Skip to main content

Advertisement

Log in

Elevated neutrophil-lymphocyte ratio is associated with high rates of ICU mortality, length of stay, and invasive mechanical ventilation in critically ill patients with COVID-19

NRL and severe COVID-19

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Neutrophil and lymphocyte ratio (NLR) has emerged as a complementary marker in intensive care. This study aimed to associate high NLR values with mortality as the primary outcome, and length of stay and need for invasive mechanical ventilation as secondary outcomes, in critically ill patients with COVID-19. A cross-sectional study encompassing 189 critically ill patients with COVID-19 was performed. The receiver operating characteristic curve was used to identify the best NLR cutoff value for ICU mortality (≥ 10.6). An NLR ≥ 10.6, compared with an NLR < 10.6, was associated with higher odds of ICU mortality (odds ratio [OR], 2.77; 95% confidence interval [CI], 1.24–6.18), ICU length of stay ≥ 14 days (OR, 3.56; 95% CI, 1.01–12.5), and need for invasive mechanical ventilation (OR, 5.39; 95% CI, 1.96–14.81) in the fully adjusted model (age, sex, kidney dysfunction, diabetes, obesity, hypertension, deep vein thrombosis, antibiotics, anticoagulants, antivirals, corticoids, neuromuscular blockers, and vasoactive drugs). In conclusion, elevated NLR is associated with high rates of mortality, length of stay, and need for invasive mechanical ventilation in critically ill patients with COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the article. If additional data were required, it may be requested to the corresponding author.

References

  1. Forget P, Khalifa C, Defour JP, Latinne D, Van Pel MC, De Kock M. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes. 2017;10:1–4. https://doi.org/10.1186/S13104-016-2335-5.

    Article  Google Scholar 

  2. Karabinos I, Koulouris S, Kranidis A, Pastromas S, Exadaktylos N, Kalofoutis A. Neutrophil count on admission predicts major in-hospital events in patients with a non-ST-segment elevation acute coronary syndrome. Clin Cardiol. 2009;32:561–8. https://doi.org/10.1002/CLC.20624.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Honda T, Uehara T, Matsumoto G, Arai S, Sugano M. Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta. 2016;457:46–53. https://doi.org/10.1016/J.CCA.2016.03.017.

    Article  CAS  PubMed  Google Scholar 

  4. Pereira CGM, Santana ERS, Ramos JER, da Silva HMBS, Nunes MAP, Forbes SC, et al. Low serum zinc levels and Associated Risk factors in hospitalized patients receiving oral or Enteral Nutrition: a case-control study. Clin Ther. 2021;43:e39–55. https://doi.org/10.1016/J.CLINTHERA.2020.12.006.

    Article  CAS  PubMed  Google Scholar 

  5. Vitte J, Michel BF, Bongrand P, Gastaut JL. Oxidative stress level in circulating neutrophils is linked to neurodegenerative diseases. J Clin Immunol. 2004;24:683–92. https://doi.org/10.1007/S10875-004-6243-4.

    Article  PubMed  Google Scholar 

  6. Maor I, Rainis T, Lanir A, Lavy A. Oxidative stress, inflammation and neutrophil superoxide release in patients with Crohn’s disease: distinction between active and non-active disease. Dig Dis Sci. 2008;53:2208–14. https://doi.org/10.1007/S10620-007-0141-6.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, et al. Oxidative stress in neutrophils: implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal. 2022;36:652–66. https://doi.org/10.1089/ARS.2021.0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos HO, Fernando L, Izidoro M. Neutrophil-lymphocyte ratio in Cardiovascular Disease Risk Assessment. Int J Cardiovasc Sci. 2018;31:532–7. https://doi.org/10.5935/2359-4802.20180038.

    Article  Google Scholar 

  9. Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Reviews Immunol 2020. 2020;20:9. https://doi.org/10.1038/s41577-020-0407-1.

    Article  CAS  Google Scholar 

  10. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204. https://doi.org/10.18632/ONCOTARGET.23208.

    Article  PubMed  Google Scholar 

  11. Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;4:676–94. https://doi.org/10.3390/NU4070676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Montiel-Cervantes LA, Medina G, Cruz-Domínguez MP, Perez-Tapia SM, Jiménez-Martínez MC, Arrieta-Oliva HI, et al. Poor survival in COVID-19 Associated with Lymphopenia and higher neutrophile-lymphocyte ratio. Isr Med Assoc J. 2021;23:153–9.

    PubMed  Google Scholar 

  13. Salciccioli JD, Marshall DC, Pimentel MAF, Santos MD, Pollard T, Celi AA, et al. The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: an observational cohort study. Crit Care. 2015;19. https://doi.org/10.1186/S13054-014-0731-6.

  14. Akilli NB, Yortanli M, Mutlu H, Günaydin YK, Koylu R, Akca HS, et al. Prognostic importance of neutrophil-lymphocyte ratio in critically ill patients: short- and long-term outcomes. Am J Emerg Med. 2014;32:1476–80. https://doi.org/10.1016/J.AJEM.2014.09.001.

    Article  PubMed  Google Scholar 

  15. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18:1–12. https://doi.org/10.1186/S12967-020-02374-0/FIGURES/7.

    Article  Google Scholar 

  16. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39:2085–94. https://doi.org/10.1007/S10067-020-05190-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Santos HO. Therapeutic supplementation with zinc in the management of COVID-19-related diarrhea and ageusia/dysgeusia: mechanisms and clues for a personalized dosage regimen. Nutr Rev. 2022;80:1086–93. https://doi.org/10.1093/NUTRIT/NUAB054.

    Article  PubMed  Google Scholar 

  18. Santos HO, Tinsley GM, da Silva GAR, Bueno AA. Pharmaconutrition in the Clinical Management of COVID-19: a lack of evidence-based Research but Clues to personalized prescription. J Pers Med. 2020;10:1–18. https://doi.org/10.3390/JPM10040145.

    Article  Google Scholar 

  19. Sari I, Sunbul M, Mammadov C, Durmus E, Bozbay M, Kivrak T, et al. Relation of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio with coronary artery disease severity in patients undergoing coronary angiography. Kardiol Pol. 2015;73:1310–6. https://doi.org/10.5603/KP.A2015.0098.

    Article  PubMed  Google Scholar 

  20. Guo X, Zhang S, Zhang Q, Liu L, Wu H, Du H, et al. Neutrophil:lymphocyte ratio is positively related to type 2 diabetes in a large-scale adult population: a Tianjin Chronic Low-Grade systemic inflammation and health cohort study. Eur J Endocrinol. 2015;173:217–25. https://doi.org/10.1530/EJE-15-0176.

    Article  CAS  PubMed  Google Scholar 

  21. Turkmen K, Guney I, Humeyra F, Halil Y, Tonbul Z, Yerlikaya FH, et al. The relationship between neutrophil-to-lymphocyte ratio and inflammation in end-stage renal disease patients. Ren Fail. 2012;34:155–9. https://doi.org/10.3109/0886022X.2011.641514.

    Article  CAS  PubMed  Google Scholar 

  22. Bozkuş F, Dikmen N, Samur A, Bilal N, Atilla N, Arpağ H. Does the neutrophil-to-lymphocyte ratio have any importance between subjects with obstructive sleep apnea syndrome with obesity and without obesity? Tuberk Toraks. 2018;66:8–15. https://doi.org/10.5578/TT.66535.

    Article  PubMed  Google Scholar 

  23. Izaks GJ, Remarque EJ, Becker SV, Westendorp RGJ. Lymphocyte count and mortality risk in older persons. The Leiden 85-Plus study. J Am Geriatr Soc. 2003;51:1461–5. https://doi.org/10.1046/J.1532-5415.2003.51467.X.

    Article  PubMed  Google Scholar 

  24. Kuwae N, Kopple JD, Kalantar-Zadeh K. A low lymphocyte percentage is a predictor of mortality and hospitalization in hemodialysis patients. Clin Nephrol. 2005;63:22–34. https://doi.org/10.5414/CNP63022.

    Article  CAS  PubMed  Google Scholar 

  25. Vulliamy PE, Perkins ZB, Brohi K, Manson J. Persistent lymphopenia is an independent predictor of mortality in critically ill emergency general surgical patients. Eur J Trauma Emerg Surg. 2016;42:755–60. https://doi.org/10.1007/S00068-015-0585-X.

    Article  CAS  PubMed  Google Scholar 

  26. Ullah W, Basyal B, Tariq S, Almas T, Saeed R, Roomi S, et al. Lymphocyte-to-C-Reactive protein ratio: a novel predictor of adverse outcomes in COVID-19. J Clin Med Res. 2020;12:415–22. https://doi.org/10.14740/JOCMR4227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang AP, Liu J, ping, Tao W, qiang, Li H. ming. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 2020;84:106504. https://doi.org/10.1016/J.INTIMP.2020.106504.

  28. Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A Tool to early predict severe Corona Virus Disease 2019 (COVID-19): a Multicenter Study using the risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020;71:833–40. https://doi.org/10.1093/CID/CIAA443.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–9. https://doi.org/10.1016/J.IJID.2020.04.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu J, Kong J, Wang W, Wu M, Yao L, Wang Z, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: a retrospective study in Suzhou China. Thromb Res. 2020;192:3. https://doi.org/10.1016/J.THROMRES.2020.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simadibrata DM, Calvin J, Wijaya AD, Ibrahim NAA. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: a meta-analysis. Am J Emerg Med. 2021;42:60. https://doi.org/10.1016/J.AJEM.2021.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yan X, Li F, Wang X, Yan J, Zhu F, Tang S, et al. Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. J Med Virol. 2020;92:2573–81. https://doi.org/10.1002/JMV.26061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen R, Sang L, Jiang M, Yang Z, Jia N, Fu W, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020;146:89–100. https://doi.org/10.1016/J.JACI.2020.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding X, Yu Y, Lu B, Huo J, Chen M, Kang Y, et al. Dynamic profile and clinical implications of hematological parameters in hospitalized patients with coronavirus disease 2019. Clin Chem Lab Med. 2020;58:1365–71. https://doi.org/10.1515/CCLM-2020-0411/PDF.

    Article  CAS  PubMed  Google Scholar 

  35. Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020;10:5613. https://doi.org/10.7150/THNO.45985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun S, Cai X, Wang H, He G, Lin Y, Lu B, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020;507:174–80. https://doi.org/10.1016/J.CCA.2020.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatum D, Taghavi S, Houghton A, Stover J, Toraih E, Duchesne J. Neutrophil-to-lymphocyte ratio and outcomes in Louisiana COVID-19 patients. Shock. 2020;54:652–8. https://doi.org/10.1097/SHK.0000000000001585.

    Article  CAS  PubMed  Google Scholar 

  38. Ciccullo A, Borghetti A, Zileri Dal Verme L, Tosoni A, Lombardi F, Garcovich M, et al. Neutrophil-to-lymphocyte ratio and clinical outcome in COVID-19: a report from the italian front line. Int J Antimicrob Agents. 2020;56:106017. https://doi.org/10.1016/J.IJANTIMICAG.2020.106017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gelzo M, Cacciapuoti S, Pinchera B, De Rosa A, Cernera G, Scialò F, et al. Prognostic role of neutrophil to lymphocyte ratio in COVID-19 patients: still valid in patients that had started therapy? Front Public Health. 2021;9. https://doi.org/10.3389/FPUBH.2021.664108.

  40. Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients. J Med Virol. 2021;93:786. https://doi.org/10.1002/JMV.26300.

    Article  CAS  PubMed  Google Scholar 

  41. Güner R, Hasanoğlu İ, Kayaaslan B, Aypak A, Kaya Kalem A, Eser F, et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic’s first month in Turkey. Turk J Med Sci. 2020;50:1801–9. https://doi.org/10.3906/SAG-2006-164.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vekaria B, Overton C, Wiśniowski A, Ahmad S, Aparicio-Castro A, Curran-Sebastian J, et al. Hospital length of stay for COVID-19 patients: Data-driven methods for forward planning. BMC Infect Dis. 2021;21:1–15. https://doi.org/10.1186/S12879-021-06371-6/TABLES/2.

    Article  Google Scholar 

  43. Larsson E, Brattström O, Agvald-Öhman C, Grip J, Campoccia Jalde F, Strålin K, et al. Characteristics and outcomes of patients with COVID-19 admitted to ICU in a tertiary hospital in Stockholm, Sweden. Acta Anaesthesiol Scand. 2021;65:76–81. https://doi.org/10.1111/AAS.13694.

    Article  CAS  PubMed  Google Scholar 

  44. Alimohamadi Y, Yekta EM, Sepandi M, Sharafoddin M, Arshadi M, Hesari E. Hospital length of stay for COVID-19 patients: a systematic review and meta-analysis. Multidiscip Respir Med. 2022;17. https://doi.org/10.4081/MRM.2022.856.

  45. Chiam T, Subedi K, Chen D, Best E, Bianco FB, Dobler G, et al. Hospital length of stay among COVID-19-positive patients. J Clin Transl Res. 2021;7:377. https://doi.org/10.18053/jctres.07.202103.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dongelmans DA, Termorshuizen F, Brinkman S, Bakhshi-Raiez F, Arbous MS, de Lange DW, et al. Characteristics and outcome of COVID-19 patients admitted to the ICU: a nationwide cohort study on the comparison between the first and the consecutive upsurges of the second wave of the COVID-19 pandemic in the Netherlands. Ann Intensive Care. 2022;12:1–10. https://doi.org/10.1186/S13613-021-00978-3/FIGURES/3.

    Article  Google Scholar 

  47. Boëlle PY, Delory T, Maynadier X, Janssen C, Piarroux R, Pichenot M, et al. Trajectories of hospitalization in COVID-19 patients: an observational study in France. J Clin Med 2020. 2020;9:9:3148. https://doi.org/10.3390/JCM9103148. Page 3148.

    Article  Google Scholar 

  48. Elsayed HH, Hassaballa AS, Ahmed TA, Gumaa M, Sharkawy HY, Moharram AA. Variation in outcome of invasive mechanical ventilation between different countries for patients with severe COVID-19: a systematic review and meta-analysis. PLoS ONE. 2021;16. https://doi.org/10.1371/JOURNAL.PONE.0252760.

  49. Brioni M, Meli A, Grasselli G. Mechanical ventilation for COVID-19 patients. Semin Respir Crit Care Med. 2022;43:405–16. https://doi.org/10.1055/S-0042-1744305.

    Article  PubMed  Google Scholar 

  50. de Macedo BR, Garcia MVF, Garcia ML, Volpe M, de Araújo Sousa ML, Amaral TF, et al. Implantação de telemedicina de terapia intensiva durante a pandemia de COVID-19. Jornal Brasileiro de Pneumologia. 2021;47:e20200545–5. https://doi.org/10.36416/1806-3756/E20200545.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Van Es B, Klaassen CAJ, Oudshoorn K. Survival analysis under cross-sectional sampling: length bias and multiplicative censoring. J Stat Plan Inference. 2000;91:295–312. https://doi.org/10.1016/S0378-3758(00)00183-X.

    Article  Google Scholar 

  52. Abd Elhafeez S, D’Arrigo G, Leonardis D, Fusaro M, Tripepi G, Roumeliotis S. Methods to Analyze Time-to-Event Data: the Cox Regression Analysis. Oxid Med Cell Longev 2021;2021. https://doi.org/10.1155/2021/1302811.

Download references

Acknowledgements

We are thankful for the São Lucas Hospital. This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. HOS has been supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HOS – Conceptualization, writing of original draft, review of manuscript. FMD – Statistical analyses. OMV – data collection. JMRF – data collection. ESNG – data collection. CGMP – project administration, data collection, and supervision. All authors critically revised the article and finally approved the version to be published.

Corresponding author

Correspondence to Heitor O. Santos.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This research was ratified by the Federal University of Sergipe and was approved by the local Research Ethics Committee (nº 35128820.0.0000.5546.). Data were collected from the medical record system. There was no intervention.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, H.O., Delpino, F.M., Veloso, O.M. et al. Elevated neutrophil-lymphocyte ratio is associated with high rates of ICU mortality, length of stay, and invasive mechanical ventilation in critically ill patients with COVID-19. Immunol Res 72, 147–154 (2024). https://doi.org/10.1007/s12026-023-09424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09424-x

Keywords

Navigation