.1159/000016119.

    Article  CAS  Google Scholar 

  50. Koutroulou I, Tsivgoulis G, Tsalikakis D, Karacostas D, Grigoriadis N, Karapanayiotides T. Epidemiology of patent Foramen Ovale in general population and in stroke patients: a narrative review. Front Neurol. 2020;11:281. https://doi.org/10.3389/fneur.2020.00281.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Rubin MN, Alexandrov AV, Douville C, Rinsky B, Tsivgoulis G. Novel robotic TCD ultrasound with bubbles versus standard care to detect right to left shunt: study methods. J Neuroimaging Off J Am Soc Neuroimaging. 2021;31(5):858–63. https://doi.org/10.1111/jon.12890.

    Article  Google Scholar 

  52. Kamouchi M, Kishikawa K, Matsuo R, et al. Ultrasonographic detection of extracranial vertebral artery compression in bow hunter’s brain ischemia caused by neck rotation. Cerebrovasc Dis Basel Switz. 2003;16(3):303–5. https://doi.org/10.1159/000071134.

    Article  Google Scholar 

  53. Regenhardt RW, Kozberg MG, Dmytriw AA, et al. Bow Hunter’s syndrome. Stroke. 2022;53(1):e26–9. https://doi.org/10.1161/STROKEAHA.121.037253.

    Article  PubMed  Google Scholar 

  54. Marsh EB, Ziai WC, Llinas RH. The need for a rational approach to vasoconstrictive syndromes: transcranial doppler and calcium channel blockade in reversible cerebral vasoconstriction syndrome. Case Rep Neurol. 2016;8(2):161–71. https://doi.org/10.1159/000447626.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Hathidara M, Patel NH, Flores A, Cabrera Y, Cabrera F, Koch S. Transcranial Doppler findings in reversible cerebral vasoconstriction syndrome. J Neuroimaging Off J Am Soc Neuroimaging. 2022;32(2):345–51. https://doi.org/10.1111/jon.12946.

    Article  Google Scholar 

  56. Cho H, Jo KI, Yu J, Yeon JY, Hong SC, Kim JS. Low flow velocity in the middle cerebral artery predicting infarction after bypass surgery in adult moyamoya disease. J Neurosurg. 2017;126(5):1573–7. https://doi.org/10.3171/2016.3.JNS152256.

    Article  PubMed  Google Scholar 

  57. Lee YS, Jung KH, Roh JK. Diagnosis of moyamoya disease with transcranial Doppler sonography: correlation study with magnetic resonance angiography. J Neuroimaging Off J Am Soc Neuroimaging. 2004;14(4):319–23. https://doi.org/10.1177/1051228404264958.

    Article  Google Scholar 

  58. Takase K, Kashihara M, Hashimoto T. Transcranial Doppler ultrasonography in patients with moyamoya disease. Clin Neurol Neurosurg. 1997;99(Suppl 2):S101-105. https://doi.org/10.1016/s0303-8467(97)00066-8.

    Article  PubMed  Google Scholar 

  59. Kwag HJ, Jeong DW, Lee SH, Kim DH, Kim J. Intracranial hemodynamic changes during adult moyamoya disease progression. J Clin Neurol Seoul Korea. 2008;4(2):67–74. https://doi.org/10.3988/jcn.2008.4.2.67.

    Article  Google Scholar 

  60. Roach ES, Golomb MR, Adams R, et al. Management of stroke in infants and children: a scientific statement from a Special writing group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke. 2008;39(9):2644–91. https://doi.org/10.1161/STROKEAHA.108.189696.

    Article  PubMed  Google Scholar 

  61. Gardner Yelton SE, Williams MA, Young M, et al. Perioperative management of pediatric patients with moyamoya arteriopathy. Published online 2021.https://doi.org/10.1055/s-0041-1731667.

  62. LaRovere KL. Transcranial Doppler ultrasound in children with stroke and cerebrovascular disorders. Curr Opin Pediatr. 2015;27(6):712–8. https://doi.org/10.1097/MOP.0000000000000282.

    Article  PubMed  Google Scholar 

  63. Yang M, Yang Z, Yuan T, Feng W, Wang P. A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol. 2019;10:58. https://doi.org/10.3389/fneur.2019.00058.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Petersen NH, Silverman A, Strander SM, et al. Fixed compared with autoregulation-oriented blood pressure thresholds after mechanical thrombectomy for ischemic stroke. Stroke. 2020;51(3):914–21. https://doi.org/10.1161/STROKEAHA.119.026596.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Moreau F, Yang R, Nambiar V, Demchuk AM, Dunn JF. Near-infrared measurements of brain oxygenation in stroke. Neurophotonics. 2016;3(3):031403. https://doi.org/10.1117/1.NPh.3.3.031403.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Ogasawara K, Konno H, Yukawa H, Endo H, Inoue T, Ogawa A. Transcranial regional cerebral oxygen saturation monitoring during carotid endarterectomy as a predictor of postoperative hyperperfusion. Neurosurgery. 2003;53(2):309–14. https://doi.org/10.1227/01.neu.0000073547.86747.f3.

    Article  PubMed  Google Scholar 

  67. Hansen ML, Hyttel-Sørensen S, Jakobsen JC, et al. Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis. Pediatr Res. 2022. https://doi.org/10.1038/s41390-022-01995-z.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Tuckuviene R, Christensen AL, Helgestad J, Johnsen SP, Kristensen SR. Paediatric arterial ischaemic stroke and cerebral sinovenous thrombosis in Denmark 1994–2006: a nationwide population-based study. Acta Paediatr Oslo Nor. 2011;100(4):543–9. https://doi.org/10.1111/j.1651-2227.2010.02100.x.

    Article  CAS  Google Scholar 

  69. Hartman AL, Lunney KM, Serena JE. Pediatric stroke: do clinical factors predict delays in presentation? J Pediatr. 2009;154(5):727–32. https://doi.org/10.1016/j.jpeds.2008.11.011.

    Article  PubMed  Google Scholar 

  70. Billinghurst LL, Beslow LA, Abend NS, et al. Incidence and predictors of epilepsy after pediatric arterial ischemic stroke. Neurology. 2017;88(7):630–7. https://doi.org/10.1212/WNL.0000000000003603.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Fox CK, Mackay MT, Dowling MM, et al. Prolonged or recurrent acute seizures after pediatric arterial ischemic stroke are associated with increasing epilepsy risk. Dev Med Child Neurol. 2017;59(1):38–44. https://doi.org/10.1111/dmcn.13198.

    Article  PubMed  Google Scholar 

  72. Abend NS, Beslow LA, Smith SE, et al. Seizures as a presenting symptom of acute arterial ischemic stroke in childhood. J Pediatr. 2011;159(3):479–83. https://doi.org/10.1016/j.jpeds.2011.02.004.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Singh RK, Zecavati N, Singh J, et al. Seizures in acute childhood stroke. J Pediatr. 2012;160(2):291–6. https://doi.org/10.1016/j.jpeds.2011.07.048.

    Article  PubMed  Google Scholar 

  74. Song JL, Kim JA, Struck AF, Zhang R, Westover MB. A model of metabolic supply-demand mismatch leading to secondary brain injury. J Neurophysiol. 2021;126(2):653–67. https://doi.org/10.1152/jn.00674.2020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Payne ET, Zhao XY, Frndova H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain J Neurol. 2014;137(Pt 5):1429–38. https://doi.org/10.1093/brain/awu042.

    Article  Google Scholar 

  76. Fox CK, Glass HC, Sidney S, Lowenstein DH, Fullerton HJ. Acute seizures predict epilepsy after childhood stroke. Ann Neurol. 2013;74(2):249–56. https://doi.org/10.1002/ana.23916.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Claassen J, Taccone FS, Horn P, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013;39(8):1337–51. https://doi.org/10.1007/s00134-013-2938-4.

    Article  CAS  PubMed  Google Scholar 

  78. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2015;32(2):87–95. https://doi.org/10.1097/WNP.0000000000000166.

    Article  Google Scholar 

  79. Kirschen MP, LaRovere K, Balakrishnan B, et al. A survey of neuromonitoring practices in North American pediatric intensive care units. Pediatr Neurol. 2022;126:125–30. https://doi.org/10.1016/j.pediatrneurol.2021.11.002.

    Article  PubMed  Google Scholar 

  80. Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63(12):1750–5. https://doi.org/10.1001/archneur.63.12.1750.

    Article  PubMed  Google Scholar 

  81. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8. https://doi.org/10.1212/01.wnl.0000125184.88797.62.

    Article  CAS  PubMed  Google Scholar 

  82. Abend NS, Dlugos DJ. Nonconvulsive status epilepticus in a pediatric intensive care unit. Pediatr Neurol. 2007;37(3):165–70. https://doi.org/10.1016/j.pediatrneurol.2007.05.012.

    Article  PubMed  Google Scholar 

  83. Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51(7):1198–204. https://doi.org/10.1111/j.1528-1167.2009.02517.x.

    Article  PubMed  Google Scholar 

  84. Abend NS, Gutierrez-Colina AM, Topjian AA, et al. Nonconvulsive seizures are common in critically ill children. Neurology. 2011;76(12):1071–7. https://doi.org/10.1212/WNL.0b013e318211c19e.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Abend NS, Topjian A, Ichord R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):1931–40. https://doi.org/10.1212/WNL.0b013e3181a82687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Fung FW, Jacobwitz M, Parikh DS, et al. Development of a model to predict electroencephalographic seizures in critically ill children. Epilepsia. 2020;61(3):498–508. https://doi.org/10.1111/epi.16448.

    Article  PubMed  Google Scholar 

  87. Dericioglu N, Yetim E, Bas DF, et al. Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res. 2015;109:48–56. https://doi.org/10.1016/j.eplepsyres.2014.10.013.

    Article  PubMed  Google Scholar 

  88. Swisher CB, White CR, Mace BE, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2015;32(4):324–30. https://doi.org/10.1097/WNP.0000000000000144.

    Article  Google Scholar 

  89. Topjian AA, Fry M, Jawad AF, et al. Detection of electrographic seizures by critical care providers using color density spectral array after cardiac arrest is feasible. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2015;16(5):461–7. https://doi.org/10.1097/PCC.0000000000000352.

    Article  Google Scholar 

  90. Amorim E, Williamson CA, Moura LMVR, et al. Performance of spectrogram-based seizure identification of adult EEGs by critical care nurses and neurophysiologists. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2017;34(4):359–64. https://doi.org/10.1097/WNP.0000000000000368.

    Article  Google Scholar 

  91. Lalgudi Ganesan S, Stewart CP, Atenafu EG, et al. Seizure identification by critical care providers using quantitative electroencephalography. Crit Care Med. 2018;46(12):e1105–11. https://doi.org/10.1097/CCM.0000000000003385.

    Article  PubMed  Google Scholar 

  92. Williamson CA, Wahlster S, Shafi MM, Westover MB. Sensitivity of compressed spectral arrays for detecting seizures in acutely ill adults. Neurocrit Care. 2014;20(1):32–9. https://doi.org/10.1007/s12028-013-9912-4.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Du Pont-Thibodeau G, Sanchez SM, Jawad AF, et al. Seizure detection by critical care providers using amplitude-integrated electroencephalography and color density spectral array in pediatric cardiac arrest patients. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017;18(4):363–9. https://doi.org/10.1097/PCC.0000000000001099.

    Article  Google Scholar 

  94. Kang JH, Sherill GC, Sinha SR, Swisher CB. A trial of real-time electrographic seizure detection by neuro-ICU nurses using a panel of quantitative EEG trends. Neurocrit Care. 2019;31(2):312–20. https://doi.org/10.1007/s12028-019-00673-z.

    Article  PubMed  Google Scholar 

  95. Hofmeijer J, van Putten MJAM. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke. 2012;43(2):607–15. https://doi.org/10.1161/STROKEAHA.111.632943.

    Article  PubMed  Google Scholar 

  96. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care Lond Engl. 2012;16(2):216. https://doi.org/10.1186/cc11230.

    Article  Google Scholar 

  97. Press CA, Morgan L, Mills M, et al. Spectral electroencephalogram analysis for the evaluation of encephalopathy grade in children with acute liver failure. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017;18(1):64–72. https://doi.org/10.1097/PCC.0000000000001016.

    Article  Google Scholar 

  98. Huguenard AL, Guerriero RM, Tomko SR, et al. Immediate postoperative electroencephalography monitoring in pediatric moyamoya disease and syndrome. Pediatr Neurol. 2021;118:40–5. https://doi.org/10.1016/j.pediatrneurol.2021.02.004.

    Article  PubMed  Google Scholar 

  99. Sansevere AJ, DiBacco ML, Pearl PL, Rotenberg A. Quantitative electroencephalography for early detection of elevated intracranial pressure in critically Ill children: case series and proposed protocol. J Child Neurol. 2022;37(1):5–11. https://doi.org/10.1177/08830738211015012.

    Article  PubMed  Google Scholar 

  100. Finnigan SP, Walsh M, Rose SE, Chalk JB. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2007;118(11):2525–32. https://doi.org/10.1016/j.clinph.2007.07.021.

    Article  Google Scholar 

  101. Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol Off J Int Organ Psychophysiol. 2014;94(1):19–24. https://doi.org/10.1016/j.ijpsycho.2014.06.012.

    Article  Google Scholar 

  102. Leng LZ, Fink ME, Iadecola C. Spreading depolarization: a possible new culprit in the delayed cerebral ischemia of subarachnoid hemorrhage. Arch Neurol. 2011;68(1):31–6. https://doi.org/10.1001/archneurol.2010.226.

    Article  PubMed  Google Scholar 

  103. Strong AJ, Dardis R. Depolarisation phenomena in traumatic and ischaemic brain injury. Adv Tech Stand Neurosurg. 2005;30:3–49. https://doi.org/10.1007/3-211-27208-9_1.

    Article  CAS  PubMed  Google Scholar 

  104. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2011;31(1):17–35. https://doi.org/10.1038/jcbfm.2010.191.

    Article  Google Scholar 

  105. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17(4):439–47. https://doi.org/10.1038/nm.2333.

    Article  CAS  PubMed  Google Scholar 

  106. Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology. 2018;134(Pt B):189–207. https://doi.org/10.1016/j.neuropharm.2017.09.027.

    Article  CAS  PubMed  Google Scholar 

  107. Hartings JA, Rolli ML, Lu XCM, Tortella FC. Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci Off J Soc Neurosci. 2003;23(37):11602–10.

    Article  CAS  Google Scholar 

  108. Hartings JA, Tortella FC, Rolli ML. AC electrocorticographic correlates of peri-infarct depolarizations during transient focal ischemia and reperfusion. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2006;26(5):696–707. https://doi.org/10.1038/sj.jcbfm.9600223.

    Article  Google Scholar 

  109. Back T, Kohno K, Hossmann KA. Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1994;14(1):12–9. https://doi.org/10.1038/jcbfm.1994.3.

    Article  CAS  Google Scholar 

  110. Takano T, Tian GF, Peng W, et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci. 2007;10(6):754–62. https://doi.org/10.1038/nn1902.

    Article  CAS  PubMed  Google Scholar 

  111. Gyngell ML, Busch E, Schmitz B, et al. Evolution of acute focal cerebral ischaemia in rats observed by localized 1H MRS, diffusion-weighted MRI, and electrophysiological monitoring. NMR Biomed. 1995;8(5):206–14. https://doi.org/10.1002/nbm.1940080505.

    Article  CAS  PubMed  Google Scholar 

  112. Jordan LC, Hillis AE. Hemorrhagic stroke in children. Pediatr Neurol. 2007;36(2):73–80. https://doi.org/10.1016/j.pediatrneurol.2006.09.017.

    Article  PubMed  Google Scholar 

  113. Sporns PB, Psychogios MN, Boulouis G, et al. Neuroimaging of acute intracerebral hemorrhage. J Clin Med. 2021;10(5):1086. https://doi.org/10.3390/jcm10051086.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Boulouis G, Blauwblomme T, Hak JF, et al. Nontraumatic pediatric intracerebral hemorrhage. Stroke. 2019;50(12):3654–61. https://doi.org/10.1161/STROKEAHA.119.025783.

    Article  PubMed  Google Scholar 

  115. Probert R, Saunders DE, Ganesan V. Reversible cerebral vasoconstriction syndrome: rare or underrecognized in children? Dev Med Child Neurol. 2013;55(4):385–9. https://doi.org/10.1111/j.1469-8749.2012.04433.x.

    Article  PubMed  Google Scholar 

  116. Sari S, Verim S, Hamcan S, et al. MRI diagnosis of dural sinus - Cortical venous thrombosis: Immediate post-contrast 3D GRE T1-weighted imaging versus unenhanced MR venography and conventional MR sequences. Clin Neurol Neurosurg. 2015;134:44–54. https://doi.org/10.1016/j.clineuro.2015.04.013.

    Article  PubMed  Google Scholar 

  117. Rigamonti D, Drayer BP, Johnson PC, Hadley MN, Zabramski J, Spetzler RF. The MRI appearance of cavernous malformations (angiomas). J Neurosurg. 1987;67(4):518–24. https://doi.org/10.3171/jns.1987.67.4.0518.

    Article  CAS  PubMed  Google Scholar 

  118. Beslow LA, Ichord RN, Gindville MC, et al. Frequency of hematoma expansion after spontaneous intracerebral hemorrhage in children. JAMA Neurol. 2014;71(2):165–71. https://doi.org/10.1001/jamaneurol.2013.4672.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Brouwers HB, Chang Y, Falcone GJ, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64. https://doi.org/10.1001/jamaneurol.2013.5433.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Schindlbeck KA, Santaella A, Galinovic I, et al. Spot sign in acute intracerebral hemorrhage in dynamic T1-Weighted magnetic resonance imaging. Stroke. 2016;47(2):417–23. https://doi.org/10.1161/STROKEAHA.115.011570.

    Article  PubMed  Google Scholar 

  121. Selariu E, Zia E, Brizzi M, Abul-Kasim K. Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol. 2012;12:109. https://doi.org/10.1186/1471-2377-12-109.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Boulouis G, Morotti A, Brouwers HB, et al. Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol. 2016;73(8):961–8. https://doi.org/10.1001/jamaneurol.2016.1218.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Garg K, Singh PK, Sharma BS, et al. Pediatric intracranial aneurysms–our experience and review of literature. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2014;30(5):873–83. https://doi.org/10.1007/s00381-013-2336-9.

    Article  Google Scholar 

  124. Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43(6):1711–37. https://doi.org/10.1161/STR.0b013e3182587839.

    Article  PubMed  Google Scholar 

  125. Moftakhar P, Cooke DL, Fullerton HJ, et al. Extent of collateralization predicting symptomatic cerebral vasospasm among pediatric patients: correlations among angiography, transcranial Doppler ultrasonography, and clinical findings. J Neurosurg Pediatr. 2015;15(3):282–90. https://doi.org/10.3171/2014.9.PEDS14313.

    Article  PubMed  Google Scholar 

  126. Isola C, Evain JN, Francony G, et al. Cerebral vasospasm in children with subarachnoid hemorrhage: frequency, diagnosis, and therapeutic management. Neurocrit Care. Published online November 17, 2021. doi: https://doi.org/10.1007/s12028-021-01388-w.

  127. Marshall SA, Nyquist P, Ziai WC. The role of transcranial Doppler ultrasonography in the diagnosis and management of vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):291–303. https://doi.org/10.1016/j.nec.2009.10.010.

    Article  PubMed  Google Scholar 

  128. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1999;44(6):1237–47.

    CAS  PubMed  Google Scholar 

  129. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien). 1988;42:81–4. https://doi.org/10.1007/978-3-7091-8975-7_16.

    Article  CAS  PubMed  Google Scholar 

  130. Kirsch JD, Mathur M, Johnson MH, Gowthaman G, Scoutt LM. Advances in transcranial Doppler US: imaging ahead. Radiogr Rev Publ Radiol Soc N Am Inc. 2013;33(1):E1–E14. https://doi.org/10.1148/rg.331125071.

  131. Sun LR, Ziai W, Brown P, et al. Intrathecal chemotherapy-associated cerebral vasospasm in children with hematologic malignancies. Pediatr Res. 2021;89(4):858–62. https://doi.org/10.1038/s41390-020-1008-1.

    Article  CAS  PubMed  Google Scholar 

  132. O’Brien NF, Maa T, Yeates KO. The epidemiology of vasospasm in children with moderate-to-severe traumatic brain injury. Crit Care Med. 2015;43(3):674–85. https://doi.org/10.1097/CCM.0000000000000745.

    Article  CAS  PubMed  Google Scholar 

  133. Zweifel C, Castellani G, Czosnyka M, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41(9):1963–8. https://doi.org/10.1161/STROKEAHA.109.577320.

    Article  PubMed  Google Scholar 

  134. Park JJ, Kim Y, Chai CL, Jeon JP. Application of near-infrared spectroscopy for the detection of delayed cerebral ischemia in poor-grade subarachnoid hemorrhage. Neurocrit Care. 2021;35(3):767–74. https://doi.org/10.1007/s12028-021-01223-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Salonia R, Bell MJ, Kochanek PM, Berger RP. The utility of near infrared spectroscopy in detecting intracranial hemorrhage in children. J Neurotrauma. 2012;29(6):1047–53. https://doi.org/10.1089/neu.2011.1890.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Brogan RJ, Kontojannis V, Garara B, Marcus HJ, Wilson MH. Near-infrared spectroscopy (NIRS) to detect traumatic intracranial haematoma: a systematic review and meta-analysis. Brain Inj. 2017;31(5):581–8. https://doi.org/10.1080/02699052.2017.1287956.

    Article  PubMed  Google Scholar 

  137. Lin N, Smith ER, Scott RM, Orbach DB. Safety of neuroangiography and embolization in children: complication analysis of 697 consecutive procedures in 394 patients. J Neurosurg Pediatr. 2015;16(4):432–8. https://doi.org/10.3171/2015.2.PEDS14431.

    Article  PubMed  Google Scholar 

  138. Orbach DB, Stamoulis C, Strauss KJ, et al. Neurointerventions in children: radiation exposure and its import. AJNR Am J Neuroradiol. 2014;35(4):650–6. https://doi.org/10.3174/ajnr.A3758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Chaudhary N, Elijovich L, Martinez M, et al. Pediatric diagnostic cerebral angiography: practice recommendations from the SNIS Pediatric Committee. J Neurointerventional Surg. 2021;13(8):762–6. https://doi.org/10.1136/neurintsurg-2021-017389.

    Article  Google Scholar 

  140. van Rooij WJ, Jacobs S, Sluzewski M, Beute GN, van der Pol B. Endovascular treatment of ruptured brain AVMs in the acute phase of hemorrhage. AJNR Am J Neuroradiol. 2012;33(6):1162–6. https://doi.org/10.3174/ajnr.A2995.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Redekop G, TerBrugge K, Montanera W, Willinsky R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg. 1998;89(4):539–46. https://doi.org/10.3171/jns.1998.89.4.0539.

    Article  CAS  PubMed  Google Scholar 

  142. Brown RD, Wiebers DO, Forbes GS. Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. J Neurosurg. 1990;73(6):859–63. https://doi.org/10.3171/jns.1990.73.6.0859.

    Article  PubMed  Google Scholar 

  143. e Sa MJC, Stein BM, Solomon RA, McCormick PC. The treatment of associated intracranial aneurysms and arteriovenous malformations. J Neurosurg. 1992;77(6):853–9.

    Article  Google Scholar 

  144. Deruty R, Mottolese C, Soustiel JF, Pelissou-Guyotat I. Association of cerebral arteriovenous malformation and cerebral aneurysm. Diagn Manag Acta Neurochir (Wien). 1990;107(3–4):133–9. https://doi.org/10.1007/BF01405792.

    Article  CAS  Google Scholar 

  145. Lasjaunias P, Piske R, Terbrugge K, Willinsky R. Cerebral arteriovenous malformations (C. AVM) and associated arterial aneurysms (AA). Analysis of 101 C. AVM cases, with 37 AA in 23 patients. Acta Neurochir (Wien). 1988;91(1–2):29–36. https://doi.org/10.1007/BF01400524.

    Article  CAS  PubMed  Google Scholar 

  146. Miyasaka K, Wolpert SM, Prager RJ. The association of cerebral aneurysms, infundibula, and intracranial arteriovenous malformations. Stroke. 1982;13(2):196–203. https://doi.org/10.1161/01.str.13.2.196.

    Article  CAS  PubMed  Google Scholar 

  147. Suzuki J, Onuma T. Intracranial aneurysms associated with arteriovenous malformations. J Neurosurg. 1979;50(6):742–6. https://doi.org/10.3171/jns.1979.50.6.0742.

    Article  CAS  PubMed  Google Scholar 

  148. Turjman F, Massoud TF, Viñuela F, Sayre JW, Guglielmi G, Duckwiler G. Aneurysms related to cerebral arteriovenous malformations: superselective angiographic assessment in 58 patients. AJNR Am J Neuroradiol. 1994;15(9):1601–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Brown RD, Wiebers DO, Forbes G, et al. The natural history of unruptured intracranial arteriovenous malformations. J Neurosurg. 1988;68(3):352–7. https://doi.org/10.3171/jns.1988.68.3.0352.

    Article  PubMed  Google Scholar 

  150. Perret G, Nishioka H. Report on the cooperative study of intracranial aneurysms and subarachnoid haemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the cooperative study. J Neurosurg. 1966;25(4):467–90. https://doi.org/10.3171/jns.1966.25.4.0467.

    Article  CAS  PubMed  Google Scholar 

  151. da Costa L, Wallace MC, Ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 2009;40(1):100–5. https://doi.org/10.1161/STROKEAHA.108.524678.

    Article  PubMed  Google Scholar 

  152. Stapf C, Mast H, Sciacca RR, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology. 2006;66(9):1350–5. https://doi.org/10.1212/01.wnl.0000210524.68507.87.

    Article  CAS  PubMed  Google Scholar 

  153. Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL, MARS Coinvestigators. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology. 2014;83(7):590–7. https://doi.org/10.1212/WNL.0000000000000688.

    Article  PubMed Central  PubMed  Google Scholar 

  154. Hartmann A, Mast H, Mohr JP, et al. Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke. 1998;29(5):931–4. https://doi.org/10.1161/01.str.29.5.931.

    Article  CAS  PubMed  Google Scholar 

  155. Miyasaka Y, Yada K, Ohwada T, Kitahara T, Kurata A, Irikura K. An analysis of the venous drainage system as a factor in hemorrhage from arteriovenous malformations. J Neurosurg. 1992;76(2):239–43. https://doi.org/10.3171/jns.1992.76.2.0239.

    Article  CAS  PubMed  Google Scholar 

  156. Kader A, Young WL, Pile-Spellman J, et al. The influence of hemodynamic and anatomic factors on hemorrhage from cerebral arteriovenous malformations. Neurosurgery. 1994;34(5):801–7. https://doi.org/10.1227/00006123-199405000-00003.

    Article  CAS  PubMed  Google Scholar 

  157. Batjer H, Suss RA, Samson D. Intracranial arteriovenous malformations associated with aneurysms. Neurosurgery. 1986;18(1):29–35. https://doi.org/10.1227/00006123-198601000-00006.

    Article  CAS  PubMed  Google Scholar 

  158. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke. 1996;27(1):1–6. https://doi.org/10.1161/01.str.27.1.1.

    Article  CAS  PubMed  Google Scholar 

  159. Forster DM, Steiner L, Håkanson S. Arteriovenous malformations of the brain. A long-term clinical study. J Neurosurg. 1972;37(5):562–70. https://doi.org/10.3171/jns.1972.37.5.0562.

    Article  CAS  PubMed  Google Scholar 

  160. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9. https://doi.org/10.1227/00006123-198001000-00001.

    Article  CAS  PubMed  Google Scholar 

  161. Gurusinghe NT, Richardson AE. The value of computerized tomography in aneurysmal subarachnoid haemorrhage. The concept of the CT score. J Neurosurg. 1984;60(4):763–70. https://doi.org/10.3171/jns.1984.60.4.0763.

    Article  CAS  PubMed  Google Scholar 

  162. Qureshi AI, Sung GY, Razumovsky AY, Lane K, Straw RN, Ulatowski JA. Early identification of patients at risk for symptomatic vasospasm after aneurysmal subarachnoid hemorrhage. Crit Care Med. 2000;28(4):984–90. https://doi.org/10.1097/00003246-200004000-00012.

    Article  CAS  PubMed  Google Scholar 

  163. Davis JM, Davis KR, Crowell RM. Subarachnoid hemorrhage secondary to ruptured intracranial aneurysm: prognostic significance of cranial CT. AJR Am J Roentgenol. 1980;134(4):711–5. https://doi.org/10.2214/ajr.134.4.711.

    Article  CAS  PubMed  Google Scholar 

  164. Suzuki J, Komatsu S, Sato T, Sakurai Y. Correlation between CT findings and subsequent development of cerebral infarction due to vasospasm in subarachnoid haemorrhage. Acta Neurochir (Wien). 1980;55(1–2):63–70. https://doi.org/10.1007/BF01808921.

    Article  CAS  PubMed  Google Scholar 

  165. Pasqualin A, Rosta L, Da Pian R, Cavazzani P, Scienza R. Role of computed tomography in the management of vasospasm after subarachnoid hemorrhage. Neurosurgery. 1984;15(3):344–53. https://doi.org/10.1227/00006123-198409000-00009.

    Article  CAS  PubMed  Google Scholar 

  166. Li K, Barras CD, Chandra RV, et al. A review of the management of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019;126:513–27. https://doi.org/10.1016/j.wneu.2019.03.083.

    Article  PubMed  Google Scholar 

  167. Saengpattrachai M, Sharma R, Hunjan A, et al. Nonconvulsive seizures in the pediatric intensive care unit: etiology, EEG, and brain imaging findings. Epilepsia. 2006;47(9):1510–8. https://doi.org/10.1111/j.1528-1167.2006.00624.x.

    Article  PubMed  Google Scholar 

  168. Abend NS, Arndt DH, Carpenter JL, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013;81(4):383–91. https://doi.org/10.1212/WNL.0b013e31829c5cfe.

    Article  PubMed Central  PubMed  Google Scholar 

  169. Beslow LA, Abend NS, Gindville MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. JAMA Neurol. 2013;70(4):448–54. https://doi.org/10.1001/jamaneurol.2013.1033.

    Article  PubMed Central  PubMed  Google Scholar 

  170. Lo WD, Lee J, Rusin J, Perkins E, Roach ES. Intracranial hemorrhage in children: an evolving spectrum. Arch Neurol. 2008;65(12):1629–33. https://doi.org/10.1001/archneurol.2008.502.

    Article  PubMed  Google Scholar 

  171. Al-Jarallah A, Al-Rifai MT, Riela AR, Roach ES. Nontraumatic brain hemorrhage in children: etiology and presentation. J Child Neurol. 2000;15(5):284–9. https://doi.org/10.1177/088307380001500503.

    Article  CAS  PubMed  Google Scholar 

  172. Blom I, De Schryver ELLM, Kappelle LJ, Rinkel GJE, Jennekens-Schinkel A, Peters ACB. Prognosis of haemorrhagic stroke in childhood: a long-term follow-up study. Dev Med Child Neurol. 2003;45(4):233–9. https://doi.org/10.1017/s001216220300046x.

    Article  PubMed  Google Scholar 

  173. Jordan LC, Kleinman JT, Hillis AE. Intracerebral hemorrhage volume predicts poor neurologic outcome in children. Stroke. 2009;40(5):1666–71. https://doi.org/10.1161/STROKEAHA.108.541383.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Meyer-Heim AD, Boltshauser E. Spontaneous intracranial haemorrhage in children: aetiology, presentation and outcome. Brain Dev. 2003;25(6):416–21. https://doi.org/10.1016/s0387-7604(03)00029-9.

    Article  PubMed  Google Scholar 

  175. Giroud M, Lemesle M, Gouyon JB, Nivelon JL, Milan C, Dumas R. Cerebrovascular disease in children under 16 years of age in the city of Dijon, France: a study of incidence and clinical features from 1985 to 1993. J Clin Epidemiol. 1995;48(11):1343–8. https://doi.org/10.1016/0895-4356(95)00039-9.

    Article  CAS  PubMed  Google Scholar 

  176. Yang JS, Park YD, Hartlage PL. Seizures associated with stroke in childhood. Pediatr Neurol. 1995;12(2):136–8. https://doi.org/10.1016/0887-8994(94)00152-r.

    Article  CAS  PubMed  Google Scholar 

  177. Chadehumbe MA, Khatri P, Khoury JC, et al. Seizures are common in the acute setting of childhood stroke: a population-based study. J Child Neurol. 2009;24(1):9–12. https://doi.org/10.1177/0883073808320756.

    Article  PubMed  Google Scholar 

  178. De Marchis GM, Pugin D, Meyers E, et al. Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology. 2016;86(3):253–60. https://doi.org/10.1212/WNL.0000000000002281.

    Article  PubMed Central  PubMed  Google Scholar 

  179. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2004;115(12):2699–710. https://doi.org/10.1016/j.clinph.2004.06.017.

    Article  Google Scholar 

  180. Rots ML, van Putten MJAM, Hoedemaekers CWE, Horn J. Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2016;24(2):207–16. https://doi.org/10.1007/s12028-015-0205-y.

    Article  CAS  PubMed  Google Scholar 

  181. Vespa PM, Nuwer MR, Juhász C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103(6):607–15. https://doi.org/10.1016/s0013-4694(97)00071-0.

    Article  CAS  PubMed  Google Scholar 

  182. Yu Z, Wen D, Zheng J, et al. Predictive accuracy of alpha-delta ratio on quantitative electroencephalography for delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: meta-analysis. World Neurosurg. 2019;126:e510–6. https://doi.org/10.1016/j.wneu.2019.02.082.

    Article  PubMed  Google Scholar 

  183. Appavu BL, Temkit MH, Foldes ST, et al. Quantitative electroencephalography after pediatric anterior circulation stroke. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2020. https://doi.org/10.1097/WNP.0000000000000813.

    Article  Google Scholar 

  184. Walker CT, Stone JJ, Jacobson M, Phillips V, Silberstein HJ. Indications for pediatric external ventricular drain placement and risk factors for conversion to a ventriculoperitoneal shunt. Pediatr Neurosurg. 2012;48(6):342–7. https://doi.org/10.1159/000353608.

    Article  PubMed  Google Scholar 

  185. Waziri A, Claassen J, Stuart RM, et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009;66(3):366–77. https://doi.org/10.1002/ana.21721.

    Article  PubMed  Google Scholar 

  186. Appavu B, Foldes S, Burrows BT, et al. Multimodal assessment of cerebral autoregulation and autonomic function after pediatric cerebral arteriovenous malformation rupture. Neurocrit Care. 2021;34(2):537–46. https://doi.org/10.1007/s12028-020-01058-3.

    Article  PubMed  Google Scholar 

  187. Dlamini N, Billinghurst L, Kirkham FJ. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21(3–5):511–27. https://doi.org/10.1016/j.nec.2010.03.006.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Ropper AH, Klein JP. Cerebral venous thrombosis. N Engl J Med. 2021;385(1):59–64. https://doi.org/10.1056/NEJMra2106545.

    Article  CAS  PubMed  Google Scholar 

  189. Bidar F, Faeghi F, Ghorbani A. Assessment of cerebral venous sinus thrombosis using T2*-weighted gradient echo magnetic resonance imaging sequences. Iran J Neurol. 2016;15(2):96–9.

    PubMed Central  PubMed  Google Scholar 

  190. Selim M, Fink J, Linfante I, Kumar S, Schlaug G, Caplan LR. Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol. 2002;59(6):1021–6. https://doi.org/10.1001/archneur.59.6.1021.

    Article  PubMed  Google Scholar 

  191. deVeber G, Andrew M, Adams C, et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345(6):417–23. https://doi.org/10.1056/NEJM200108093450604.

    Article  CAS  PubMed  Google Scholar 

  192. Barnes C, Newall F, Furmedge J, Mackay M, Monagle P. Cerebral sinus venous thrombosis in children. J Paediatr Child Health. 2004;40(1–2):53–5. https://doi.org/10.1111/j.1440-1754.2004.00291.x.

    Article  CAS  PubMed  Google Scholar 

  193. Barron TF, Gusnard DA, Zimmerman RA, Clancy RR. Cerebral venous thrombosis in neonates and children. Pediatr Neurol. 1992;8(2):112–6. https://doi.org/10.1016/0887-8994(92)90030-3.

    Article  CAS  PubMed  Google Scholar 

  194. Zhu X, Liu M, Gong X, et al. Transcranial color-coded sonography for the detection of cerebral veins and sinuses and diagnosis of cerebral venous sinus thrombosis. Ultrasound Med Biol. 2019;45(10):2649–57. https://doi.org/10.1016/j.ultrasmedbio.2019.06.419.

    Article  PubMed  Google Scholar 

  195. Ichord RN, Benedict SL, Chan AK, Kirkham FJ, Nowak-Göttl U. Paediatric cerebral sinovenous thrombosis: findings of the International Paediatric stroke study. Arch Dis Child. 2015;100(2):174–9. https://doi.org/10.1136/archdischild-2014-306382.

    Article  PubMed  Google Scholar 

  196. Munjal NK, Bergman I, Scheuer ML, Genovese CR, Simon DW, Patterson CM. Quantitative electroencephalography (EEG) predicting acute neurologic deterioration in the pediatric intensive care unit: a case series. J Child Neurol. 2022;37(1):73–9. https://doi.org/10.1177/08830738211053908.

    Article  PubMed  Google Scholar 

  197. Havalı C, İnce H, Gündoğdu EB, et al. The management of elevated intracranial pressure and sinus vein thrombosis associated with mastoiditis: the experience of eighteen patients. Childs Nerv Syst. 2022;38(2):421–8. https://doi.org/10.1007/s00381-021-05402-6.

    Article  PubMed  Google Scholar 

  198. Armonda RA, Vo AH, Bell R, Neal C, Campbell WW. Multimodal monitoring during emergency hemicraniectomy for vein of Labbe thrombosis. Neurocrit Care. 2006;4(3):241–4. https://doi.org/10.1385/NCC:4:3:241.

    Article  PubMed  Google Scholar 

  199. Simonin A, Rusca M, Saliou G, Levivier M, Daniel RT, Oddo M. Multimodal regional brain monitoring of tissue ischemia in severe cerebral venous sinus thrombosis. Neurocrit Care. 2019;31(2):297–303. https://doi.org/10.1007/s12028-019-00695-7.

    Article  PubMed  Google Scholar 

Download references

Funding

There was no funding for this article.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, and analysis and interpretation of data: HDB, SLR, and SAJ. Substantial contributions to acquisition of data and analysis and interpretation of data: SJB and LS. Drafting the article and revising it critically for important intellectual content: HDB, SLR, SJB, and LS. Revising the article critically for important intellectual content: SAJ. Final approval of the version to be published: HDB, SLR, SJB, LS, and SAJ. Agreement to be accountable for all aspects of the work: HDB, SLR, SJB, LS, and SAJ.

Corresponding author

Correspondence to Dana B. Harrar.

Ethics declarations

Conflict of interest

DH and AJS receive royalties from Springer Publishing Company, LLC for: Sansevere AJ, Harrar DB, eds. Atlas of pediatric and neonatal intensive care unit EEG, New York: NY, Demos Medical Publishing. Copyright Springer Publishing Company, LLC.; 2021. LRS is supported by a career development award from the American Heart Association: Clinical, Radiographic, and Hemodynamic Predictors of Childhood Moyamoya Arteriopathy Progression and Surgical Risk. The remaining authors (JBS, SL) have no conflicts of interest to disclose.

Ethical Approval/Informed Consent

This article adheres to ethical guidelines. Ethical approvals were not sought given that this is an invited review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrar, D.B., Sun, L.R., Segal, J.B. et al. Neuromonitoring in Children with Cerebrovascular Disorders. Neurocrit Care 38, 486–503 (2023). https://doi.org/10.1007/s12028-023-01689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01689-2

Keywords

Navigation