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                    Abstract
Recent advances in medicine, intensive care and diagnostic imaging modalities have led to a pronounced reduction in deaths and disability resulting from traumatic brain injury. However, there are not sufficient findings to evaluate and quantify the severity of the initial and secondary processes destructive and therefore there are not effective therapeutic measures to effectively predict the outcome. For this reason, in recent decades, researchers and clinicians have focused on specific markers of cellular brain injury to improve the diagnosis and the evaluation of outcome. Many proteins synthesized in the astroglia cells or in the neurons, such as neuron-specific enolase, S100 calcium binding protein B, myelin basic protein, creatine kinase brain isoenzyme, glial fibrilary acidic protein, plasma desoxyribonucleic acid, brain-derived neurotrophic factor, and ubiquitin carboxy-terminal hydrolase-L1, have been proposed as potential markers for cell damage in central nervous system. Usually, the levels of these proteins increase following brain injury and are found in increasing concentrations in the cerebrospinal fluid depending on the injury magnitude, and can also be found in blood stream because of a compromised blood–brain barrier. In this review, we examine the various factors that must be taken into account in the search for a reliable non-invasive biomarkers in traumatic brain injury and their role in the diagnosis and outcome evaluation.
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                                    Introduction
Traumatic brain injury (TBI) is a common cause of neurological damage and disability, most often occurs in young people, with a peak incidence at 15–24 years of age. Smaller peaks occur in children younger than 5 years of age and in individuals older than 85 years [1]. The incidence of brain injury and resultant long-term disabilities caused by traumatic insults (e.g., automobile accidents, gunshots, sports) and ischemic events (e.g, strokes, cerebral hemorrhage, cardiac arrest) are several orders of magnitude greater [2]. Because of complex pathophysiology and uncertain outcome, TBI is an important medical problem.
Recent study has shown that the overall incidence of TBI in developed countries is about 200/100.000 population per year [3]. There are more than 1.5 milion TBI patients every year in USA only and about 314/100.000 in Italy [4, 5].
While the clinical scales, such as Glasgow Outcome Scale, Disability Rating Scale, Level of Cognitive Functioning Scale, Coma Recovery Scale-Revised, and Glasgow Coma Scale has proven their utility in the clinical management and prognosis of severe TBI patients, they cannot provide information about the pathophysiological mechanisms responsible for a patient’s neurological deficits. In addition, specific patient populations are difficult to assess with the Glasgow Coma Scale, particularly those who suffer from mild or moderate TBI, which account for 80–90 % of all cases.
Recent advances in medicine, intensive care, and diagnostic imaging modalities have led to a pronounced reduction in deaths and disability resulting from TBI. Despite this, an accurate early evaluation of the severity of TBI and a prediction of long-term outcome are often not possible [6].
It has been argued that diagnostic biomarkers would provide evidence for pathology progression and help guide therapy development [7]. For this reason, in recent years there has been increasing interest in biochemical markers of brain damage, caused by traumatic and vascular events. Nevertheless, less is known about interrelationships between traumatic brain injuries biomarkers, brain injury, intrinsic factors, and long-term recovery; some factors such as S100 calcium binding protein B (S100B), neuron-specific enolase (NSE), myelin basic protein (MBP), creatine kinase brain isoenzyme (CKBB), glial fibrilary acidic protein (GFPA), plasma desoxyribonucleic acid (DNA), brain-derived neurotrophic factor (BDNF), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) are indicative of brain damage and can be used as markers of a possible recovery in patients following a traumatic and non-traumatic injury [8–15]. We focused the review about these biomarkers, some of which present promising results for future clinical application.


Pathophysiology of Traumatic Brain Injury and Role of Biomarkers
After TBI, in addition to the primary damage caused by its mechanical event that occurs at the time of trauma, rise of the secondary lesions, including diffuse axonal injury (DAI), cell necrosis and apoptosis, increased cell membrane turnover, glial proliferation, inflammation and energy dysfunction [16, 17]. Among them, the dominant lesion is diffuse damage of the subcortical white matter, often referred to DAI, although the degree and extent of this damage is highly variable.
DAI was originally defined by Strich [18] and the concept was expanded by Adams et al. [19]: it occurs in about half of all severe head traumas. It can also occur in moderate and mild brain injury. A diffuse axonal injury falls under the category of a diffuse brain injury. This means that instead of occurring in a specific area, like a focal brain injury, it occurs over a more widespread area. This type of injury is usually associated with rapid angular (rotational) acceleration and deceleration of the brain; this causes the brain to move within the skull and axons are disrupted. DAI also causes death’s brain cell, causing swelling in the brain. This increased pressure in the brain can cause decreased cerebral blood flow, as well as additional injury. The shearing can also release chemicals which can contribute to additional brain injury.
The pathology of TBI is extremely complex and its mechanisms are not fully understood yet. Therefore, there is a great need for the development of clinical measures that are more safe and sensitive to the subtle alterations in brain morphology, physiology, and function that may underlie TBI [20].
Numerous studies have shown that the presence of biochemical markers in the serum and cerebrospinal fluid (CSF) after TBI in a sensitive and specific indicator of brain injury and would have important application in diagnosis, prognosis, and clinical research of brain injuries. Although there are currently no biomarkers with proven clinical utility for diagnosis of brain injury, whether it is caused by TBI, stroke, or other acute brain injuries, research has uncovered several candidates that have shown some preclinical potential. Indeed, Vos demonstrated that the use of biomarkers, reflecting damage to neurons and astrocytes, could contribute to a better understanding of the pathophysiological mechanisms of brain damage and may add important complementary information to clinical predictors of outcome [21].
In 1983, Bakay and Ward [22] suggested that an ideal serum marker should have high specificity for the brain, high sensitivity for brain injury and it be released only after irreversible destruction of brain tissue, it have a rapid appearance in serum, and it be released in a time-locked sequence with the injury. The age- and sex-related variability should be low to insure a predictable relationship between the serum concentration and the amount of brain injury. Furthermore, reliable assays for immediate analyses should be available. Finally, and most importantly, it should show clinical relevance. These prerequisites remain the most important properties of a biochemical serum marker of acute cerebral damage. There are a large number of studies assessing the value of biomarkers in the prognosis of infection, acute focal brain injury (stroke, TBI), global hypoxic brain damage due to cardiac arrest. However, biomarkers can provide additional information to the clinical evaluation namely in the diagnosis of infection, minor head injury, transient ischemic attack (TIA)/minor stroke (when neuroimaging is not sensitive enough), furthermore they are suitable for risk stratification and assessment of the response to a certain therapy (antibiotics, immunodulators, fibrinolytics, therapeutic hypothermia etc.). Biomarkers are not static but dynamic, presenting marked changes in response to different inflammatory stimulus, specifically, bacterial infection and unspecifically various type of tissue necrosis. Consequently, serial measurements could be more informative than a single one. Moreover, there is a continuous search for novel markers to better predict the outcome of patients with acute cerebral insults.
Outcome prediction indeed, is one of the major problems related to severe traumatic and non-traumatic brain injury, because clinical evaluation has an unreliable predictive value and complicates identification of patients with higher risk of developing secondary lesions and fatal outcome. Recent reviews of biomarkers of brain injury have highlighted the need for biomarker development [2, 11, 23]. Most of the studies on potential biomarkers for brain injury have been conducted over the last 10 years and many of the markers are associated with damage and release from cell types and components of brain parenchyma including neurons, astrocytes, and axons [24]. Development of a useful biomarker of brain injury has proven to be more difficult than development of biomarkers for other organ systems for several reasons. Perhaps, most importantly, the brain is a more complex and less homogenous organ, and different types of injury can occur to different types of brain cells with variable degree of severity. In addition, the presence of a blood brain barrier limits the amount and size of the markers that can be detected in blood [10].
To date, the most well studied potential biomarkers for traumatic brain injury are S100B, NSE, MBP, CKBB, GFPA, plasma DNA, BDNF, and UCH-L1.


S100 Calcium Binding Protein B
Among all of the biomarkers, S100B is better studied than others. The S100B protein, whose name is derived from its solubility in 100 % satured ammonium sulfate at neutral pH belongs to a multigenic family of low molecular weight (9–13 kDa) calcium-binding S100 proteins [25, 26]. S100B is involved in signal transduction via the inhibition of protein phosphorylation, regulation of enzyme activity, by affecting the calcium homeostasis and in the regulation cell morphology by interaction with elements of the cytoplasmatic cytoskeleton. S100B has been proposed as a promising brain injury biochemical marker; this protein is most abundant in glial cells of the central nervous system (CNS), predominately in astrocytes [27, 28]. However, it may also be found in other tissues such as fatty tissue [29]. There is growing evidence that liberation of S100B is also induced by other extracerebral events such as stressful situations [30, 31]. Occurrence of S100B may indicate brain damage and increased permeability of the hematoencephalic barrier. Maximum concentration peak occurs after 20 min, it is metabolized by the kidney and excreted in urine (half-life of about 30–113 min) [32]. It may be measured in arterial or venous blood, is not affected by hemolysis and remains stable for hours.
Its physiologic function is not entirely understood, but recent studies suggest that released S100B inhibits synaptic plasticity by binding to receptors on neurons. Korfias et al. [33] studied the relationship between levels of a calcium-binding protein found in the cytosol of astroglial and Schwann cells, S100B, and outcome following traumatic injury. Increases in serum S100B concentrations represent irreversible astrocyte injury or death [10].
High levels of S100B have been reported after TBI, stroke, subarachnoidal hemorrhage and at postoperative from cardiac surgery, if followed by neurological complications [34]. S100B was also high in patients with hemorrhagic shock, related to severity of shock and hypoperfusion [35].
Basic mechanisms that lead to serum increase of S100B in TBI remain unknown. It is not clear if protein release depends on irreversible cell damage or if it can take place after less severe injury. There is evidence that secretion of S100B by astrocytes might be an active process [11]. S100B was also found to have neurotrophic and neuroprotective effects in a number of experimental animal studies in vitro and in vivo [36]. In vitro TBI studies have also documented a significant rise of the S100B level in the culture medium until at least 48 h after the injury [37, 38]. Clinically, numerous reports have found a correlation between serum S100B level and the outcome of patients; indeed these indicate, that S100B is released after brain insults and serum levels are positively correlated with the degree of injury and negatively correlated with outcome. Woertgen et al. [39] found serum S100B level >2 microg/l within 1–6 h of a severe head injury to be a sensitive predictor of an unfavorable outcome. Raabe et al. [40] evaluated serum S100B at numerous time-points up to 10 days, and assessed outcome at six months of follow-up, a cut-off value of 2.5 microg/l was found to be 97 % specific and 44 % sensitive for the production of a poor outcome. In 2003, a thorough review of the role of S100B as a marker of brain damage was published summarizing the results of 18 clinical studies in a total of 1,085 patients [41]. In 2004 and 2005, another six studies comprising of more than 600 adult patients were performed supporting the correlation of elevated serum levels of S100 with a poor outcome after brain injury [8, 9, 42–45].


Neuron-Specific Enolase
Together with S100B, NSE is considered one of the most promising markers for brain injury. NSE was originally described by Moore and McGregor in 1965 [46]. Enolase are glycolytic enzymes, that is functionally active as a heterodimer, formed by α, β, and γ subunits [47]. They are almost exclusively found in the cytoplasm of neurons (isoenzime γ–γ) and neuroendocrine cells (isoenzime α–γ) [48]. The role of NSE is not fully understood, but it is probably involved in increasing neuronal chloride levels during the onset of neural activity [49]. The NSE molecular mass is 78 kDa and its biological half-life is probably longer than 20 h, and serum levels of >10 microg/l are considered to be pathological [11, 50].
NSE is the only marker that directly assesses functional damage to neurons. It is passively released by cell destruction and its increased concentrations after neuron damage may be measured in peripheral blood or liquor [51]. Increased levels of NSE were found in blood and liquor of patients with stroke, intracerebral hemorrhage and after cardiopulmonary resuscitation [52]. Also, high serum concentrations of NSE are found in TBI correlating with injury severity: in severe TBI, NSE correlates with clinical outcome [9, 10, 51]. Normally, it increases in the first 12 h after trauma and then decreases in the hours and days; its half-life is approximately 24 h. Secondary increases may take place in patients who evolve to fatal outcome. Although NSE initially appeared to be a promising marker because of a number of theoretical advantages, mainly it is a marker of neurons rather than glial cells and has a high specificity for the brain [53]. However, clinical trials in TBI have shown conflicting results; some studies found a correlation between NSE levels and clinical outcome in severe head injury [9, 54, 55], others found no such correlation [40, 56]. In cases of mild head injury, conflicting results were also reported, with some studies showing increased NSE levels [57] while others showed no difference between patients and controls [56]. One of the main problem associated with use as marker of brain damage is hemolysis. Erythrocytes contain a large amount of NSE and hemolysis may, therefore, cause a marked increase of NSE in the blood. Furthermore, an increase in NSE has been documented clinically in patients with multiple trauma but without head injury, and experimentally in rats with ischemic injury to abdominal organs [48].


Myelin Basic Protein
MBP is one of the two most abundant proteins in myelin in the CNS, with a molecular weight of 18.5 kDa. Studies of MBP concentrations indicate the serum level of MBP is increased after severe traumatic brain injury, demyelinating diseases and in patients with intracranial hemorrhage [11, 42, 58]. In TBI, studies have shown prolonged and sustained loss of white matter, increased demyelination [59] and extensive degradation of MBP within hours of injury [60]. The MBP was elevated in patients with severe TBI relating to the degree of severity and mortality [11].
Thomas et al. [58] found that the mean concentrations of MBP in patients with severe head injury were significantly raised at the time of admission, peak of MBP concentrations occur 48–72 h after injury and remained high for two weeks after injury. They also found that mean MBP levels between 2 and 6 days after injury were significantly higher in patients with poor outcomes compared with those with good outcomes. In a small series of 25 patients, Yamazaki et al. [54] similarly found that MBP levels were significantly higher in patients who died compared with those who survived.


Glial Fibrillary Acidic Protein
GFAP was first isolated in 1971, and is only found in glial cells of the CNS. Thus, in contrast to other markers, it is thought to be strictly specific to damage of tissue in CNS. This protein constitutes the major part of the cytoskeleton of astrocytes. Studies have shown the use of measuring the GFAP in the liquor as a specific indicator of a pathologic anomaly of the CNS [9, 11]. High levels of GFAP are found in blood after stroke, correlating to a functional prognosis [61]. GFAP is released in the blood stream soon after TBI. After brain damage proteins like GFAP are released from injured brain cells and appear in the systemic circulation probably directly via passage through a disturbed blood brain barrier. Serum analysis has clinical advantages over CSF measurement and CSF sampling is often contraindicated in patients with severe traumatic brain injury. Missler [62] reported a method for serum-GFAP determinations and preliminary results from patients with severe head trauma in 1999. They concluded that measurement of GFAP concentrations in blood appeared to have the possibility to identify acute CNS damage.
Recently, Vos [9] showed that serum level of GFAP has a predictive value of outcome after TBI: high levels (>1.5 microg/l) were strongly predictive of death or a poor outcome. Pelinka and Nylen [48, 63] documented a correlation between serum GFAP levels, severity of injury and outcome. More importantly, it was found that GFAP levels remained normal in multiple trauma patients without head injuries [48].


Creatine Kinase Brain Isoenzyme
CKBB is an isoform of creatine-kinase found in the CNS. The brain has many isoforms of CKBB and mitochondrial-CK but lacks creatine kinase muscle b (CKMB) and creatine kinase muscle (CKMM), respectively found in the cardiac and skeletal muscles [64]. The molecular mass of CKBB is 40–53 kDa [11]. CKBB is located in the astrocytes and is released when there is anatomical injury in the brain tissue. Its serum levels increase during the first hours after trauma and drop quickly, unless there is a continued enzyme release. Various situations of brain injury such as cardiac arrest and subarachnoid hemorrhage may lead to release of CKBB in the liquor [64]. Severe TBI studies have shown correlation between the severity of the damage and level serum of CKBB. However, the specificity and sensitivity of determination in serum as a predictor of CKKB brain lesions remains controversial [11].


Plasma Desoxyribonucleic Acid
Plasma cell-free desoxyribonucleic acid (DNA) has been investigated as a potential marker for injury severity and prediction of fatal outcomes [12]. Cell-free DNA in the plasma or serum is used to diagnose, prognosticate and monitor a variety of conditions, such as tumor state. Significantly increased levels of plasma DNA have also found in trauma patients and was correlated with level of severity and development of post-trauma complications [65, 66]. High plasma DNA concentrations were also related to severity of strokes [67]. Mechanisms by which free circulating DNA increases after trauma have not been established. High concentrations observed very early after injury, suggest that the extra-cell DNA originates from tissue damage, necrosis, while apoptosis mechanisms may contribute to persistent increases, in addition to a DNA clearance, probably impaired by commitment of the responsible organs due to systemic inflammation [66]. Yurgel [12] found that, when compared with controls, patients with TBI had significantly higher plasma DNA concentrations. Plasma DNA concentrations were not higher in patients with extracranial injuries in addition to TBI when compared with patients with isolated TBI. Higher DNA concentrations were significantly associated with fatal outcome when plasma levels were assessed 24 h after study entry.


Brain-Derived Neurotrophic Factor
BDNF is a member of the neurotrophin family and is the most widely distributed trophic factor in the brain [68]. It participates in neuronal growth, maintenance, and in different aspects of activity-dependent synaptic physiology by acting across different spatial and temporal domains [69]. In the adult CNS, BDNF is expressed by multiple cell types including neurons and glia [70]. Previous research has established that neuronal activity regulates bdnf transcription, where BDNF mRNA and protein are subsequently transported into neuronal processes followed by activity-dependent secretion of BDNF. Increased expression of BDNF in the CNS, in response to various stimuli, suggests a neuroprotector role for this neurotrophine. Especially, inflammatory responses seem to be involved in the increased expression of BDNF [71].
In TBI, experimental studies in rats disclosed an increased mRNA of BDNF in the hippocampus within the first 24 h following trauma [72]. In addition, the level of BDNF in the serum of severe TBI patients was studied. It was found high serum levels of BDNF in the first hours after TBI, with a correlation of the serum levels of BDNF and fatal outcome in patients with isolated severe TBI [13].


Ubiquitin Carboxy-Terminal Hydrolase-L1
UCH-L1 is also known as neuronal-specific protein gene product 9.5 (PGP9.5) and was previously used a histologic marker for neurons because of its high abundance and specific expression in neurons. UCH-L1 is present in almost all neurons and averages 1–5 % of total soluble brain protein [73]. UCH-L1 is involved in the addition or removal of ubiquitin from abnormal proteins including misfolded proteins and proteins damaged by oxidation or denatured by other means destined for proteasomal degradation and has previously been used as a neuronal cell soma marker.
In a recent study, Papa et al. [14], have examined whether UCH-L1 was significantly elevated in severe TBI patients compared to uninjured controls as well as if levels of UCH-L1 were associated with measures of injury severity, complications and outcome. Using ELISA analysis, they confirmed that the UCH-L1 protein is significantly elevated in human CSF following a severe TBI and is detectable very soon after injury and remains significantly elevated for 168 h after injury. Rapid appearance of a biomarker in biologic material is essential to its clinical utility. In addition, UCH-L1 remained elevated in patients who experienced post-injury complications and may have added value in the management of these patients in the intensive care unit.
In another work, Mondello et al. [15] determined in a cohort of 81 severe TBI patients the time course of neuronal UCH-L1 biomarker levels in serum in the first 24 h after severe focal and diffuse injuries. The study showed a marked increase in serum levels of UCH-L1 in the first 24 h after injury as compared with controls and this increase correlates with a poor recovery (Table 1).
Table 1 Correlation between serum levels of biomarkers and TBIFull size table


                     

Conclusions
Despite progress in recent years, predict of outcome after a traumatic event or not, is far from reliable in most instances. Biomarkers measured in the CSF and blood seem to have important applications in diagnosis, prognosis, and clinical research of brain damage caused by traumatic events. Currently, however, there are no validated diagnostic or prognostic markers for patients who have suffered a head injury. We reviewed some molecules that are released following a traumatic or vascular event, whose concentration levels may be indicative for a recovery. Proteins S100B, NSE and MBP are among the markers most studied for this purpose. Indeed, it has been shown that a high concentration of these proteins is related to poor recovery. However, these biomarkers have limitations; S100B is expressed not only in brain tissue but also in a variety of other cell types in both physiological and pathological conditions, and it is affected by extracranial injury, and it is only occasionally increased after mild TBI. In addition, it has high normative concentrations in children. NSE is affected by hemolysis and yet, NSE, despite its name, is expressed in various tissues other than CNS. Finally, MBP, is rarely increased immediately after injury, and therefore requires repeated measurements over time. Furthermore, studies relating these proteins to pathophysiological parameters of TBI and clinical outcome have produced conflicting results. Other markers such as GFAP, CKBB, plasma DNA, and BDNF have been suggested to have potential utility to predict outcome. These markers, however, have been less thoroughly explored than have S100B, NSE, and MBP.
From the studies reported and based on the important function of UCH-L1 in neurons and its high specificity and abundance in CNS, UCH-L1 should also be proposed as a candidate biomarker for TBI. UCH-L1 was detectable in CSF and serum very early after injury and was associated with measures of injury severity and outcome. However, further studies are needed to better understand the emergence and role of these proteins as a result of damage caused by severe head injury. Indeed, biomarkers reflecting damage to neurons and astrocytes, may add important complementary information to clinical predictors of outcome and provide insight into the pathophysiology of TBI.
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