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Abstract

Background Many demographic and physiological vari-

ables have been associated with TBI outcomes. However,

with small sample sizes, making spurious inferences is

possible. This paper explores the effect of sample sizes on

statistical relationships between patient variables (both

physiological and demographic) and outcome.

Methods Data from head-injured patients with monitored

arterial blood pressure, intracranial pressure (ICP) and

outcome assessed at 6 months were included in this ret-

rospective analysis. A univariate logistic regression

analysis was performed to obtain the odds ratio for unfa-

vorable outcome. Three different dichotomizations

between favorable and unfavorable outcomes were con-

sidered. A bootstrap method was implemented to estimate

the minimum sample sizes needed to obtain reliable asso-

ciation between physiological and demographic variables

with outcome.

Results In a univariate analysis with dichotomized out-

come, samples sizes should be generally larger than 100 for

reproducible results. Pressure reactivity index, ICP, and

ICP slow waves offered the strongest relationship with

outcome. Relatively small sample sizes may overestimate

effect sizes or even produce conflicting results.

Conclusion Low power tests, generally achieved with

small sample sizes, may produce misleading conclusions,

especially when they are based only on p values and the

dichotomized criteria of rejecting/not-rejecting the null

hypothesis. We recommend reporting confidence intervals

and effect sizes in a more complete and contextualized data

analysis.

Keywords Traumatic brain injury � Outcome prediction �
Statistical inference � Intracranial pressure � Autoregulation

Introduction

Traumatic brain injury (TBI) is a major cause of worldwide

morbidity and mortality [1]. Identifying factors that might

indicate a poorer prognosis is important for proper man-

agement of TBI patients [2]. While some predictive factors

may be related to patient demographics (such as age, sex)

and initial factors related to primary injury—as Glasgow

Coma Scale (GCS)—other factors may be derived from

physiologic variables that can reflect secondary brain

injuries and, therefore, offer the possibility of informing

management protocols.

The use of physiological and demographic variables as

predictors of patient outcome has been largely discussed in

the literature [2–5]. In particular, high time-resolution

multimodal monitoring allows for an extended assessment

of secondary injury after TBI [6]. However, because of

difficulties in obtaining large datasets of high-resolution

physiological signals, some studies have relatively small

sample sizes. The failure to find a relationship between a

physiological variable (or a derived index) and outcome

where one truly exists (type II statistical error) could pre-

maturely end research on a promising ‘physio-marker’.

Conversely, finding a spurious relationship between a
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monitored variable or index when one does not exist (type I

statistical error) may take significant time to be rectified in

the scientific community, especially with the acknowl-

edged ‘positive results publication bias’.

The objective of this study is to highlight potential pit-

falls when only p values are used to interpret results from

relatively small datasets. More specifically, we explored

the role of sample size when physiological and demo-

graphic variables are associated with patient outcome using

univariate binary logistic regression models. In this con-

text, we also estimated the minimum sample sizes needed

to obtain reproducible results.

Methods

Data from head-injured patients having full record of

monitored variables of interest, connected to a bedside

computerized system (software: ICM [1992–2003], War-

saw University of Technology, Poland, and University of

Cambridge, UK, and later ICM+� [2003–2015] http://

www.neurosurg.cam.ac.uk/icmplus Cambridge Enterprise,

Cambridge, UK) with invasive monitoring of ABP and ICP

over a period longer than 12 h were included in this ret-

rospective analysis. ABP was invasively monitored

through a catheter in the radial artery; the pressure trans-

ducer was zeroed at heart level. ICP was continuously

monitored with Codman parenchymal probes (Johnson &

Johnson Medical, Raynham, MA, USA) via a cranial

access device (Technicam, Newton Abbott, UK). Probes

were positioned at a constant depth in the white matter,

pericontusional in focal injuries or in the nondominant

frontal lobe in diffuse injuries. Patients were managed

according to international TBI guidelines [7]. Patients were

sedated, intubated, and ventilated. Interventions were

aimed at keeping ICP < 20 mm Hg using a stepwise

approach of positioning, sedation, neuromuscular paralysis,

mild hyperventilation, ventriculostomy, osmotic agents,

and induced hypothermia [8]. Cerebral perfusion pressure

(CPP) was maintained >60 mm Hg using intravenous

fluids and vasopressors. Computerized indices did not form

a part of the management algorithm. The Glasgow Out-

come Scale (GOS) was assessed at 6 months by outpatient

assessment [9]. The digital recording of high-resolution

data for further anonymous use in academic publications

has been approved by the institutional ethics committee (29

REC 97/291) and local neurocritical care users’ committee.

Patients were divided between two groups, favorable

(FAV) and unfavorable (UNF), according to their GOS

score: 1—Death (D); 2—Persistent Vegetative State

(PVS); 3—Severe disability (SD); 4—Moderate Disability

(MD) and 5—Good Recovery (GR). The proportions of

each GOS score for each variable are presented in Table 1.

Three different dichotomizations were used in this

study: Dicho1 contains GOS 1 for UNF and GOS 2–5 for

FAV. Dicho 2 comprises GOS 1–2 for UNF and GOS 3–5

for FAV, and finally, Dicho 3 consist of GOS 1–3 and GOS

4–5 for UNF and FAV groups, respectively. The demo-

graphic variables used for outcome association are age

GCS. The physiological variables were averaged over the

entire NCCU stay. They are arterial blood pressure (ABP),

intracranial pressure (ICP), amplitude of ICP pulse (AMP),

magnitude of ICP slow waves (Slow), cerebral perfusion

pressure (CPP), pressure reactivity index (PRx), and

compensatory reserve index (RAP). There is substantial

literature about these indices; for a useful description see

[6].

Bootstrapping

One of the objectives of this study is to obtain the incidence

of statistically significant results when different sample

sizes are used. The straightforward approach would be to

consider all possible combinations of patients from the

dataset, for a given sample size, and obtain the statistics for

each case. However, this would be impracticable since

there are approximately 1048 possible combinations for a

sample size (N = 30 for example). A more appropriate

approach is to use a bootstrapping method to estimate the

probability distribution of the chosen statistic.

We examined samples of N = 20 up to N = 15,000.

Patients for each N were randomly chosen with reposition.

A univariate logistic regression was applied, and the odds

ratio (OR) of favorable versus unfavorable outcome was

obtained with its respective p value. This process was

repeated 10,000 times for each sample size and for each

variable. Thus, we can estimate the minimum sample size

required to obtain a statistically significant result in 90 %

of the drawings.

Results

Using ICP and dichotomization Dicho 1 as an example,

Fig. 1 presents the box plots for the odds ratio (OR) as well

as the p values for different sample sizes (N). For small

sample sizes, the variability of OR and p values is larger

and gets smaller with increasing N. The incidence of sig-

nificant results increases with sample size, reaching 90 %

at N = 140.

Considering only statistically significant results

(p < 0.05), Fig. 2 compares the OR and 95 % confidence

interval sizes obtained in 1000 random samples for two

different sizes, N = 30 and N = 200. For N = 30 (open

squares), the values of OR obtained are more dispersed

varying from 1.2 to 1.4 and the sizes for the 95 % CI are
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also larger from 0.2 to 0.6. On the other hand, for N = 200,

the values of OR varies between 1.05 and 1.15 and the

95 % CI size is around 0.1. The statistics variability for

small sample sizes is responsible for producing conflicting

results as pointed out by the arrow in Fig. 2. With the same

sample size (N = 30), the odds ratio may be statistically

significant below one (OR < 1) or above one (OR > 1).

The minimum sample size (Nmin) needed to obtain 90 %

incidence of significant results for each predictor variable

considered in this study is presented in Table 2. Minimum

sample sizes generally decrease for more restrictive con-

ditions for unfavorable outcome, i.e., Nmin are smaller for

Dicho 1 and 2. With the exception of RAP and both

demographic variables (age and GCS), the addition of SD

patients increases the effect sizes and therefore diminishes

Nmin. For CPP and AMP, the inclusion of SD patients in the

unfavorable group reduces considerably the associative

power of those variables, with estimated Nmin greater than

15,000.

Discussion

In the current analysis, PRx, ICP, and ICP slow waves

offered the strongest relationship with outcome. This result

highlights the importance of impaired pressure reactivity

Table 1 Number of patients for

each variable and the

proportions among different

GOS scores

Variable Outcome Total

D PVS SD MD GR

ABP 171 (22 %) 14 (2 %) 241 (31 %) 193 (25 %) 147 (20 %) 766

Age 172 (22 %) 15 (2 %) 246 (32 %) 191 (25 %) 149 (19 %) 773

AMP 165 (22 %) 15 (2 %) 244 (32 %) 193 (25 %) 149 (19 %) 766

CPP 171 (22 %) 14 (2 %) 242 (31 %) 193 (25 %) 149 (20 %) 769

GCS 125 (22 %) 8 (1 %) 162 (29 %) 140 (25 %) 122 (23 %) 557

ICP 172 (22 %) 15 (2 %) 244 (31 %) 194 (25 %) 151 (20 %) 776

PRx 156 (22 %) 14 (2 %) 231 (32 %) 180 (25 %) 136 (19 %) 717

RAP 170 (22 %) 15 (2 %) 245 (32 %) 194 (25 %) 149 (19 %) 773

Slow 167 (22 %) 15 (2 %) 244 (32 %) 193 (25 %) 149 (19 %) 768

D death, PVS persistent vegetative state, SD severe disability, MD moderate disability, GR good recovery,

ABP arterial blood pressure, AMP amplitude of intracranial pressure pulse, CPP cerebral perfusion pres-

sure, GCS glasgow coma score, ICP intracranial pressure, PRx pressure reactivity index, RAP

compensatory reserve index, Slow magnitude of intracranial pressure slow waves

Fig. 1 Considering ICP as the predictor variable in (a) box plot of the
odds ratio and respective p values, in (b) as a function of sample size

N obtained in 105 tests, in (c) the incidence of p values below the

significance level of 5 %. The larger the sample size, the better the

reproducibility of the result. Arrows indicate the minimum sample

size for ICP (Nmin = 100) in order to obtain reproducible results 90 %

of the time
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and intracranial hypertension as secondary injuries in TBI

[4].

The incidence of p values below the significance level,

obtained through bootstrapping, can be interpreted as an

estimate power of the test, i.e., its sensitivity. It is well

described in the literature that power increases with sample

size [10]. However, studies with small sample sizes

(N = 30–50) can be found quite frequently even in good

journals and therefore low statistical power is usually

employed [11]. Underpowered tests may provide a statis-

tically significant result that not only fails when it comes to

its reproducibility but also overestimates its clinical rele-

vance; both sensitivity and positive predictive value (PPV)

are low for underpowered tests [11].

For instance, in a study with N = 30 patients, the odds

ratio that increasing ICP will increase the odds for unfa-

vorable outcome will most likely not be statistically

significant; hence, one will not have enough evidence that

increased ICP is related to worse outcome. Note that this

does not imply that increased ICP is not related to worse

outcome; the absence of evidence is not the evidence of

absence. A non-significant result just means that there is

insufficient information to prove the proposition to be

either true or false; more data are needed to gather more

evidence against the null hypothesis. But we must keep in

mind that a large enough sample will eventually produce a

statistically significant result [11] and, consequently, it

should be interpreted in the light of its clinical relevance.

Also, a statistically significant result in this scenario will

most likely overestimate its effect size and consequently its

clinical relevance, the well-known ‘‘winner’s curse’’ [12].

In addition, the variability of OR and p values for small

sample sizes may produce misleading conclusions. The

conflicting result presented in Fig. 2, with significant result

for OR > 1 and OR < 1, illustrates the point that without

any additional information other than the dichotomized

criteria of rejecting/not-rejecting the null hypothesis, it is

difficult to come up with any meaningful conclusions and

there are no means to access the reproducibility of the

results.

Limitations

The current study considered the use of a univariate logistic

regression analysis for outcome association, and sample

size (N) considered in the analysis is evenly distributed

between groups. Although outcome prediction in TBI is

obviously a multivariate problem, for the current analysis

we wished simply to highlight the importance of consid-

ering a more complete description of the statistical results

rather than just p values.

The particular ‘optimal sample sizes’ (Nmin) obtained

are for illustrative purposes only, rather than a research

framework, because they were constructed using data from

only one research center and, therefore, may not be

applicable for other datasets. Furthermore, they deal with a

specific characteristic of the analysis, which is 90 %

power. There are other alternative criteria to select optimal

sample sizes, for instance the ‘‘planning for precision’’,

which calculates the sample size required for estimating the

effect size to reach a defined degree of precision [13].

Rather than just prescribing a minimum sample size

needed for publication of results, the current study high-

lights potential pitfalls when searching for physiologic

indices that predict outcome [14–18]. At least in the field of

TBI research, relationships between monitored variables

and outcome must be carefully interpreted when sample

sizes less than 100 are used. This result only reinforces the

Fig. 2 Considering only significant results (p < 0.05), odds ratio,

and 95 % confidence interval sizes for 1000 results with sample size

N = 30 and N = 200. For small sample sizes (open squares), the

obtained effect size (OR) is overestimated and the so-called winner’s

curse and the confidence intervals are larger. Also, the arrow points to

possible conflicting results (OR < 1) that may occur when sample

sizes are small

Table 2 Estimated minimum sample sizes (Nmin) required for each

physiological variable for 90 % incidence of p values below 0.05

Dicho ABP Age AMP CPP GCS ICP PRx RAP Slow

1 1300 370 850 550 800 140 140 560 160

2 2300 380 800 450 850 155 150 660 170

3 1200 280 – – 380 370 190 370 380

Tests were performed considering different dichotomizations between

favorable and unfavorable outcomes

Dicho 1 compares GOS 1 versus GOS 2–5, Dicho 2 GOS 1–2 versus

GOS 3–5, Dicho 3 GOS 1–3 versus GOS 4 and 5, ABP arterial blood

pressure, AMP amplitude of intracranial pressure pulse, CPP cerebral

perfusion pressure, GCS glasgow coma score, ICP intracranial pres-

sure, PRx pressure reactivity index, RAP compensatory reserve index,

Slow magnitude of intracranial pressure slow waves
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importance of multicenter studies when it comes to clinical

neuroscience.

Conclusion

Consistent with other opinion, we recommend a more

complete and contextualized description of results. Sample

size, effect size, power, and confidence intervals should all

be considered in addition to p values when interpreting

results from statistical inferences. Relying only on p values

as the final word can produce misleading conclusions,

especially when combined with the dichotomized criteria

of rejecting/not-rejecting the null hypothesis.
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