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Abstract 

Large and complex data sets are increasingly available for research in critical care. To analyze these data, researchers 
use techniques commonly referred to as statistical learning or machine learning (ML). The latter is known for large 
successes in the field of diagnostics, for example, by identification of radiological anomalies. In other research areas, 
such as clustering and prediction studies, there is more discussion regarding the benefit and efficiency of ML tech-
niques compared with statistical learning. In this viewpoint, we aim to explain commonly used statistical learning and 
ML techniques and provide guidance for responsible use in the case of clustering and prediction questions in critical 
care.  Clustering studies have been increasingly popular in critical care research, aiming to inform how patients can 
be characterized, classified, or treated differently. An important challenge for clustering studies is to ensure and assess 
generalizability. This limits the application of findings in these studies toward individual patients. In the case of predic-
tive questions, there is much discussion as to what algorithm should be used to most accurately predict outcome. 
Aspects that determine usefulness of ML, compared with statistical techniques, include the volume of the data, the 
dimensionality of the preferred model, and the extent of missing data. There are areas in which modern ML methods 
may be preferred. However, efforts should be made to implement statistical frameworks (e.g., for dealing with miss-
ing data or measurement error, both omnipresent in clinical data) in ML methods. To conclude, there are important 
opportunities but also pitfalls to consider when performing clustering or predictive studies with ML techniques. We 
advocate careful valuation of new data-driven findings. More interaction is needed between the engineer mindset of 
experts in ML methods, the insight in bias of epidemiologists, and the probabilistic thinking of statisticians to extract 
as much information and knowledge from data as possible, while avoiding harm.
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Introduction
Because of technical capacity and scientific interest, 
data sets are becoming increasingly large in medical 
research. In critical care, this is even more apparent: 
there is an abundance of continuously measured clini-
cal, laboratory, radiological, and pharmaceutical data in 
the intensive care unit. In neurocritical care specifically, 

we have seen a vast increase of parameters that can be 
measured. Whereas we traditionally were only able to 
record systemic metrics, such as blood pressure and 
heart rate, nowadays we are able to (invasively) monitor 
highly granular physiological parameters, such as local 
brain oxygen pressure or intracerebral glucose and lac-
tate levels [1, 2]. Already, multiple initiatives exist that 
share such anonymized intensive care unit data freely for 
research purposes [3–8]. Also, large observational stud-
ies and registries have been rolled out during the last 
decades, for example, in traumatic brain injury (TBI), 
[9–12], that make their data available for researchers on 
request. This omnipresence of data provides an opportu-
nity to improve on clinical care [13]. However, it remains 
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a challenge to inform treatment decisions based on the 
volume and dimensionality of big data to improve patient 
outcomes [2].

Within this context, it is important to realize that the 
scientific method seems to gradually shift from research 
question as a starting point towards available data as a 
starting point [14]. In the latter approach, there is less 
selection in relationships being tested and the probabil-
ity is lower  that the findings are actually true [15]. Three 
types of research questions can be answered by analyzing 
data, increasing complexity: descriptive, predictive, and 
causal questions [16].

To answer such research questions, researchers can 
apply either more traditional statistical techniques or 
more modern machine learning (ML) algorithms. Part of 
the enthusiasm for ML algorithms stems from the prom-
ising results in diagnostic research. For neurocritical 
care, examples include deep learning algorithms to iden-
tify brain lesions [17–19] and perform volumetrical anal-
yses [20]. The performance of these algorithms for these 
types of descriptive questions seems reliable and high 
and therefore likely of great assistance to assist or autom-
atize interpretation of visual diagnostic information.

However, there is more discussion as to how ML algo-
rithms should be applied and interpreted for clustering 
(a type of descriptive question) and for predictive ques-
tions. Inadequate predictive algorithms can cause harm 
when implemented. This was the case for the Epic Sepsis 
Model; because this model was inadequately validated 

before implementation, the model caused alarm fatigue 
and underdiagnosis of sepsis in clinical practice [21].

In this article, we aim to explain characteristics of com-
monly used data analysis techniques and to present a 
perspective on responsible use of these techniques for 
answering clustering (descriptive) and prediction ques-
tions. Effectively, this article provides guidance for clini-
cally oriented readers to avoid the necessity to follow 
methodological literature [22]. It is important for clini-
cians to judge the appropriateness of published algo-
rithms because invalid algorithms that are used to inform 
clinical practice might ultimately harm patients.

Data Analysis Techniques
Researchers can use various techniques to answer 
descriptive, predictive, and causal questions in their data 
sets [16]. A selection of most commonly used techniques 
is provided in Table  1, and these have been described 
elsewhere in more detail [23–40]. Although there is a 
tendency to classify these techniques as ML versus statis-
tical techniques, there are many common characteristics. 
We therefore refrain from referring to these algorithms 
in a dichotomous way because the distinction is not very 
clear. First and foremost, they are all algorithms that, 
when provided with appropriate data, quantify rela-
tionships between variables. The most fundamental dif-
ferences between the techniques are in flexibility and 
functional aim. For more detailed descriptions of terms 
found in this article, we refer to Online Appendix.

Table 1 Frequently used algorithms for modeling big data

a No clear definitions available, our opinion
b | = notation for conditionality; thus, Y|X means “Y given X”

Algorithm Commonly referred to  asa Degree of flexibility Func-
tional 
 aimb

Classic regression [23, 24, 33] Statistical learning Relatively limited but can be extended with nonlinear terms, inter-
actions, mixed effects

Y|X

Bayesian regression [34, 35] Statistical learning Moderately, can also be extended with nonlinear terms, interac-
tions, mixed effects

Y|X

Penalized regression [36, 37] Statistical learning Moderately flexible, can also be extended with nonlinear, interac-
tions, mixed effects

Y|X

Neural network [39, 40] Machine learning (supervised) Very flexible, with various structural architectures and functionali-
ties

Y|X

Classification and regression tree [25] Machine learning (supervised) Limited flexibility Y|X

Random forest [26] Machine learning (supervised) Moderately flexible Y|X

Gradient boosting machine [27] Machine learning (supervised) Moderately flexible Y|X

Support vector machine [28] Machine learning (supervised) Moderately flexible, with many available kernels possible Y|X

Super learner [29, 30] Machine learning (supervised) Very flexible: cumulative flexibility of all underlying models Y|X

Clustering [31] Machine learning (unsupervised) Relatively limited but can be extended for various types of data 
(continuous, categorical, or mixed)

X

Latent class analysis [32] Statistical learning Relatively limited but can be extended for various types of data 
(continuous, categorical, or mixed)

X|Y
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Flexibility is the ability of a model to incorporate vari-
ous types of relationships. Relationships can be linear or 
nonlinear and additive or nonadditive (Fig. 1) [41].

Nonlinear associations are, for example, the U-shaped 
effect of blood pressure on mortality in trauma patients 
with active hemorrhages [42] or the effect of body mass 
index on mortality in the general population [43]. Non-
linear associations are abundant in nature. Most algo-
rithms can be extended to include these relationships. 
For example, in classical regression, nonlinear relation-
ships can be explored by adding polynomial terms, such 
as  x2. Further exploration may be with the log transfor-
mation, as is commonly used for laboratory measure-
ments [44], or splines [23]. A neural network with hidden 
layers includes nonlinearity implicitly through its com-
plex architecture. On the contrary, classification and 
regression trees do not really include nonlinear relation-
ships (Fig. 2).

More rarer is the notion of nonadditivity [45, 46], com-
monly referred to as interaction (Fig.  1). We call two 
effects nonadditive if the association of a variable with 
the outcome differs when another variable changes its 
value. A recent example was the CRASH-3 trial, which 
showed that tranexamic acid reduces head-injury-related 

Fig. 1 Illustration of different types of relationships. a, Various ways of how two variables can be related linearly (upper left subpanel) or nonlinearly 
(the other subpanels). The data on the x-axis is an arbitrarily chosen range of numbers, and the relationship with the y-data was artificially simulated, 
including some noise (random error). b, the concept of nonadditivity. The upper two subpanels show for a linear relationship how the effect of 
group (color) can be additive (left) or nonadditive (right) over the x-variable. The bottom subpanels show the same for a nonlinear relationship

Fig. 2 Fitting a regression model (lm function in R) and a regression 
tree (rpart function in R) to the nonadditive, nonlinear relationship 
shown in Fig. 1b, bottom right subpanel. Again, the data shown on 
the x-axis was an arbitrarily chosen range of numbers, and the y-data 
were artificially simulated, including some noise (random error). The 
regression model (in colored lines) included a restricted cubic spline 
and an interaction term between group and x and follows the rela-
tionship nicely. The regression tree (black line) failed to include group 
in the final tree and only included x, thereby disregarding complexity 
in the data
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deaths, primarily in very early administration [47]. The 
effect of tranexamic acid is dependent on time; therefore, 
these effects are nonadditive. Again, classical regression 
can be extended to include interaction effects [23], and 
neural networks do so implicitly, in contrast to classifica-
tion and regression tree models (Fig. 2).

The functional aim refers to how the variables in the 
algorithm are linked together. Researchers are required 
to define this (to various extent per method) before per-
forming the analysis. Given the three types of possible 
research questions [16], data can be either baseline char-
acteristics (“X”) or outcome (“Y”). Algorithms vary in the 
way they couple “X” with “Y” (Table 1), which determine 
what types of research questions they might feasibly 
answer, given appropriate data.

Clustering
Clustering and latent class analysis are techniques that 
focus on relating “X” characteristics. They are useful to 
answer descriptive questions. Some clustering algorithms 
also consider the “Y” outcome, such as latent class mod-
els. They can identify clusters conditional on outcome 
(“X|Y”).

In critical care, these techniques have been increasingly 
popular to identify subgroups or “clinical phenotypes” of 
patients (Fig. 3). The premise is that by identifying these 
clinical phenotypes, we learn something intrinsic to that 
population that informs us how to better describe or 
classify patients or better allocate treatment. Cluster-
ing studies in (neuro)critical care summarize the pat-
terns in high-dimensionality of neurocritical care data 
[48–50]. Clustering algorithms commonly are performed 
in a static way with baseline data and/or outcome data. 
Examples are rare when continuously reported vital 
parameters (a characteristic of neurocritical care data) 
are incorporated in the analyses in a more dynamic way.

An important challenge for clustering studies is to 
ensure and assess validity. There are various useful meas-
ures for internal validity that assess how appropriate the 
clusters are formed within a data set [51–54]. External 
validity, defined as the degree of how well the identified 
clusters can be applied to new data sets or new patients, 
is harder to assess; clustering focuses on accurately 
describing the current data in relevant groups. Because 
it does not calculate a general metric or parameter of 
how the clusters depend on data values, new data or new 
patients cannot be clustered into the identified groups. It 
is, however, possible to repeat the clustering analysis in a 
different data set with the same number of clusters and 
variables [55] and assess whether the clusters seem simi-
lar. More problematic is to apply these clusters to a single 
patient. For example, given that a patient has a Glasgow 
Coma Scale (GCS) score of 9, has extracranial injury, 

and has had a low energy trauma mechanism [56], one 
can only relate these patient characteristics to the aver-
age characteristics of the clusters. We need to make an 
educated guess which of the clusters most resembles our 
patient. Therefore, the clinical usefulness of clustering 
patient groups remains limited, for now.

Interestingly, after having identified clusters, research-
ers commonly describe these clusters again based on the 
outcome. For example, clusters of patients with COVID-
19 have been described on the mortality as observed by 
cluster [50, 55], clusters of patients with TBI have been 
described by the associated functional outcome [56, 57], 
and clusters of neurocritical care patients with invasive 
neuromonitoring “may have implications for…outcome 
predictions” [58]. From a prognostication perspective, 
this is inefficient; by first categorizing “X,” researchers 
lose information to predict “Y” [59, 60]. Therefore, pre-
dictive questions commonly require different techniques.

Prediction
Predictive research involves the development and valida-
tion of predictive algorithms [61–64]. The primary aim 
of predictive research is to most accurately predict out-
come. All algorithms, ML techniques and statistical tech-
niques, that couple “X” to “Y” are potentially suited for 
prediction (Table 1).

Development
We discern two characteristics of data sets that are rele-
vant for researchers when they want to decide on a tech-
nique to develop a predictive algorithm (Fig. 4). On the 
one hand, dimensionality of the data is relevant, which is 

Fig. 3 The increase in popularity of clustering studies in critical 
care. We used as a search string “(clustering OR unsupervised OR 
hypothesis-free) AND critical care” and included studies in Pubmed 
up to 2020
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the number of potentially relevant predictors in the pre-
dictive algorithm. On the other hand, volume of the data 
is relevant. Volume of data entails the total number of 
patients and, specifically, the number of events of the least 
occurring outcome in case of dichotomous outcomes 
[65]. An example of low dimensionality and low volume 
is the Ottawa ankle rule [66]. This decision rule informs 
whether patients with ankle injuries need an x-ray. This 
rule was developed in a data set with 70 events in 689 
patients, and includes five predictors (event per variable 
[EPV] = 70/5 = 14). An example of high dimensionality 
and high volume is the OHDSI (Observational Health 
Data Sciences and Informatics) model to predict hemor-
rhagic transformation in patients with ischemic stroke 
[67]. This model includes 612 predictors and was devel-
oped in electronic health record data with 5,624 events in 
621,178 patients with stroke (EPV = 5634/612 = 9). Note 
that although the latter model is developed in a much 
larger cohort with many more events, the number of 
EPV is lower. The model is therefore not free from risk of 
overfitting [68]. We discuss the application of statistical 
techniques and ML techniques in four areas that can be 
defined by these two characteristics (dimensionality ver-
sus volume; Fig. 4).

First, with low-volume and high-dimensional data, it 
may be unwise to perform any predictive research. The 
risk of overfitting is too large [62], resulting in potentially 
harmful prediction tools [69, 70]. For example, a system-
atic review of ML in routinely collected intensive care 
unit data estimated that 30% of support vector machines 
were trained on fewer than 100 patients [71]. The cho-
sen technique does not matter much. Both for regression 
methods as well as for ML techniques, adequately large 
sample sizes are necessary [72, 73]. However, because ML 
techniques are data hungry [74], using these techniques 

will likely result in more invalid or inaccurate predic-
tion in this setting. Therefore, these techniques may be 
more harmful than traditional statistical methods in this 
setting.

Second, with low-volume data and low-dimensional 
data, we suggest using methods that focus on stability 
of estimation of the model (in either method). Exem-
plary prediction models that have been developed in 
this area are prediction models for acquired weakness in 
the intensive care unit (8–25 candidate predictors and 
25–190 events) [75]. Within this area, penalized regres-
sion techniques are often used to shrink the coefficients 
during the estimation of the model [36, 76]. Therefore, 
they limit the extent to which extreme coefficients are 
estimated. This limits the effect of “overfitting”: the prob-
lem that the developed model performs well in the origi-
nal data set but worse when applied to new data sets or 
to real patients. Neural networks can also use methods 
to avoid overfitting. Examples of methods to limit overfit-
ting in neural networks are penalizing estimated weights 
(called “regularization”) or setting weights back to zero at 
random (called “drop-out”) [40]. It is important to realize 
that all abovementioned methods work poorer in smaller 
data sets in the sense that it is difficult to estimate the 
penalty parameter reliably [37]. Although it is appropri-
ate to use these methods when sample size is limited, it 
is preferable to have a larger sample size. Unfortunately, 
as can be seen for the example of prediction models for 
acquired weakness in the intensive care unit, these tech-
niques are underused [75].

Third, the area in which data volume is large and 
dimensionality is low is a safer area for predictive 
research. In contrast with the previous setting, there 
is less risk of overfitting. ML techniques and statistical 
techniques seem to perform similarly within this context 

High data volume

No clear benefit of modern 
flexible methods [38,77,111], 
albeit also no harm.

Possible benefit of flexible 
methods, but no robustly 
validated examples yet 
available [79].

Low dimensionality Area for penalized methods  
[36,112], albeit no panacea 
[37]. Machine learning 
methods may be harmful 
[74].

High risk of harm, with any 
technique

High dimensionality

Low data volume

Fig. 4 Areas in which different types of algorithms might be considered for predictive modeling
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[38, 77]. For example, only small differences in perfor-
mance (discrimination, calibration) were found between 
various algorithms to predict outcome in TBI [77]. A 
possible explanation is that within the context of clinical 
data, most predictor effects are largely linear and addi-
tive on an appropriate modeling scale [62, 78]. There-
fore, more flexible methods have limited opportunity to 
improve their predictions.

Fourth, the area of high volume and high dimensional-
ity seems the most appropriate area for ML techniques. 
The previously mentioned OHDSI model to predict 
hemorrhagic transformation in patients with ischemic 
stroke is such an example in neurocritical care [67]. The 
increased flexibility can potentially exploit subtle nonad-
ditive or nonlinear effects to improve accuracy of predic-
tions. Unfortunately, current published predictive studies 
with ML techniques remain at high risk of bias [38, 79]. 
Finally, although sample size might seem larger within 
this context, we should remain aware of the number of 
EPV, indicating the effective sample size.

To summarize, the two suggested characteristics 
(dimensionality and volume) can be useful to inform 
what type of flexibility or control is required of an algo-
rithm to be used reliably in a specific context. With reli-
ability¸ we here mean that there is a high likelihood that 
the model performs similarly well (in terms of discrimi-
nation and calibration) in a different context. To actually 
confirm whether the algorithm performs well in a differ-
ent context, researchers do need to rigorously validate 
predictive algorithms (see following section) [80].

For neurocritical care, another interpretation of dimen-
sionality may be used to inform what algorithm can be 
used for a predictive question. Dimensionality may also 
refer to the extent to which continuous measurements 
(e.g., intracranial pressure, local brain oxygen levels) need 
to be incorporated into the algorithm. Although repeated 
measurements are increasingly common in neurocriti-
cal care, their inclusion in predictive algorithms can be 
improved [81]. To adequately model repeated measure-
ments, specific techniques are required, such as mixed 
effects regression [82], joint modeling [83], or recurrent 
neural networks [40].

Validation
To ensure reliable applicability in clinical practice, pre-
dictive algorithms require extensive validation [61]. There 
are various ways of validating a predictive algorithm. In 
order of rigorousness, researchers can perform internal, 
internal–external, and external validation [80]. When risk 
of bias is high, performance is likely overestimated [84].

It is common in ML studies to use “split sample vali-
dation” as an internal validation method. We train the 
model in a training set and then estimate performance in 

the test set. This method is, however, quite inefficient to 
estimate performance [85]. Better methods are, for exam-
ple, cross-validation or bootstrap resampling [23].

A more exiting variant of cross-validation is internal–
external validation [77, 80]. This method can be used in 
data sets with multiple clusters (e.g., multiple centers, 
multiple studies). The algorithm is developed on all but 
one cluster and tested in the set that was withheld. This is 
repeated until all data sets have been used as the valida-
tion set and all estimated performances are averaged.

The most robust way to estimate performance is in a 
data set in a completely different setting, called external 
validation [64, 80, 86]. This is especially complex with 
high-dimensional models. It requires substantial data 
harmonization and technical efforts to be able to validate 
such models. Within the OHDSI consortium, a predictive 
algorithm with hundreds of predictors could be validated 
after harmonization of data in a common format [67]. 
However, this study remains one of few examples.

Bias
As with all clinical studies, studies with big data can be 
biased. An important bias in these studies is selection 
bias, for example, arising because of inappropriate han-
dling of missing data [87]. The majority of ML studies fail 
to report how missing data were handled [79, 88] or use 
methods (e.g., complete case) that are not recommended 
[62, 89, 90]. Another source of selection bias is the inap-
propriate exclusion of groups of patients, also a common 
issue in prediction studies that use ML techniques [79]. 
A completely different type of bias, misclassification bias, 
also occurs regularly in studies with big data. Examples 
include multilevel data with different data definitions per 
cluster [91, 92] or insurance claim data with only limited 
granularity in defining exposures and outcomes [93]. To 
reduce the effect of these biases, epidemiologists and 
statisticians have developed frameworks that are readily 
available in most statistical software [89, 94–96]. Prob-
ably because ML was developed in a more determinis-
tic environment, implementations of epidemiological 
frameworks to ML techniques are still lacking. For clini-
cal researchers, it might still be reasonable to use more 
traditional methods because right now there is more 
experience to address biases with these techniques (e.g., 
resulting from missing data).

Because bias can only be identified when a study is 
adequately reported, we recommend the use of report-
ing guidelines for prediction models (TRIPOD [97]) and 
the upcoming guidelines for ML techniques (TRIPOD-AI 
[98]). There are currently no guidelines available for clus-
tering studies.
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Discussion
In this article, we have discussed opportunities and pit-
falls of the use of ML techniques in controversial areas 
of (neuro)critical care research. Clustering studies are 
increasingly popular in critical care research. They can be 
used to explore new ways of describing or characterizing 
patient groups and suggest how patients can be treated 
better. A large challenge toward responsible use of these 
techniques is ensuring generalizability of these findings. 
For predictive questions, there is much discussion as to 
what algorithm should be used to most accurately predict 
outcome. The usefulness of ML techniques compared 
with statistical techniques depends on the volume of the 
data, the dimensionality of the preferred model, and the 
extent to which missing data or potential bias is present 
in the data. There are areas in which modern flexible 
techniques may be preferred, but efforts should be made 
to provide more comprehensive frameworks for using 
modern ML techniques.

More generally, we advocate testing research hypoth-
eses just like clinical hypotheses are being tested. The 
recent uprising of large and complex data sets together 
with modern “data-mining” techniques has led to more 
data-driven hypothesis testing. Although this approach 
enables researchers to serendipitously encounter poten-
tially new truths, it does overestimate the value of new 
data over current knowledge. It is important to be aware 
of prior probabilities of hypotheses being true and regard 
new evidence in that context [15]. Similarly, it is advised 
that only in patients with TBI with some risk of an intrac-
ranial lesion should the hypothesis of having such a lesion 
be tested using a computed tomography scan [99, 100]. 
An example of overestimation of the value of new data 
was a recent analysis in which TBI clusters were formed 
on the basis of two large data sets [48, 49]. Even though 
previous studies concluded that the GCS can “stand the 
test of time” [101] (i.e., remains a robust predictor of 
outcome), the authors conclude that their “data-derived 
patient phenotypes will enhance TBI patient stratifica-
tion…beyond the GCS-based gold standard” [49]. They 
therefore provide an alternative to the GCS, thereby dis-
regarding the long-standing use of this important char-
acteristic. Even though a data set is large, the collective 
“data set” of medical knowledge being built up over cen-
turies of meticulous research endeavors is much larger. 
Big data is not to be regarded as an endless source of full 
information about patients but rather as an opportunity 
to generate new hypotheses and update our knowledge.

We have not yet touched on the last-mentioned type 
of research question, causal questions. Causality is par-
ticularly hard to infer because it requires the applica-
tion of a causal model of the problem to the data [16, 

102]. A commonly used method is to include con-
founding factors in a regression model so that the esti-
mated effect of the treatment on outcome is corrected 
for those confounding factors. This is more complex 
with ML techniques. Part of the enthusiasm for ML 
techniques stems from the idea that they require less 
assumptions. In fact, most ML techniques do not allow 
researchers to assume relationships between variables. 
This is, however, a drawback when exactly that control 
over the model is required to infer causality. Besides, 
the individual effects of ML techniques are relatively 
hard to interpret. Although more explainable algo-
rithms exist, effects are less intuitive to interpret than 
regression coefficients [103]. There are some extensions 
of ML techniques that allow the researcher to assume 
relationships between variables, for example, through 
graph-based neural networks [104] or Bayesian net-
works [102, 105]. This type of control is required to 
appropriately address causal questions.

Some ML techniques, such as neural networks and 
random forests, are relatively hard to explain compared 
with regression models or decision trees, for example. It 
can be argued that algorithms should be explainable to be 
used in clinical practice and that clinicians and patients 
should be able to interpret what happens under the hood 
of an algorithm to ensure safety and establish control 
[106, 107]. However, the extent to which we can judge the 
reliability of an algorithm on the basis of how the algo-
rithm arrives at its prediction is limited [108]. If the sole 
purpose is prediction, the relatively limited interpretabil-
ity of some ML techniques may not be a problem. More 
relevant criteria to judge an algorithm in clinical practice 
might be (1) whether the algorithm shows good perfor-
mance (discrimination and calibration) when validated 
in a relevant population [77, 80] and (2) whether relevant 
patient outcomes improve when the algorithm  is used 
[63].

We suggest that there is a necessity for improved inter-
action between the engineer mindset of experts in ML 
techniques, the focus on limiting bias by epidemiologists, 
and the probabilistic mindset of statisticians. The differ-
ence in mindset becomes apparent when reading each 
professional’s published literature. For example, what 
is known in statistical literature as fitting or estimating 
is called learning or training in the ML literature [109]. 
Similarly, external validity is called transportability, and 
covariates are called features [110]. By developing a com-
mon language between these groups of researchers, we 
avoid complexities when aggregating results in systematic 
reviews and increase cross-contamination of ideas [109]. 
By converging these worlds, we probably will be able to 
extract more information from data, while avoiding harm 
by neglecting the need to address potential biases.
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Box 1. Take aways for the clinical neurocritical care researcher

• Include researchers from various backgrounds (clinical, statistical, epide-
miological, data scientists) in new research projects and be more criti-
cal toward studies that only include researchers from one perspective

• When reporting a prediction study, use the TRIPOD [97] or TRIPOD-AI 
(for ML studies, upcoming [98]) reporting guidelines so that readers 
can adequately assess reliability

• Use only predictive algorithms in clinical practice that have been rigor-
ously validated and that have been shown to add clinical benefit to 
patients when used

• Appreciate the exploratory nature of clustering studies: use their results 
only as tentative updates on current knowledge about different patient 
groups rather than “new truths” (and refrain from using them in a 
prognostic framework)

Conclusion
There are important pitfalls and opportunities to con-
sider when performing clustering or predictive studies 
with ML techniques. More generally, we advocate to be 
careful as not to overvalue new data compared with clini-
cal relevance and collective knowledge. Also, there is a 
necessity for improved interaction between the engineer 
mindset of experts in ML techniques, the focus on limit-
ing bias by epidemiologists, and the probabilistic mindset 
of statisticians: we need to extract as much information 
from data as possible, while avoiding harm when invalid 
algorithms are used to inform medical decision-making.
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