Skip to main content

Advertisement

Log in

Predictive Biomarkers of Recovery in Traumatic Brain Injury

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Recent advances in medicine, intensive care and diagnostic imaging modalities have led to a pronounced reduction in deaths and disability resulting from traumatic brain injury. However, there are not sufficient findings to evaluate and quantify the severity of the initial and secondary processes destructive and therefore there are not effective therapeutic measures to effectively predict the outcome. For this reason, in recent decades, researchers and clinicians have focused on specific markers of cellular brain injury to improve the diagnosis and the evaluation of outcome. Many proteins synthesized in the astroglia cells or in the neurons, such as neuron-specific enolase, S100 calcium binding protein B, myelin basic protein, creatine kinase brain isoenzyme, glial fibrilary acidic protein, plasma desoxyribonucleic acid, brain-derived neurotrophic factor, and ubiquitin carboxy-terminal hydrolase-L1, have been proposed as potential markers for cell damage in central nervous system. Usually, the levels of these proteins increase following brain injury and are found in increasing concentrations in the cerebrospinal fluid depending on the injury magnitude, and can also be found in blood stream because of a compromised blood–brain barrier. In this review, we examine the various factors that must be taken into account in the search for a reliable non-invasive biomarkers in traumatic brain injury and their role in the diagnosis and outcome evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kraus J, McArthur D. Epidemiology of brain injury. In: Cooper P, Golfinos J, editors. Head injury. 4th ed. New York: McGraw-Hill Publishers; 2000. p. 1–26.

    Google Scholar 

  2. Pineda JA, Wang KK, Hayes RL. Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 2004;14(2):202–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44(Suppl 10):2–10.

    Article  PubMed  Google Scholar 

  4. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil. 2006;21(6):544–8.

    Article  PubMed  Google Scholar 

  5. Servadei F, Verlicchi A, Soldano F, Zanotti B, Piffer S. Descriptive epidemiology of head injury in Romagna and Trentino. Comparison between two geographically different Italian regions. Neuroepidemiology. 2002;21:297–304.

    Article  PubMed  Google Scholar 

  6. Chamoun RB, Gopinath SP, Robertson CS. Biomarkers for Traumatic Brain Injury. European Critical Care & Emergency Medicine. 2009;47–8.

  7. Choi DW. Exploratory clinical testing of neuroscience drugs. Nat Neurosci. 2002;5(Suppl):1023–5.

    Article  PubMed  CAS  Google Scholar 

  8. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21:1553–61.

    Article  PubMed  Google Scholar 

  9. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62(8):1303–10.

    Article  PubMed  CAS  Google Scholar 

  10. Berger RP, Dulani T, Adelson D, Leventhal JM, Richichi R, Kochanek PM. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics. 2006;117(2):325–32.

    Article  PubMed  Google Scholar 

  11. Ingebrigtsen T, Romner B. Biochemical serum markers of traumatic brain injury. J Trauma. 2002;52(4):798–808.

    Article  PubMed  CAS  Google Scholar 

  12. Yurgel VC, Ikut N, Da Rocha B, et al. Role of plasma DNA as a predictive marker of fatal outcomes following severe head injury in males. J Neurotrauma. 2007;24:1172–81.

    Article  Google Scholar 

  13. Rodrigues E, Oliveira C, Cambrussi A, Gomes G, Godoy D, da Rocha AB, et al. Increased serum brain derived neurotrophic factor (BDNF) following isolated severe traumatic brain injury in humans. Brain Inj. 2008;22(Suppl 1):165.

    Google Scholar 

  14. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK. Ubiquitin C terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38:138–44.

    Article  PubMed  CAS  Google Scholar 

  15. Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, Wang KK, Hayes RL. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;15(3):R156.

    Article  PubMed  Google Scholar 

  16. Marino S, Zei E, Battaglini M, Vittori C, Buscalferri A, Bramanti P, Federico A, De Stefano N. Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry. 2007;78(5):501–7.

    Article  PubMed  Google Scholar 

  17. Cernak I, Vink R, Zapple DN, et al. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis. 2004;17:29–43.

    Article  PubMed  CAS  Google Scholar 

  18. Strich SJ. Shearing of nerve fibres as a cause of brain damage due to head injury. Lancet. 1961;2:444–8.

    Google Scholar 

  19. Adams JH, Doyle D, Graham DI, et al. Microscopic diffuse axonal injury in cases of head injury. Med Sci Law. 1985;25:265–9.

    PubMed  CAS  Google Scholar 

  20. Marino S, Ciurleo R, Bramanti P, Federico A, De Stefano N. 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care. 2011;14(1):127–33.

    Article  PubMed  Google Scholar 

  21. Vos PE. Biomarkers of focal and diffuse traumatic brain injury. Crit Care. 2011;15(4):183.

    Article  PubMed  Google Scholar 

  22. Bakay RA, Ward AAJ. Enzymatic changes in serum and cerebrospinal fluid in neurological injury. J Neurosurg. 1983;58:27–37.

    Article  PubMed  CAS  Google Scholar 

  23. Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, Bullock MR, Choi SC, Clifton GL, Contant CF, Coplin WM, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–57.

    Article  PubMed  Google Scholar 

  24. Kochanek PM, Berger RP, Bayir H, Wagner AK, Jenkins LW, Clark RS. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care. 2008;14(2):135–41.

    Article  PubMed  Google Scholar 

  25. Donato R. 118. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.

    Article  PubMed  CAS  Google Scholar 

  26. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.

    Article  PubMed  CAS  Google Scholar 

  27. Townend W, Ingebrigtsen T. Head injury outcome prediction: a role for protein S-100B? Injury. 2006;37(12):1098–108.

    Article  PubMed  Google Scholar 

  28. Donato R. Further studies on the specific interaction of S-100 protein with synaptosomal particulates. J. Neurochem. 1976;27:439–47.

    Article  PubMed  CAS  Google Scholar 

  29. Biberthaler P, Linsenmeier U, Pfeifer KJ, Kroetz M, Mussack T, Kanz KG, et al. Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock. 2006;25(5):446–53.

    Article  PubMed  CAS  Google Scholar 

  30. Gazzolo D, Florio P, Zullino E, Giovannini L, Scopesi F, Bellini C, Peri V, Mezzano P, Petraglia F, Michetti F. S100B protein increases in human blood and urine during stressful activity. Clin Chem Lab Med. 2010;48(9):1363–5.

    Article  PubMed  CAS  Google Scholar 

  31. Routsi C, Stamataki E, Nanas S, Psachoulia C, Stathopoulos A, Koroneos A, Zervou M, Jullien G, Roussos C. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4.

    Article  PubMed  CAS  Google Scholar 

  32. Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C, Mutschler W, Jochum M. Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med. 2002;30(12):2669–74.

    Article  PubMed  CAS  Google Scholar 

  33. Korfias S, Stranjalis G, Boviatsis E, Psachoulia C, Jullien G, Gregson B, Mendelow AD, Sakas DE. Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med. 2007;33(2):255–60.

    Article  PubMed  CAS  Google Scholar 

  34. Raabe A. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;49(6):1491–2.

    Article  PubMed  CAS  Google Scholar 

  35. Regner A, Kaufman M, Friedman G, Chemale I. Increased serum S100beta protein concentrations following severe head injury in humans: a biochemical marker of brain death? NeuroReport. 2001;12(4):691–4.

    Article  PubMed  CAS  Google Scholar 

  36. Barger SW, Van Eldik LJ, Mattson MP. S100 beta protects hippocampal neurons from damage induced by glucose deprivation. Brain Res. 1995;677(1):167–70.

    Article  PubMed  CAS  Google Scholar 

  37. Willoughby KA, Kleindienst A, Müller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem. 2004;91(6):1284–91.

    Article  PubMed  CAS  Google Scholar 

  38. Slemmer JE, Matser EJ, De Zeeuw CI, Weber JT. Repeated mild injury causes cumulative damage to hippocampal cells. Brain. 2002;125(Pt 12):2699–709.

    Article  PubMed  Google Scholar 

  39. Woertgen C, Rothoerl RD, Metz C, Brawanski A. Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma. 1999;47(6):1126–30.

    Article  PubMed  CAS  Google Scholar 

  40. Raabe A, Grolms C, Keller M, Dohnert J, Sorge O, Seifert V. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir (Wien). 1998;140:787–791. discussion 791–792.

    Google Scholar 

  41. Rothermundt M, Peters SM, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60:614–32.

    Article  PubMed  CAS  Google Scholar 

  42. Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg. 2005;103:61–8.

    PubMed  Google Scholar 

  43. Chen DQ, Zhu LL. Dynamic change of serum protein S100b and its clinical significance in patients with traumatic brain injury. Chin J Traumatol. 2005;8:245–8.

    PubMed  CAS  Google Scholar 

  44. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56:1229–34.

    Article  PubMed  CAS  Google Scholar 

  45. Wunderlich MT, Wallesch CW, GoertlerR M. Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J Neurol Sci. 2004;227:49–53.

    Article  PubMed  CAS  Google Scholar 

  46. Moore BW, McGregor D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem. 1965;240:1647–53.

    PubMed  CAS  Google Scholar 

  47. Fletcher L, Rider CC, Taylor CB. Enolase isoenzymes. III. Chromatographic and immunological characteristics of rat brain enolase. Biochim Biophys Acta. 1976;452(1):245–52.

    PubMed  CAS  Google Scholar 

  48. Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, et al. Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock. 2005;24(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  49. Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–95.

    Article  PubMed  CAS  Google Scholar 

  50. Nygaard O, Langbakk B, Romner B. Neuron-specific enolase concentrations in serum and cerebrospinal fluid in patients with no previous history of neurological disorder. Scand J Clin Lab Invest. 1998;58(3):183–6.

    Article  PubMed  CAS  Google Scholar 

  51. Herrmann M, Curio N, Jost S, Grubich C, Ebert AD, Fork ML, Synowitz H. Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;70(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  52. Meynaar IA, Oudemans-van Straaten HM, van der Wetering J, Verlooy P, Slaats EH, Bosman RJ, et al. Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Med. 2003;29(2):189–95.

    PubMed  Google Scholar 

  53. Johnsson P. Markers of cerebral ischemia after cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  54. Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43(3):267–70.

    Article  PubMed  CAS  Google Scholar 

  55. Herrmann M, Curio N, Jost S, Wunderlich MT, Synowitz H, Wallesch CW. Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci. 1999;14(2–3):109–14.

    PubMed  CAS  Google Scholar 

  56. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10:471–6.

    Article  PubMed  CAS  Google Scholar 

  57. Ergün R, Bostanci U, Akdemir G, Beşkonakli E, Kaptanoğlu E, Gürsoy F, Taşkin Y. Prognostic value of serum neuron-specific enolase levels after head injury. Neurol Res. 1998;20(5):418–20.

    PubMed  Google Scholar 

  58. Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet. 1978;1(8056):113–5.

    Article  PubMed  CAS  Google Scholar 

  59. Gale SD, Johnson SC, Bigler ED, Blatter DD. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995;17–28.

  60. Liu MC, Akle V, Zheng W, Kitlen J, O’Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KK. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem. 2006;98(3):700–12.

    Article  PubMed  CAS  Google Scholar 

  61. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31(11):2670–7.

    Article  PubMed  CAS  Google Scholar 

  62. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45:138–41.

    PubMed  CAS  Google Scholar 

  63. Nylén K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, Rosengren L. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240(1–2):85–91. Epub 2005 Nov 2.

    Article  PubMed  Google Scholar 

  64. Coplin WM, Longstreth WT Jr, Lam AM, Chandler WL, Mayberg TS, Fine JS, Winn HR. Cerebrospinal fluid creatine kinase-BB isoenzyme activity and outcome after subarachnoid hemorrhage. Arch Neurol. 1999;56(11):1348–52.

    Article  PubMed  CAS  Google Scholar 

  65. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46(3):319–23.

    PubMed  CAS  Google Scholar 

  66. Lam NY, Rainer TH, Chan LY, Joynt GM, Lo YM. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem. 2003;49(8):1286–91.

    Article  PubMed  CAS  Google Scholar 

  67. Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem. 2003;49(4):562–9.

    Article  PubMed  CAS  Google Scholar 

  68. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318.

    Article  PubMed  CAS  Google Scholar 

  69. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9:224–37.

    Article  PubMed  Google Scholar 

  70. Riley CP, Cope TC, Buck CR. CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol. 2004;35:771–83.

    Article  PubMed  CAS  Google Scholar 

  71. Saha RN, Liu X, Pahan K. Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J Neuroimmune Pharmacol. 2006;1(3):212–22.

    Article  PubMed  Google Scholar 

  72. Griesbach GS, Hovda DA, Gomez-Pinilla F, Sutton RL. Voluntary exercise or amphetamine trwatment, but not the combination, increases hippocampal brain-derived neurotrophic factor and synapsin I following cortical contusion injury in rats. Neurosciences. 2008;154(2):530–40.

    Article  CAS  Google Scholar 

  73. Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci. 1981;49:429–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Marino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacoppo, S., Bramanti, P., Barresi, M. et al. Predictive Biomarkers of Recovery in Traumatic Brain Injury. Neurocrit Care 16, 470–477 (2012). https://doi.org/10.1007/s12028-012-9707-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-012-9707-z

Keywords

Navigation