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Abstract

Backgroud Using electronic health data, we sought to

identify clinical and physiological parameters that in

combination predict neurologic outcomes after aneurysmal

subarachnoid hemorrhage (aSAH).

Methods We conducted a single-center retrospective cohort

study of patients admittedwith aSAHbetween2011 and 2016.

A set of 473 predictor variables was evaluated. Our outcome

measure was discharge Glasgow Outcome Scale (GOS). For

laboratory and physiological data, we computed the mini-

mum, maximum, median, and variance for the first three

admission days. We created a penalized logistic regression

model to determine predictors of outcome and a multivariate

multilevel prediction model to predict poor (GOS 1–2),

intermediate (GOS 3), or good (GOS 4–5) outcomes.

Results One hundred and fifty-three patients met inclusion

criteria; most were discharged with a GOS of 3. Multivariate

analysis predictors of mortality (AUC 0.9198) included

APACHE II score, Glasgow Come Scale (GCS), white blood

cell (WBC) count, mean arterial pressure, variance of serum

glucose, intracranial pressure (ICP), and serum sodium. Pre-

dictors of death/dependence versus independence (GOS

4–5)(AUC 0.9456) were levetiracetam, mechanical ventila-

tion,WBC count, heart rate, ICP variance, GCS, APACHE II,

and epileptiform discharges. The multiclass prediction model

selected GCS, admission APACHE II, periodic discharges,

lacosamide, and rebleeding as significant predictors; model

performance exceeded 80% accuracy in predicting poor or

good outcome and exceeded 70% accuracy for predicting

intermediate outcome.

Conclusions Variance in early physiologic data can impact

patient outcomes and may serve as targets for early goal-

directed therapy. Electronically retrievable features such as

ICP, glucose levels, and electroencephalography patterns

should be considered in disease severity and risk stratification

scores.
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Introduction

Patients who initially survive aneurysmal subarachnoid

hemorrhage (aSAH) are at risk of further neurological

complications, including delayed cerebral ischemia (DCI),

hydrocephalus, rebleeding, and seizures [1]. In addition,

medical complications such as cardiac injury and health-

care-associated infections (HAI) can further impact

immediate outcomes [2]. Quantifying the degree to which

these complications affect outcomes is important for

prognostication, and identifying high-impact modifiable

factors. Many aSAH severity scores rely primarily on
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initial imaging and the neurological examination [1, 3, 4],

which is subject to neurosurgical procedures, sedatives, or

paralytics. Though early physiologic data are incorporated

in more recent scores [5, 6], physiologic data more specific

to the nervous system and modifiable complications

beyond the early phase are not included.

With the electronic health record (EHR), large amounts

of data are available, providing an opportunity to more

accurately predict outcomes. Using data-driven predictive

modeling, we sought to identify reproducible clinical

parameters during hospitalization that may impact dis-

charge outcomes and subsequent rehabilitation potential,

serve as potential targets for intervention, and that have not

been included in prior severity scores.

Methods

Patient Cohort

We performed a retrospective study of patients from the Mas-

sachusetts General Hospital aSAH database admitted between

September 2011 and February 2016, after institutional review

board approval. The database includes patientswith high-grade

SAH (CHH3F3) and who undergo continuous electroen-

cephalogram (EEG)ormultimodalitymonitoring.We included

cases with an identified aneurysm and excluded non-aneurys-

mal and traumatic SAH and cases caused by other vascular

malformations. All patients routinely underwent computed

tomography angiography and conventional angiography.

Our primary objective was to identify modifiable com-

plications that can impact the hospital course and subsequent

rehabilitation potential. Our primary outcome measure was

discharge Glasgow Outcome Scale (GOS); GOS 1: death;

GOS 2: vegetative state; GOS 3: severe disability; GOS 4:

moderate disability; GOS 5: good recovery [7]. Two raters

(SFZ and ENP) independently abstracted and adjudicated

GOS from physician and physical therapy examinations at

discharge and initial rehabilitation facility examinations.

Both GOS and GOS extended have been used as discharge

outcome measures in prior studies [8–10]. We chose GOS

due to its simple categories and ease of ascertainment. To

ensure sufficient numbers and data balance for model fitting,

we categorized outcomes as: poor (GOS 1–2), intermediate

(GOS 3), and good (GOS 4–5).

Candidate Predictors for Outcomes

We collected demographic and clinical variables from the

EHR. A full list of predictor variables is provided in sup-

plementary material (Table e-1) and included admission

Glasgow Coma Scale (GCS), APACHE II (Acute Physi-

ology and Chronic Health Evaluation II) score, EEG

findings, anti-epileptic drugs (AED), mechanical ventila-

tion, and HAIs. We chose variables based on existing SAH

disease severity scores and additional variables that reflect

neurological and medical complications.

EEG findings were defined using the American Clinical

Neurophysiology Society Nomenclature: sporadic epilep-

tiform discharges, periodic patterns, rhythmic delta

activity, and seizures [11]. The institution’s EEG protocol

for DCI detection recommends 10 days of monitoring for

high-grade (CHH3F3) patients. In addition, patients with

concern for subclinical seizures are monitored as indicated.

The standard practice during the study period was to dis-

continue AED prophylaxis within 24 h of aneurysm coiling

or within 7 days of clipping. We included AEDs in our

analysis, if continued beyond 7 days. Our primary indica-

tions for AED continuation are: clinical or electrographic

seizures, and scalp or depth ictal–inter-ictal continuum

(IIC) patterns or epileptiform discharges at the treating

physicians discretion. Levetiracetam is the typical first-line

AED. Additional or alternate AEDs, frequently phenytoin

and lacosamide, are used for refractory seizures or persis-

tent IIC patterns at the treating physician’s discretion.

We chose APACHE II, instead of APACHE III, as it is

included in the Functional Recovery Expected after

Subarachnoid Hemorrhage (FRESH) score, allowing for more

direct comparison. HAIs were confirmed by positive cultures,

or radiographic and clinical evidence of respiratory tract

infections. Laboratory data (sodium, potassium, glucose, and

white blood cell (WBC) count) and physiological data (heart

rate, mean arterial pressure (MAP), temperature, oxygen sat-

uration (SpO2), intracranial pressure (ICP), cerebral perfusion

pressure (CPP), respiratory rate, and ventricular drain output)

from the first 3 days of admission were collected. Hourly ICP

and CPP values were obtained, and other physiologic values

were available at a resolution of every 1 to 4 h. For each pre-

dictor, we computed the minimum, maximum, median, and

variance for the first 1, 2, 3, 1–2, 2–3, and 1–3 days.

Two neurologists independently abstracted and adjudi-

cated the presence of DCI following a previously published

protocol, with excellent inter-rater agreement (95.83%)

[12]. DCI was defined using published guidelines [13].

We excluded duplicate features from analysis and

variables that served as surrogates of our outcome measure,

e.g., discharge disposition, and duration of hospitalization.

Variables with greater than 10% missing data were dis-

carded, and missing values were imputed for the rest.

Descriptive Statistics

Mean, median, and inter-quartile ranges were calculated

for descriptive analysis. Univariate analysis was performed

using a linear regression model, and significance was set at

<0.05.
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Predictive Modeling: Model Estimation

and Validation

In this big data study, we performed predictive, instead of

explanatory modeling, to predict new or future observa-

tions. Determining causality is not the primary goal nor a

prerequisite for inclusion of a variable in a predictive

model [14]. Complex and potentially uninvestigated asso-

ciations can be used to generate new hypotheses in

predictive modeling. This can potentially improve and

provide further pathophysiologic understanding of existing

explanatory models [14].

We created predictive models and estimated their per-

formance using nested cross-validation (CV) [15]. Details

are provided in supplementary material. In summary, our

CV approach included four features:

1. Dividing data into testing and training sets (external

CV) We used a tenfold external CV to validate model

performance. 10% of the available data were held out,

while the remaining 90% were used for model opti-

mization (feature selection and parameter tuning).

2. Balancing the training data to cope with class imbal-

ance To prevent bias toward predicting the predominant

outcome, in each fold of external CV we balanced the

training data by randomly discarding examples from the

dominant class(es) until all classes had equal numbers

of examples.

3. Inner cross-validation for model optimization For each

round of external CV, we conducted an inner CV loop

for feature selection and to identify the optimal value of

the penalty parameter k. The level of complexity (k)
that produced the best performance on the internal

testing data was then used to train a predictive model on

all the training data.

4. Model evaluation For each round of external CV, we

tested the logistic regression model developed in the

inner CV loop on the held out testing data. Model

performance was assessed using the area under the

receiver operating curve (AUROC). Ten AUROC

values were obtained for each round of CV. The final

reported predictive performance is the mean and

standard deviation of the AUROC across the tenfold

of CV. This ensured that performance estimates are

based entirely on data not used for feature selection or

model parameter tuning, avoiding reporting prediction

results that are inflated by model overfitting. Conven-

tional approaches that do not enforce strict separation

between training and testing data (e.g., fitting a predic-

tive model that includes features with small p values on

univariate analysis) are vulnerable to overfitting.

Steps 1–4 were repeated 1000 times to obtain final per-

formance estimates. Each round of bootstrapping involved a

different random subset of the available data, yielding dif-

ferent sets of optimal features. We therefore report not a

single set of features, but rather the frequency with which

features were selected. This more accurately estimates the

robustness of each feature for outcome prediction that can be

obtained from a single round of tenfold CV.

Binary and Multilevel Outcome Prediction Models

We created two types of models using the nested-CV

framework. First we created a binary prediction algorithm

for predicting in-hospital mortality (GOS 1 vs GOS 2–5) and

one for predicting death/dependence versus independence

(GOS 1–3 vs GOS 4–5). Second, we created a multiclass

prediction algorithm, which predicted poor (GOS 1–2),

intermediate (GOS 3), and good (GOS 4–5) outcomes.

All statistical analyses were performed using MATLAB

version 2016a (Natick, MA).

Results

Cohort Characteristics

Of 209 medical charts reviewed, 56 were excluded due to

the absence of aneurysm, or clear alternate etiology, and

153 subjects were included. Demographic and clinical

variables are summarized in Table 1. The mean age was

58.3 years, and 69.3% (n = 106) were female. The mean

APACHE II score was 14.4. Most patients presented with

Hunt and Hess (HH) 4 (n = 39, 25.5%) and Fisher 3

(n = 114, 74.5%) hemorrhages. 47.7% (n = 73) aneur-

ysms were coiled, and 41.8% (n = 64) were clipped.

Majority of patients had a discharge GOS of 3. Twenty-

eight (18%) patients died in the hospital, 27 following

withdrawal of life-sustaining therapies, and one met brain

death criteria. A total of 138 patients underwent EEG

monitoring; epileptiform discharges (n = 65, 47.1%) and

rhythmic delta activity (n = 60, 43.4%) were the most

frequent abnormalities. Eleven patients had depth EEG

monitoring. Of 473 defined candidate predictor variables,

22 were excluded from analysis due to missing values.

Binary Discrimination: Predictors of Mortality

Significant predictors of mortality on univariate analysis

are shown in Fig. 1. These included total number of AEDs,

levetiracetam and lorazepam, APACHE II score, aneurysm

treatment modality, periodic discharges, and HH Score.

The main predictors of death at discharge in the multi-

variate model, and the frequency of selection in the

bootstrapping method are shown in Table 2. APACHE II

and glucose and ICP variance were selected more than 95%
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Table 1 Clinical and

demographic variables
Age: mean (SD) 58.3 (14.2)

Gender Female

Frequency (%) 106 (69.3%)

GCS on admission, mean (SD) 10.4 (4.7)

APACHE II on admission, mean (SD) 14.4 (7.6)

Hunt and Hess score, frequency (%)

1 32 (20.9%)

2 31 (20.3%)

3 30 (19.6%)

4 39 (25.5%)

5 21 (13.7%)

Fisher grade, frequency (%)

1 1 (0.65%)

2 11 (7.20%)

3 114 (74.5%)

4 27 (17.6%)

Mode of aneurysm treatment, frequency (%)

Coil 73 (47.7%)

Clip 64 (41.8%)

Coil + clip 3 (2.00%)

Flow diverter 5 (3.30%)

Flow diverter + coil 1 (0.65%)

Untreated (death prior to treatment) 7 (4.60%)

Rebleed: frequency (%) 13 (8.5)

Delayed cerebral ischemia: frequency (%) 68 (44.4%)

Mechanical ventilation: frequency (%) 99 (64.7%)

Duration of mechanical ventilation in days, mean (SD) 5.50 (7.3)

Duration of ICU stay in days, mean (SD) 14.6 (7.4)

Duration of hospital stay in days, mean (SD) 18.0 (9.3)

Clinical seizures at initial presentation: frequency, (%) (<24 h from ictus) 22 (14.4%)

Clinical seizures during hospitalization: frequency, (%) (>24 h from ictus) 9 (5.9%)

Scalp EEG findings (138 patients monitored)

Periodic discharges: frequency (%) 21 (15.2%)

Rhythmic delta activity: frequency (%) 60 (43.4%)

Epileptiform discharges: frequency (%) 65 (47.1%)

Seizures: frequency (%) 6 (4.30%)

Depth EEG findings (9 patients monitored)

Seizures and periodic patterns: frequency (%) 6 (6.5%)

Patients on at least one AED throughout hospitalization, frequency (%) 53 (34.6%)

HAI frequency (%)

Pneumonia 56 (36.6%)

Urinary tract infection 35 (20.9%)

Meningitis/ventriculitis 5 (3.27%)

Bacteremia/sepsis 2 (1.30%)

All HAIs combined 81 (52.9%)

GOS at discharge, frequency (%)

1 28 (18.3%)

2 3 (2.00%)

3 94 (61.4%)

4 20 (13.1%)

5 8 (5.23%)

Discharge location, frequency (%)

Home 38 (24.8%)

Rehab/skilled nursing facility/long-term acute care 87 (56.9%)

Frequency depicts number of patients (n); AED anti-epileptic drug, APACHE II acute physiology and

chronic health evaluation II, EEG electroencephalogram, GCS Glasgow Coma Scale, GOS Glasgow

Outcome Scale, HAI healthcare-associated infections, SD standard deviation
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of the time. At the point of maximum accuracy on the ROC

curve, the sensitivity was 86%, and specificity was 92%;

the mean AUC was 0.9198. Performance metrics and ROC

curve are shown in supplementary material (Figure e-1 and

e-2).

Binary Discrimination: Predictors of Death/

Dependence Versus Independent Status

Significant predictors of death/dependence (GOS 1–3)

versus independent status (GOS 4–5) on univariate analysis

are shown in Fig. 2. These included total number of AEDs,

levetiracetam, APACH II, admission GCS, and HH score.

Epileptiform discharges and rhythmic delta activity were

significant EEG findings. The presence of HAIs and hos-

pital-acquired pneumonia were also significant.

Table 2 shows the features selected in the multivariate

model. Levetiracetam and mechanical ventilation were

selected in a 100% of the training sessions. The sensitivity

and specificity at the point of maximum accuracy on the

ROC curve were 94 and 98%, respectively, and the mean

AUC was 0.9456. Performance metrics and ROC curve are

shown in supplementary material (Figure e-3 and e-4).

Multilevel Discrimination: Predictors of Poor,

Intermediate, or Good Outcomes

Predictors of outcome in the multivariate multilevel pre-

diction model are shown in Table 2. Maximum day 1 GCS,

minimum day 2–3 GCS, and APACHE II score were the

most frequently selected features. Periodic discharges,

lacosamide, and rebleed were less frequently selected.

Using these features, the model predicted poor and good

outcomes with greater than 80% accuracy and intermediate

outcome with greater than 70% accuracy (Fig. 3).

Discussion

In this large EHR data-driven predictive model, we iden-

tified key features that accurately predicted outcomes in

patients with aSAH. Our study highlights the importance of

Fig. 1 Significant predictors of mortality on univariate analysis: GOS

1 versus GOS 2–5. Significant predictors of outcome on univariate

analysis and their regression coefficients are shown. The p value for

each predictor was <0.05. For predictors with negative regression

coefficient, presence/higher value was associated with lower GOS.

For predictors with positive regression coefficient, presence/higher

value was associated with higher GOS

188 Neurocrit Care (2018) 28:184–193
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fluctuations and variance in physiologic features, which

often more accurately predict outcome than the minimum

or maximum value. The predictors identified do not nec-

essarily imply causality. Nevertheless, some of the

identified associations suggest plausible causal hypotheses

and potentially modifiable risk factors and warrant further

investigation in prospective studies.

Table 2 Predictors of outcome on multivariate analysis

Binary discrimination: predictors of mortality (GOS 1 vs GOS 2–5)

99% of training sessions: variance in day 3 glucose

98% of training sessions: admission APACHE II

98% of training sessions: variance in day 2 ICP

95% of training sessions: variance in day 1 glucose

92% of training sessions: maximum day 1 GCS

89% of training sessions: median day 3 WBC count

86% of training sessions: minimum day 1–3 SpO2

68% of training sessions: maximum day 1–3 sodium

51% of training sessions: maximum day 2 MAP

17% of training sessions: variance in day 3 sodium

12% of training sessions: difference in day 3 sodium

1% of training sessions: maximum day 2–3 GCS

Binary discrimination: predictors of death/dependence versus independent status (GOS 1–3 vs GOS 4–5)

100% of training sessions: levetiracetam

100% of training sessions: mechanical ventilation

99% of training sessions: duration of mechanical ventilation

94% of training sessions: minimum day 2–3 WBC count

87% of training sessions: maximum day 1–3 heart rate

85% of training sessions: variance in day 2 ICP

78% of training sessions: difference day 2–3 GCS

73% of training sessions: median day 1 GCS

54% of training sessions: age

54% of training sessions: maximum day 1 external ventricular drainage

48% of training sessions: variance in day 2 sodium

33% of training sessions: epileptiform discharges

22% of training sessions: total no of AEDs

22% of training sessions: difference day 1 temperature

16% of training sessions: maximum day 2 WBC

4% of training sessions: Admission APACHE II score

2% of training sessions: DCI

1% of training sessions: difference day 3 MAP

Multiclass discrimination: predictors of poor versus intermediate versus good outcomes (GOS 1–2 vs GOS 3 vs GOS 4–5)

100% of training sessions: maximum day 1 GCS

97% of training sessions: minimum day 2–3 GCS

90% of training sessions: Admission APACHE II

6% of training sessions: median day 1–3 GCS

3% of training sessions: maximum day 1–3 GCS

1% of training sessions: periodic discharges

1% of training sessions: maximum day 2–3 external ventricular drainage

1% of training sessions: lacosamide

1% of training sessions: rebleed

The frequency with which each variable was selected in the bootstrapping method is shown. AED anti-epileptic drugs, DCI delayed cerebral

ischemia, GCS Glasgow Coma Scale, GOS Glasgow Outcome Scale, ICP intracranial pressure, MAP mean arterial pressure; SpO2 pulse oxygen

saturation, WBC white blood cell
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aSAH hospital mortality rate is reported at 20–50% [16],

with up to 40% of deaths from extra-cerebral organ failure

[2]. Our 18% in-hospital mortality is comparable to that of

the Columbia University SAH Outcomes Project [16]. The

APACHE II score consistently predicted mortality.

APACHE II is a disease severity score incorporating

physiologic and laboratory data [17]. The physiological

component is also included in the FRESH score [5].

Looking beyond the individual components of the

APACHE II, we identified ICP, external ventricular drain

(EVD) drainage, EEG findings as additional predictors.

Apart from GCS, the APACHE II does not include phys-

iologic or clinical data that are more specific to the nervous

system; hence, addition of these factors can enhance per-

formance of predictive scores.

Variance, maximum, and absolute difference in serum

sodium levels predicted outcomes. Sodium derangements

correlate with death and disability [2, 16, 18], and fluctu-

ations may have a greater impact on outcomes than

hyponatremia itself [18, 19]. Strict sodium control and

balancing the effects of salt wasting, syndrome of inap-

propriate ADH, and hyperosmolar treatment may mitigate

the adverse effects. Similarly, serum glucose derangements

can increase secondary cerebral injury [20, 21]. While

there is conflicting data on the impact of tight glycemic

control, similar to prior studies, our findings suggest glu-

cose variability correlates with outcomes in patients with

neurological injury [20, 21].

Other laboratory predictors included minimum and

maximum WBC count. Leukocytosis has been identified as

a predictor of poor outcome in SAH [22, 23] and also as an

independent predictor of vasospasm [24]. A rising WBC

count warrants vigilance and should raise suspicion for

potential vasospasm.

Cardiac and pulmonary complications occur in up to 63

and 80% of aSAH patients, respectively [2]. Blood pressure

extremes and heart rate variability can impact outcomes

[6, 25, 26]. We found maximum heart rate and maximum

MAP predicted outcomes. Pulmonary predictors included

duration of mechanical ventilation and minimum SpO2.

Fig. 2 Significant predictors of death/dependence versus independent

status on univariate analysis: poor (GOS 1–3) versus (GOS 4–5).

Significant predictors of outcome on univariate analysis and their

regression coefficients are shown. The p value for each predictor

was <0.05. For predictors with positive regression coefficient,

presence/higher value was associated with lower GOS. For predictors

with negative regression coefficient, presence/higher value was

associated with higher GOS. EEG: Electroencephalogram; GCS:

Glasgow Coma Scale; MAP: mean arterial pressure; PVD: peripheral

vascular disease
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These predictors could certainly be surrogates of the

underlying disease severity. Alternatively, they may

directly impact outcomes; for example in patients without

lung injury, who require ventilation for depressed arousal,

over ventilation can result in hyperoxia or hypocapnea.

Oxidative stress may exacerbate cerebral injury and

increase the risk of DCI [27]. Hypocapnea is similarly

associated with worse outcomes and vasospasm [28].

These potential modifiable clinical factors can be addressed

using a protocolized approach to ventilator management.

Temperature differences also predicted outcomes, and

although HAIs have been associated with worse outcomes

[2, 29], and were significant in our univariate analysis, they

were not identified in our multivariate model. One

hypothesis is that earlier physiologic derangements may

have greater impact on outcomes.

We also investigated ICP, CPP, and EVD drainage and

found ICP variance to be a significant predictor. Data on

ICP monitoring in aSAH are limited [30] with widespread

practice variation [31]. Elevated ICP is linked to worse

outcomes, although this may be a reflection of the disease

severity [32], and ICP-derived variables, such as pressure

reactivity index and variability, may be more accurate

predictors [30]. There is also conflicting data on optimal

EVD management [33–35]. Continuous drainage may be

associated with greater risk of infection but lower risk of

vasospasm [33, 34]. We typically use intermittent drainage,

transitioning to continuous drainage if clinically indicated.

Five of our patients developed meningitis, though this was

not identified as an outcome predictor. Simultaneously,

avoiding prolonged weans and continuous drainage when

not indicated may help prevent EVD-related complications.

Age, GCS, and rebleeding were significant predictors

that are also incorporated in existing scores [1, 5], although

rebleeding was only seen in 1% of training sessions.

Interestingly, HH score was identified only on univariate

and not on multivariate analysis, underscoring the potential

advantages of scores that are not limited to the initial

examination.

Forty four percent of our patients had DCI, higher than

typical rates cited in the literature (up to 30%) [13]. This

may be because majority of our patients were high grade.

Although not identified as a predictor of death, the pres-

ence of DCI did help discriminate between dependent

versus independent status at discharge.

Finally, we studied the impact of EEG features.

Epileptiform and periodic discharges were predictors in the

multiclass model. Inter-ictal patterns are associated with

worse outcomes and DCI, potentially related to increased

cerebral blood flow or metabolism [36–38]. Larger

Fig. 3 Multiclass model—predicted versus observed outcomes; poor

(GOS 1–2), intermediate (GOS 3), good (GOS 4–5). The percentage

of accurately predicted discharge GOS is shown. The first stacked bar

shows the model accurately predicts poor outcome (GOS 1–2) 87% of

the time. The second bar shows the model accurately predicts an

intermediate outcome (GOS 3) 74% of the time
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prospective studies can determine the long-term impact of

periodic patterns and implications of treatment. Careful

selection of patients for treatment using existing evidence

may limit both the impact of these patterns and avoid

excess use of AEDs.

Electrographic seizures, seen only in 6 of our patients,

were not identified in our model, despite prior studies

showing an association with worse outcomes [39]. Our

findings raise the hypothesis that inter-ictal scalp activity

may signify scalp-negative seizures [40], or seizures, per

se, may fail to predict outcome if treated in a timely

fashion. Intriguingly, we found that use of AEDs predicted

poor outcomes. This association is not necessarily causal.

There are two plausible explanations for this (Figure e-5

supplementary material); AEDs are a non-causal predictive

variable, but have an ‘‘apparent causality’’ as they are

surrogates for the underlying disease severity or EEG

findings (confounding by indication). Alternatively, AEDs

may have an iatrogenic, true-negative causal impact on

outcomes. Regardless, we hypothesize that prompt dis-

continuation of primary AED prophylaxis, and using the

lowest dose of monotherapy for secondary prophylaxis,

might be beneficial.

Limitations of our study are its retrospective nature and

that it is a single-center study. Only including patients with

a definite aneurysm resulted in a smaller sample size. Most

patients were high-grade aSAH, limiting the generaliz-

ability of our findings to lower-grade hemorrhages, and our

inclusion of intraventricular hemorrhage was limited to the

Fisher score. Variation in AED prescribing practices for

secondary prophylaxis and temporal trends in aneurysm

treatment modality are additional limitations. The greatest

difference in aneurysm treatment, however, was in the first

year (2012: 23% coiled, 76% clipped); thereafter, there was

an increase in coiling (2013: 50% coiled, 46.9% clipped;

2014: 39% coiled, 50% clipped; 2015: 57.1% coiled,

26.8% clipped; 2016: 58% coiled, 25% clipped).

Conclusions

Attractive features of data-driven approaches to outcome

prediction are reproducibility, lack of susceptibility to

errors of human judgment, and their ability to take

advantage of non-obvious patterns in complex medical

data. In our cohort, variability and fluctuations in physio-

logical and laboratory data were important predictors of

outcomes that are not readily available in a clinician-doc-

umented approach. Early identification of these features

may identify patients requiring additional vigilance and

facilitate more timely therapeutic interventions, allowing

for improved immediate outcomes and rehabilitation

potential. Future prospective studies are needed to create a

more comprehensive, reliable, and reproducible outcome

prediction score using additional features such as ICP,

blood glucose levels, EEG findings, and variability in

physiologic data. With increasing use of multimodality

monitoring, larger prospective studies can better under-

stand the relationship between variability in physiologic

and laboratory data and cerebral metabolism, and the

impact of goal-directed treatments on neurologic outcomes.
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