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Abstract 

Cortical spreading depolarizations (CSDs) are characterized by waves of diminished electroencephalography activity 
that propagate across the cortex with subsequent loss of ionic homeostasis. CSDs have been found in many patho-
logical conditions, including migraine, traumatic brain injury, and ischemic stroke. Because of CSD-associated ionic 
and metabolic disturbances at the peri-infarct area after ischemic stroke, it is thought that CSDs exacerbate tissue 
infarction and worsen clinical outcomes. Microglia, the main innate immune cells in the brain, are among the first 
responders to brain tissue damage. Recent studies demonstrated that microglia play a critical role in CSD initiation 
and propagation. In this article, we discuss the significance of CSD in the setting of ischemic stroke and how micro-
glia may modulate peri-infarct CSDs, also known as iso-electric depolarizations. Finally, we discuss the significance of 
microglial  Ca2+ and how it might be used as a potential therapeutic target for patients with ischemic stroke.
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Introduction
In response to brain injury, neurons undergo synchro-
nized depolarization that initiates at the site of injury 
and propagates across the cortex. This phenomenon is 
known as a cortical spreading depolarization (CSD) [1, 
2]. After a window of recovery, characterized by depres-
sion of electrical activity, neurons slowly repolarize and 
electrical homeostasis is reestablished. CSDs have been 
shown to occur after a variety of cerebral insults, includ-
ing migraine, trauma, cortical chemical exposure, and 
ischemia [2–4]. The molecular hallmark of CSD is a 
near-complete breakdown of the transmembrane ion 
gradients, with subsequent increases in extracellular 
glutamate, adenosine triphosphate (ATP), and  K+ and 

intracellular  Ca2+,  Na+, and  Cl− [5–7]. This phenomenon 
was first inferred from the examination and analysis of 
scotoma during migraine aura [8, 9]. The researchers sur-
mised that visual migraine auras might be caused by elec-
trical disturbances in the cortex and began attempting to 
correlate visual auras with the speed of cortical spreading 
depression of activity recorded by Leao, who pioneered 
electrophysiological measurements of CSD [8–10]. Simi-
lar waves of depolarization activity have been observed in 
other cranial pathologies, such as subarachnoid hemor-
rhage and traumatic brain injury [11, 12]. Although tissue 
with reversible injury can recover electrical homeostasis 
and resume normal function, tissue facing permanent 
damage, as in the setting of ischemic stroke, is unable to 
return to baseline, and neurologic deficits result [13, 14].
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Ischemia‑Induced Mechanisms Driving Spreading 
Depolarizations
Ischemic stroke is characterized by vascular occlu-
sion resulting in diminished cerebral blood flow, cre-
ating a hypoxic environment. Without sufficient levels 
of oxygen, ATP production decreases, energy defi-
cit increases, and neurons within the affected tissue 
are unable to maintain the plasma membrane poten-
tial [15, 16]. Such an insult triggers progressive CSDs, 
which radiate across the cortex at a speed of 3–5 mm/s 
[3, 17]. Cell membrane depolarization leads to  K+ and 
neurotransmitter egress out of the cell, whereas  Na+, 
 Cl−, and  Ca2+ rapidly enter the cell [6, 7]. Because of 
the influx of positively charged electrolytes, neuron cell 
bodies begin to swell from their resulting hyperosmo-
lar state, and higher intracellular  Ca2+ levels trigger 
apoptotic processes [16]. The damaged neuron releases 
glutamate and free radicals into the extracellular space, 
which activate N-methyl-D-aspartate (NMDA) recep-
tors on the surrounding neurons and induce further 
release of inflammatory cytokines [7, 15, 16]. Matrix 
metallopeptidases are subsequently released and con-
tribute to the breakdown of the blood–brain barrier 
[18, 19]. These cumulative processes produce an acidic, 
hypoxic, and hyperkalemic environment that stimulates 
vasoconstriction, exacerbating the oxygen and energy 
deficits [6, 16]. This leads to a cyclical progression of 
neuronal damage and expansion of the ischemic tissue 
volume, as the peri-infarct region cannot adequately 
repolarize [14, 20].

Clinical Evidence for Iso‑Electric Spreading Depolarizations 
and Depressions
CSDs have been measured in neurocritical care patients 
with large middle cerebral artery ischemic strokes 
using subdural electrocorticography strips placed over 
the affected area [21, 22]. Although infarcted tissue 
does not exhibit electrical activity, electrocorticogra-
phy strips placed over the peri-infarct region capture 
depressed baseline electrical activity and slow depolari-
zation waves as ischemic time progresses [12]. CSDs are 
commonly seen in ischemic strokes, and more frequent 
depolarization events appear to be directly associated 
with increased infarct size [2, 4, 21, 23, 24]. Compared 
with CSDs, which have a normal or near-normal initial 
baseline function, iso-electric spreading depressions 
have lower baseline activity and are slower to repolar-
ize [14]. Patients with ischemic stroke who experience 
a transition from CSD to iso-electric spreading depres-
sion typically have more significant post-stroke neu-
rological deficits compared with those with sustained 
CSD [25].

Microglial Roles in the Initiation and Amplification 
of Spreading Depolarizations
Microglia are a principal component of the cerebral 
immune system, which is readily activated in response 
to noxious stimuli. In the resting state, microglia con-
stantly surveil the surrounding brain parenchyma with 
long ramified processes [26–28]. If an insult is detected, 
the microglia change morphology and become more 
amoeboid in shape to facilitate reactive responses 
in diverse activation states [29, 30]. Microglia may 
detect ischemia from signals such as damage-associ-
ated molecular patterns, elevated extracellular ATP 
and adenosine levels, or abnormal electrolyte concen-
trations [31–33]. These hypoxic microglia respond 
by either activating proinflammatory processes and 
releasing neurotoxic cytokines, such as tumor necrosis 
factor-α, interleukins 1β, and interferon-γ, or executing 
anti-inflammatory programs to encourage tissue repair 
and neuroprotection [34–37]. This dichotomous activ-
ity has made it challenging to clarify the role of micro-
glia in ischemic stroke [38–41]. Remarkably, recent 
studies have suggested that microglia are important 
players in the induction and progression of CSD [41, 
42]. For example, Pusic and coauthors [42] examined 
microglia-depleted organotypic hippocampal slice cul-
tures and were unable to induce CSD at all. Conversely, 
restoration of microglia to previously depleted slice 
cultures enabled repeated CSD [42]. Similarly, animal 
studies with selectively depleted microglia in the brain 
exhibited diminished CSD occurrence and frequency 
[43]. Therefore, microglia appear to be required for 
CSD initiation and progression. It is somewhat sur-
prising that microglia, which account for only about 
10% of total brain cells, have such a profound impact 
on CSD. One important mechanism in microglia–neu-
ron communication appears to be operating via NMDA 
receptors. It has been shown that NMDA receptors 
are required for CSD induction and propagation, and 
blockade of NMDA receptors inhibits CSD [44–46]. 
Further, Moriguchi et  al. [47] have demonstrated that 
microglia can potentiate NMDA-receptor-mediated 
synaptic current in neurons. The same group showed 
that NMDA-receptor-mediated current in neurons 
increased 10-fold after application of microglia-condi-
tioned medium [48]. This effect was mediated through 
activation of the glycine site on NMDA receptors by 
microglia secreting soluble factors [48]. Together, these 
findings support the notion that activated microglia 
affect NMDA currents and consequently increase neu-
ronal excitability [49, 50].
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Microglial Calcium as a Therapeutic Target in Ischemic 
Stroke
CSD-associated depolarization of neurons causes dra-
matic increase of the extracellular levels of  K+, ATP, and 
adenosine. Adenosine and adenosine diphosphate, pro-
duced via ATP breakdown, activate purinergic recep-
tors on microglia, elevating intracellular  Ca2+ levels 
[51–57]. The  Ca2+ influx is at least partially mediated 
by the combined action of the cell surface puriner-
gic receptors and subsequently the calcium release-
activated calcium (CRAC) channels. Next, elevated 
 Ca2+ levels in microglia promote expression of genes 
encoding several proinflammatory factors, including 
tumor necrosis factor α. These inflammatory factors 
can lower the CSD threshold in neurons by initiating 
the flux of charged ions through the plasma membrane. 
This ionic flux changes the homeostatic membrane 
potential, contributing to increased susceptibility for 

the next depolarization event [58, 59]. As discussed 
above, activated microglia can, for example, stimulate 
NMDA-receptor-mediated  Ca2+ influx into neurons 
by activating NMDA receptors [48, 60]. Consequently, 
neuronal membrane depolarization is prolonged, ionic 
dyshomeostasis is further aggravated, and the initia-
tion and propagation of CSD is amplified. Therefore, 
we propose that neurons and microglia in the setting of 
CSD engage in a self-amplifying feedback loop that can 
increase infarct size (Fig. 1).

Microglial purinergic receptors elevate intracellular 
 Ca2+ through both ionotropic and metabotropic path-
ways. Upon activation, the P2X7 ionotropic receptors 
increase their plasma membrane channel conduct-
ance, mediating  Ca2+ influx into the cell [37, 61–63]. 
The metabotropic P2Y receptors, including P2Y12, 
trigger inositol 1,4,5-trisphosphate (IP3) activity and 
allow  Ca2+ release from the microglial intracellular 

Fig. 1 Neuron–microglia interactions in the setting of cortical spreading depolarization (CSD). After ischemic injury, neurons and microglia can 
engage in a self-propagating feedback loop, potentially worsening stroke outcome. Initial CSDs, occurring during prolonged depolarization of 
neurons at around − 10 mV, cause increase of extracellular purines, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and 
adenosine, as well as potassium  (K+). ATP/ADP activate both ionotropic purinergic receptors, P2X, and metabotropic purinergic receptors, P2Y, on 
microglia. Activation of P2X channels mediates  Ca2+ influx in microglia, whereas the activation of P2Y receptors triggers  Ca2+ release from micro-
glial endoplasmic reticulum (ER) through phospholipase C–inositol 1,4,5-trisphosphate (PLC-IP3) signaling pathways. The depletion of ER store acti-
vates the calcium release-activated calcium (CRAC) channels, mediating additional  Ca2+ influx into microglia. These events converge on the major 
elevation of intracellular  Ca2+. High  Ca2+ levels stimulate the inflammatory cytokine production through the calcineurin–nuclear factor of activated 
T cells (NFAT) pathway. Cytokines affect the CSD threshold in the nearby neurons by modulating N-methyl-D-aspartate (NMDA) currents. Sustained 
activation of NMDA receptors (NMDAR) further increases  K+ leak to the extracellular space, provoking the next CSD initiation and propagation. This 
positive feedback loop may exacerbate neuronal damage in the periinfarct penumbra after stroke
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stores, such as the endoplasmic reticulum [51, 64, 65]. 
The P2Y–IP3 pathway has been shown to contribute to 
microglial morphology changes, phagocytosis, chemo-
taxis toward the site of injury, and the formation of 
purinergic junctions between microglia and neurons 
[26, 66, 67]. These junctions appear to decrease  Ca2+ 
influx into damaged neurons and have a neuroprotec-
tive effect by preventing cytotoxic edema and apoptosis 
[66].

Although this initial P2Y–IP3 pathway is initially neu-
roprotective and speaks to the beneficial role of micro-
glia in neuronal recovery, as ischemic time progresses, 
extracellular calcium begins to enter the microglia via 
CRAC channels. After the intracellular  Ca2+ stores 
become depleted by the initial signaling processes, 
the CRAC channels in the plasma membrane open to 
mediate a major influx of extracellular  Ca2+ into the 
cell [68]. Within the hypoxic microglia,  Ca2+ affects an 
incompletely understood set of downstream processes, 
including the calcineurin pathway, which is involved in 
modulating gene expression in the immune cells [69–71]. 
This delayed influx of calcium into microglia contributes 
to a persistent production of inflammatory cytokines that 
transitions the effect of microglia from neuroprotective 
to neurotoxic. A recent study by Mizuma and colleagues 
[69] reported the utility of the CRAC channel inhibi-
tor, CM-EX-137, in the treatment of traumatic brain 
injury. They found that CM-EX-137 reduced the effect of 
nitric oxide and decreased intracellular microglial  Ca2+ 
accumulation and the  transcription of inflammatory 
cytokines. In their model, mice treated with CM-EX-
137 after traumatic brain injury had smaller lesion sizes, 
less frequent hemorrhages, and improved overall neuro-
logical function compared with controls [69]. A recent 
study from our laboratory demonstrated that blockade 
of CRAC channels with CM-EM-137 partially decreased 
CSD-associated microglial  Ca2+ influx [54]. Thus, CRAC 
channel inhibitors emerge as promising, well-tolerated, 
and effective antagonists of microglial activation, and 
prospective clinical studies are warranted to evaluate the 
benefits of CRAC channel inhibition in the treatment of 
ischemic stroke (Fig. 2).

Conclusions
Despite the considerable amount of research on patho-
physiology of ischemic stroke, effective treatments are 
lacking. Several therapeutic targets have been identi-
fied, but clinical validation has yet to be obtained. Cur-
rently, one of the promising targets appears to be  Ca2+ 
influx in ischemic brain cells, especially in microglia. 
Further research is needed to fully elucidate the sig-
nificance of microglial  Ca2+ overload during the acute 

phase of ischemic injury, and to identify the optimal 
approaches to limit its harmful consequences.
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Fig. 2 Calcium influx as an emerging treatment target for ischemic 
stroke. Blockade of  Ca2+ influx through the calcium release-activated 
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the treatment of ischemic stroke. Pharmacological inhibition of the 
CRAC-mediated  Ca2+ current in the ischemic brain could facilitate 
significant benefits, without adverse side effects
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