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Frequent monitoring of physiological 
vital signs is standard of care in the intensive 
care unit (ICU). Most patients admitted to an 
ICU are connected to at least one continuous 
monitor, such as an electrocardiogram or 
a pulse oximeter. Blood pressure and tem-
perature may be measured intermittently 
or continuously. Depending on the patient’s 
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Introduction: A fundamental purpose of neurocritical care is the management of secondary 
brain injury. This is often accomplished by monitoring and managing individual patient 
parameters including physiological vital signs. Yet, the ability to record physiological data 
exceeds our ability to fully integrate it into patient care. We propose that advances in 
monitoring must be accompanied by advances in methods of high-frequency, multivariate 
data analysis that integrate the multiple processes occurring in critically ill patients.

Methods: We describe initial work in the emerging field of physiological informatics in 
critical care medicine. We analyzed data on 23 patients with brain injury from our 
Neurotrauma and Critical Care Database, which contains more than 20 physiological 
parameters recorded automatically at one-minute intervals via bedside monitors connected 
to standard personal computers. We performed exploratory data analysis, studied two 
patient cases in detail, and implemented a data-driven classification approach using 
hierarchical clustering.

Results: In this study, we present challenges and opportunities for high-frequency 
multimodal monitoring to quantitatively detect secondary brain insults, and develop 
clustering methodology to construct multivariate physiological data “profiles” to classify 
patients for diagnosis and treatment.

Conclusions: Recording of many physiological variables across multiple patients is feasible 
and can lead to new clinical insights. Computational and analytical methods previously 
used primarily for basic science may have clinical relevance and can potentially be 
adapted to provide physicians with improved ability to integrate complex information 
for decision making in neurocritical care.
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specific diagnosis and severity of injury, 
additional monitors are placed (e.g., intra-
cranial pressure (ICP) monitor, central 
venous pressure monitor, pulmonary artery 
catheter, jugular venous oxygen catheter, 
brain tissue oxygen probe, end-tidal carbon 
dioxide monitor). This process often results 
in continuous monitoring of a dozen or more 
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clinical variables, with real-time values displayed on bedside 
or overhead computer monitors for visualization by nurses 
and physicians (1–3). However, the ability to acquire this data 
has outstripped the ability to record, process, and integrate 
this high volume of information into routine patient care.

Monitoring Meets Informatics
A fundamental purpose of neurocritical care monitoring is 

to prevent secondary brain injury by identifying and treating 
insults such as hypotension, hypoxia, fever, and elevated 
ICP. Unfortunately, current methods of evaluating the data 
acquired during monitoring rely on the relatively simplistic 
identification of events, often indicated by an alarm, when 
a predetermined threshold is crossed. This approach leaves 
open many questions. For example, what is hypotension? Is it 
a single event below some threshold (e.g., mean arterial pres-
sure [MAP] < 90 mmHg)? How does one pick the threshold? 
Additionally, how do clinicians even know that these events 
have occurred? Even though continuous physiological data is 
often being generated, this information is almost always 
recorded intermittently, often hourly, in medical records with 
no data on duration of events. Typically, this is the only infor-
mation available for physician review on rounds. Many re-
ports have used relatively gross descriptors such as whether 
an event occurred, or, at most, how many times it occurred. In 
contrast, Struchen et al. studied the relationship between out-
come and duration of adverse physiological events, defined as 
variables such as ICP, MAP, and cerebral perfusion pressure 
(CPP) exceeding certain thresholds, and found that duration 
of events accounted for a significant portion of the variance in 
Disability Rating Scale scores (4).

Despite the availability of multimodal monitoring, detec-
tion of potential insults is performed by asking separate, uni-
variate questions rather than by integrating and interpreting 
the multivariate patient situation. Routine ICU orders often 
focus on individual physiological parameters. For example, 
“Call physician for ICP > 20 mmHg.” Although treatment 
thresholds, protocols, and management styles may vary 
among institutions, this general paradigm holds. Adequate 
management is assumed if individual parameters of interest 
are maintained between commonly accepted upper and lower 
thresholds. This univariate approach does not reflect the phys-
iological complexity of the patient with severe injury. For 
example, alteration of respiratory rate may affect multiple 
parameters such as arterial blood gas values, ICP, and brain 
tissue oxygenation. Although clinicians are aware of these 
physiological complexities, which were the impetus for insti-
tuting multimodal monitoring, few tools have been developed 
to electronically store, integrate, and analyze this multidimen-
sional information.

Advances in the use of biostatistics and informatics have 
fundamentally altered the way information is examined in 
many aspects of medical care and human biology. For exam-
ple, the use of multivariable regression techniques to assess 
the impact of several factors that may jointly influence a 
parameter of interest such as patient outcome is now standard 
in epidemiology. The field of human genetics has also been 
revolutionized by advances in informatics. In fact, one of the 
necessary aspects of the Human Genome Project has been the 
development of new bioinformatics approaches that allow 

the study of the complex interactions of multiple genes. We
can now analyze microarray data by using methods such as 
hierarchical clustering to identify patterns relevant to molecu-
lar biology. More broadly, however, bioinformatics (including 
buzzwords like pattern analysis and data mining) can be 
thought of as a set of computational and quantitative methods 
that are applicable not only to basic science but also to physio-
logical data analysis and to clinical decision making. Significant 
amounts of multivariate data are now being generated in the 
ICU, and computer algorithms are increasingly being adapted 
to provide clinicians with capabilities to predict, diagnose, and 
treat (5,6). We expect that in neurocritical care, just as in epide-
miology and human genetics, the interaction of multiple 
parameters is more relevant than any individual factor. We
suspect that the reason this has not been explored more exten-
sively is because the analytical tools for studying complex 
physiological interactions have not been available.

This manuscript develops the idea that advances in neuro-
critical care monitoring must be accompanied by advances in 
methods of analyzing the data being captured. Furthermore, 
these new methods must take into account the complex in-
teraction of multiple processes occurring in the critically ill 
patient rather than viewing them as mutually exclusive. 
Our aims were (1) to present challenges and opportunities 
for high-frequency multimodal monitoring to quantitatively 
detect secondary brain insults, and (2) to develop clustering 
methodology to construct multivariate physiological data 
“profiles” to classify patients for diagnosis and treatment.

A Multivariate Approach to Continuous 
Data Analysis

San Francisco General Hospital (SFGH) is an acute care 
hospital operated by the City and County of San Francisco. 
The SFGH Neurotrauma and Critical Care Database contains 
physiological and nursing care data as well as demographic 
information. The main hardware components of the system 
are bedside monitors connected to a standard personal com-
puter via serial cables. Such a system is not entirely unique. 
Goldstein et al. described a real-time, continuous physiologi-
cal data acquisition system for a 16-bed ICU for the study of 
parametric and waveform data (7). We capture over 20 physi-
ological variables (Table 1), plus date, time, and optional com-
ments. Data is collected automatically at 1-minute intervals 
and is output into text files. In addition to reliable data cap-
ture, however, we also place an emphasis on multivariate data 
analysis. Quantitative analysis can be used to answer ques-
tions related to measurement, classification, or prediction for 
diagnosis and treatment. The choice of analytical methods 
depends on the type of question. For example, descriptive 
statistics can measure variables and help to frame biomedical 
questions, whereas clustering can be used for classification. 
During this study, caregivers did not have access to the analy-
ses or the full data set we describe.

We performed exploratory analysis retrospectively on a 
sample high-frequency data set from patients with traumatic 
brain injury (TBI) to visualize and describe the large amounts 
of physiological data generated in the ICU. Data analysis was 
performed using SPSS v13 (SPSS Inc., Chicago, IL). We used 
descriptive statistics to determine ranges and distributions of 
the physiological variables in Table 1. Data was collected from 
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23 patients every minute for a median of 7 days (mean ± s.d.: 
5.7 ± 2.3). The median duration of observation per patient was 
8453 minutes (8518 ± 7554). Collection was performed using 
Viridia bedside monitors (Philips), Licox tissue oxygen moni-
tors (Integra NeuroSciences), and Draeger ventilators and 
required no intervention outside of standard clinical care. 
Monitoring data was integrated by a middleware software 
backbone (Aristein Bioinformatics). Not all patients admitted 
with TBI met our monitoring protocol. Those that did were 
continuously monitored only if a bed with the appropriate 
monitoring infrastructure was available. An additional design 
constraint that reduced our patient sample was the desire to 
continuously monitor patients for 1 week rather than to trun-
cate their monitoring period simply to connect the next  patient. 
Collected data included occasional spurious or missing values 
caused by system problems, cable disconnection, or other 
technical issues. To address this issue, we constructed 23 
patient files with raw data and cleaned them according to 
simple rules: we did not delete outliers, but data such as heart 
rate equal to zero and unrealistically high ICP were ignored 
during analysis.

The concept of multivariate data classification involves 
using quantitative algorithms to separate subjects into two or 
more categories according to their features. Clustering can be 
used to divide data into a hierarchy. The traditional represen-
tation of this hierarchy is a tree, with a single cluster contain-
ing every subject at the beginning and individual subjects 
arranged in groups at the end (Figure 1). In contrast to a more 
knowledge-based approach like an expert system, hierarchical 
clustering is primarily data-driven. Advantages of knowledge-
based approaches include the benefits of clinical intuition, 
whereas advantages of data-driven approaches include the 
unbiased discovery of unexpected relationships. The variables 
used in the cluster analysis were chosen based on the current 

monitoring capabilities in our ICU, the variables that we 
believed a priori might be important, and the variables for 
which sufficient data was captured. We used median values of 
physiological parameters for each patient from their entire 
ICU stay based on measures acquired every minute. Using 
Cluster v2.11, we log-transformed our physiological data, 
centered the data set around patient and variable medians, 
and normalized values. Data was then clustered using average 
linkage hierarchical clustering. The ICU physiological data 
was arranged into a two-dimensional grid with similar 
patients and correlated variables next to each other (8) by 
creating a “heat map” and cluster tree (Figure 2) using TreeView 
v1.6 (Cluster and TreeView can be found at http://rana.lbl.
gov/EisenSoftware.htm). Such a heat map is more commonly 
used to display gene expression data. Whereas gene expres-
sion heat maps display up- or down-regulation of many genes 
across many samples (tissues, patients) or time periods, we are 
displaying high or low values of many physiological measures 
across many patients. The clusters represent correlations 
between subjects. Red areas indicate high values whereas 
green areas indicate low values. The heat map is a compact, 
intuitive way to visualize a moderately large data set (18 vari-
ables across, 23 patients down). We described the patient clus-
ters according to clinical measures such as Glasgow Coma 
Score (GCS) and Injury Severity Score (ISS) which were re-
corded once per patient.

Exploratory Analysis
We first performed exploratory analysis on the data set. We

captured heart rate, CPP, arterial blood pressure (ABP) values, 
and ICP for all patients (Table 2). We also captured brain tissue 
oxygen tension (PbrO2), brain temperature, and respiratory 
parameters (plateau pressure, tidal volume, minute ventila-
tion, and respiratory rate) for nearly all (78–91%) patients. 

Table 1 
Physiological Variables Included in the SFGH Neurotrauma and Critical Care Database

Monitored physiological parameters

Source Variable Definition

Viridia bedside monitor MAP mean arterial blood pressure
ABP – systolic systolic arterial blood pressure
ABP – diastolic diastolic arterial blood pressure
ICP intracranial pressure
ETCO2 end tidal CO2

 SvO2 oxygen saturation of venous blood from brain
HR heart rate
CPP cerebral perfusion pressure
SpO2 oxygen saturation in capillaries
Core Temp body temperature 

Licox tissue oxygen monitor PBrO2 brain tissue oxygen
Brain Temp brain tissue temperature

Draeger ventilator Plateau pressure pressure applied to small airways and alveoli
PEEP breathing pressure positive pressure applied at the end of expiration
Peak breathing pressure pressure measured by ventilator in major airways
Tidal volume lung volume during normal breath
Spontaneous minute volume tidal volume x respiratory rate - (patient breathing)
Minute ventilation tidal volume x respiratory rate - (ventilator)
Respiratory rate respiratory rate

 Inspired O2 fraction of inspired oxygen
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Median values within each patient time course were computed 
for all variables. Heart rate medians generally ranged between 
60 and 110 beats per minute across patients, CPP ranged be-

tween 70 and 100 mmHg, MAP ranged between 80 and 110 
mmHg, and ICP ranged between 5 and 15 mmHg with some 
high outliers (Figure 3). Of the variables with incomplete col-
lection, PbrO2 ranged between 10 and 60 mmHg with some
high outliers, plateau pressure ranged between 10 and 30
mmHg, tidal volume ranged between 0.5 and 0.75 L, minute
ventilation ranged between 7 and 15 L per minute with some
high outliers, and respiratory rate ranged between 10 and 30
breaths per minute with some high outliers. We also computed
means, standard deviations, and estimates of distribution sym-
metry such as skew and kurtosis. These physiological data
ranges can be helpful in determining “typical” and “crisis” pe-
riods in the patient with severe injury. We found that other vari-
ables were not as informative for analysis because values were
basically constant. For example, peak end expiratory pressure
(PEEP) was typically 5 cm H2O, fraction of inspired oxygen was
typically 0.4, and SpO2 was almost always 100%. We also saw,
as expected, that respiratory variables were correlated with
each other as were hemodynamic variables (data not shown).

The potential benefits of applying informatics to exploratory 
analysis of continuous, high-frequency physiological ICU data 
are illustrated by two patient cases. Patient A was a 40-year-old 
man who suffered a head injury after a fall from a ladder. On 
arrival, his GCS was 7, and he had one nonreactive pupil. Visual 
inspection of the patient’s entire ICP time course (Figure 4A) 
indicates that ICP was usually less than 20 mmHg despite a 

Fig. 1. A schematic example of classification, where an initial group 
of disparate subjects is divided into smaller groups of more similar 
subjects.

Fig. 2. Heat map of physiological variables.The heat map is labeled with the hierarchical cluster tree of variables and the three groups of 
patients, named A, B, and C.
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period of raised ICP on day 4 (approximately 3500–4100 min-
utes) and increased ICP volatility on day 6 (beginning at ap-
proximately 6000 minutes; Figure 4B). Nursing documentation 
shows that on day 4 in the mid-morning, cerebrospinal fluid 
(CSF) was being drained at least four times per hour. Thus, 
nursing documentation in conjunction with high-resolution 
physiological data is critical to explain this patient’s physiolog-
ical course. This patient’s ICP was greater than 20 mmHg for 
only 5.4% of the total monitoring time. Such measurement 
demonstrates how continuous data can be used beyond sum-
mary data to determine the dose (i.e., degree, duration, and fre-
quency) of events likely to contribute to the severity of second-
ary brain injury. Patient A was in the ICU for 18 days and was 
discharged to a rehabilitation facility with a Glasgow Outcome 
Score Extended (GOS-E) of 4 (upper severe disability).

Patient B was a 47-year-old male injured in an industrial ac-
cident. His GCS was 9, and he was intubated on arrival. As 
seen by the total ICP time course for this patient (Figure 4C), 
ICP over the first 6000 minutes (100 hours) of observation was 
frequently near or greater than 20 mmHg (15.4 ± 7.2 mmHg). 
There followed a period (approximately 1500 minutes in dura-
tion) during which ICP fell to 11.5 ± 7.9 mmHg. This was fol-

lowed by another period (approximately 200 minutes; Figure 
4D) during which ICP rose to 23.0 ± 8.3 mmHg. During this 
period, even though the variance was “typical” for this patient, 
sharp ICP spikes could be observed, and ICP was generally 
greater than in the “volatile” period for Patient A (Figure 4B). 
It is noteworthy that hourly recording of ICP values in the bed-
side nursing chart (as is often done in routine care) would un-
derestimate the true ICP during this time period. To illustrate, 
the ICP values for 3 consecutive hours during this period were 
20, 17, and 17 mmHg, which would suggest to a physician re-
viewing this chart on rounds that the patient’s ICP was within 
an acceptable range. However, such hourly measurements do 
not reflect the many ICP readings greater than 20 mmHg and 
several readings greater than 30 mmHg. In the final period of 
observation of approximately 3000 minutes, ICP fell slightly–
and this time showed far less variability–to 18.6 ± 3.7 mmHg. 
Ultimately, he required a hemicraniectomy and right frontal 
lobectomy. This patient’s ICP was greater than 20 mmHg for 
24.7% of the monitoring time, nearly five times the amount for 
Patient A. This type of data integration over time indicates the 
severity of his patient’s injury and would suggest a commen-
surate treatment response. Patient B was in the ICU for 19 
days, and his total hospital length of stay was 31 days. He was 
discharged to rehab with a GOS-E of 2 (vegetative).

Classification Analysis
Using hierarchical clustering, the 23 patients were assigned 

to three groups. The seven patients in Group A include those 
whose respiratory and blood pressure values were lowest 
(Figure 2) and those with the worst outcomes. Specifically, 
only three patients in the total sample of 23 died, but two
of them were in Group A; two patients in the total sample
were vegetative, and both were in Group A. As such, our
approach potentially appears to be predictive of outcome 
based on clustering of physiological data. Group A included 
the youngest patients (average age, 34.3 ± 14.4) with the lowest 
average arrival GCS motor score (3.6 ± 1.9) and average ISS 
(21.9 ± 6.6) (9). The 10 patients in Group B included those with 

Table 2 
Table of Ranges in Values of 14 Variables of Interest for 23 Patients

Ranges of selected physiological parameters

10th pctile 10th pctile Median Median 90th pctile 90th pctile

 Low High Low High Low High

MAP (mmHg) 70 97 82 111 96 129
ABP – systolic (mmHg) 105 158 127 177 144 201
ABP – diastolic (mmHg) 53 76 64 86 75 104
ICP (mmHg) 1 11 4 17 9 24
Heart rate (beats/minute) 41 82 59 112 65 131
CPP (mmHg) 62 84 66 99 85 115
PBrO2 (mmHg) 6.7 35.1 8.8 59.45 23.4 100
Brain temp (°C) 31.2 38.2 31.8 38.6 32.5 39.4
Core temp (°C) 34.2 37.6 35.8 38.2 36.7 39.3
Plateau pressure (mmHg) 9 23 11 30 15 42
Peak breathing pressure (mmHg) 11 36 11 44 16 47
Tidal volume (L) 0.16 0.71 0.5 0.76 0.53 0.84
Minute ventilation (L/minute) 6.3 10.7 7.3 15.7 8.7 20.9
Respiratory rate (breaths/minute) 10 17 12 31 13 34

Fig. 3. The range of ICP values observed within and across 22 
patients. Patient 13 is not included because of technical issues with 
ICP monitoring.
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higher blood pressure and CPP and were, on average, the 
oldest (44.3 ± 17.0) and had the highest ISS (30.3 ± 11.3). The six 
patients in Group C had the highest average arrival motor 
score (5.2 ± 1.3) and the highest values for respiratory rate, pla-
teau pressure, and peak breathing pressure.

These patient profiles are complex, and to our knowledge,
this is the first effort to fully integrate a multivariate data set
to construct patient profiles that could ultimately be used in di-
agnosis and treatment. The division of patients into three
groups is not definitive; with more physiological or demo-
graphic data, the patients could be divided into more, smaller,
and perhaps even different groups. However, the three groups
we describe are robust for this physiological data set insofar as
they are quantitatively validated by independent, demographic
and clinical data. Cluster analysis demonstrates that even pa-
tients that are similar in many respects (treatment protocols,
etc.) are different in other ways, and it is this insight that we are
looking for. By its nature, the execution of a clustering algo-
rithm will always produce one or more clusters. However, from

the tree of physiological variables, several clusters emerge as
expected (based on known physiological relationships), and
serve as internal controls: for example, systolic blood pressure,
diastolic blood pressure, and MAP values cluster together
(Figure 2). PbrO2 and end-tidal CO2 (ETCO2) also cluster, consis-
tent with the known relationship between CO2, cerebral blood
flow, and PbrO2. Because clustering physiological data is a new
approach, the high degree of correlation where it is expected
represents validation of the methodology. Analysis of a more
restricted set of noninterrelated variables would risk missing
unexpected relationships. In fact, other clusters emerge that are
unanticipated. For example, in this dataset ICP clusters with in-
spired oxygen. Upon review of the physiological data and nurs-
ing documentation, we noticed instances in which ICP spiked
when inspired oxygen was raised to 100% while the patient
was being suctioned. This has led to modification of our clinical
practice during suctioning. The clustering of core temperature
with SpO2 and heart rate with PEEP may not be informative,
because SpO2 and PEEP were both essentially constant.

Fig. 4. Multiple ICP time series scatterplots for two patients. (A) ICP time course over the entire monitoring period for Patient A indicates 
some high outliers, with a period of raised ICP on day 4 (at approximately 3500 minutes). ICP is usually below the 20 mmHg reference line.
The narrow dashed line box from 6300 to 6500 minutes indicates the period expanded in panel B. (B) Slightly increased ICP volatility on 
day 6 (at approximately 6300 minutes).This graph depicts the potential effect on interpretation when continuous data is only recorded at 
hourly intervals. Increased ICP volatility might not have been noticed had ICP values only been recorded hourly. (C) ICP time course for 
Patient B.The dashed box from 8000 to 8200 minutes indicates the period expanded in panel D. (D) A period of 200 minutes during which 
ICP was 15 ± 6 mmHg. Even though the variance was “typical” for this patient, sharp ICP spikes could be observed, and ICP was generally 
greater than in Patient A’s “volatile.”



New Approaches to Phsyiological Informatics 

Neurocritical Care ♦ Volume 7, 2007

The heat map is a quantitative, high-throughput, and visu-
ally intuitive way to group patients and possibly associate 
them with diagnoses or treatment strategies. This approach 
has potential clinical significance in the possibility of identify-
ing new patients who, based on multiple characteristics, are at 
risk to experience complications or worsened outcome. In this 
manner, ongoing refinement of physiological profiles could be 
used to target specific treatments. Future studies will be 
needed on larger patient samples to determine statistical sig-
nificance and potential for translation to the bedside.

The State of the Art and Future Directions
Our aims were (1) to present challenges and opportunities 

for high-frequency multimodal monitoring to quantitatively 
detect secondary brain insults, and (2) to develop clustering 
methodology to construct multivariate physiological data 
“profiles” to classify patients for diagnosis and treatment. We
first presented issues of continuous data summarization, visu-
alization, and integration with nursing documentation. We
then presented the first application of hierarchical clustering 
to construct physiological data profiles for patient classifica-
tion, diagnosis, and treatment. These initial efforts are among 
the first to begin to integrate multivariate, continuous data 
analysis into acute care, and they elucidate the complexities of 
ICU informatics, from reliable data capture to useful interpre-
tation. Future hypothesis-driven, prospective approaches 
must address quantitative and clinical issues together, not 
independently, to answer questions about clinical care that 
is optimized for individual patients.

Prior studies have employed exploratory data analysis in 
neurocritical care. Jones et al. examined time series MAP, ICP, 
and CPP data and related their variability to outcome. Their 
data were displayed on polygraphs, and patterns were de-
scribed to help interpret the data produced at the bedside (10).
In other studies, Cifu et al. have used various statistical meth-
ods to study post-acute functional outcome after brain injury 
(11–14). Worldwide, several groups have developed free, gen-
eralizable software resources to enable more powerful analy-
sis specifically tailored to physiological data. These include 
PhysioToolkit from the National Institutes of Health (NIH) 
National Center for Research Resources, Scilab from the 
French Institut National de Recherche en Informatique et 
en Automatique, TISEAN from the Max Planck Institut in 
Germany, ICM+ from the University of Cambridge, and HRV 
Analysis from the University of Kuopio in Finland.

Classification methods have seen limited use in the ICU but 
could potentially be applied to a wide variety of problems. For 
example, Stuss et al. evaluated the ability of measures of initial 
injury severity, tests of attention, and demographic characteris-
tics to predict recovery of memory in patients with TBI using 
classification and decision tree analysis. They identified four 
groups of patients and concluded that approaches that take 
into account multiple measures provide a more sensitive pre-
dictive index (15). Similarly, Andrews et al. compared results of 
logistic regression with those of tree analysis of a head-injury 
data set including a range of secondary insults and 12-month 
outcomes. They found, perhaps not surprisingly, that tree anal-
ysis confirmed some regression results and challenged others 
(16). Other groups have conducted similar studies (17–20).

Potential downsides exist to pursuing more complete data 
acquisition and processing; among them, the difficulty in in-
terpreting the vast amount of data that is acquired. With all the 
parameters continuously collected and the issues that occur in 
an ICU that may corrupt information (e.g., transducers being 
zeroed, ventriculostomies being opened for drainage, patients 
being turned, monitor disconnections for transport to imaging 
studies and procedures), there is great potential for data over-
load and false information. Thus, fundamental goals of any 
physiological informatics approach must be to ensure reliabil-
ity of the data, avoid collecting and processing large volumes 
of “meaningless” data, and establish relationships between 
physiological data and clinical events. All this must be done 
with output that is user-friendly and enhances the ability of 
the clinician to care for patients, rather than detracts from 
patient care. This is not a task for clinicians alone. At our 
institution, we have developed a collaboration between our 
clinicians, bioinformaticians, and computer scientists with the 
goal of addressing these complex and novel issues.

Neurotrauma physicians have been caring for critically in-
jured patients for decades. We recognize the value of clinical ex-
pertise. Yet it is often difficult to formalize how this expertise is
gained, other than through “experience.” As critical care infor-
matics evolves, it is important to determine if it aids decision
making regardless of the level of practitioner experience, stan-
dardizes care, serves as a training resource for junior clinicians,
or provides better information access even without making spe-
cific recommendations. These are controversial areas. We have
shown that Q1 minute data capture of many variables across
many patients is feasible and can potentially lead to new clini-
cal insights. Data visualization and use of descriptive statistics
are good first steps in physiological data analysis. However,
visualization of large time spans of data for even moderate
numbers of concurrent variables often becomes overwhelming,
even after normalization, so computational methods such as
hierarchical clustering can be useful for patient classification.

The potential benefits of neurocritical care informatics are 
alluring because improvements to the nature and timing of 
interventions could reduce secondary injury, long-term dis-
ability, and death. The lessons of epidemiology and human 
genetics indicate that powerful statistical and informatics 
tools can significantly extend knowledge in those fields. We
believe that the future of neurocritical care lies not just in de-
veloping new monitors, but in the ability to more fully under-
stand the information that we already have.
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