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Abstract
As the leading central immune organ, the thymus is where T cells differentiate and mature, and plays an essential regula-
tory role in the adaptive immune response. Tuft cells, as chemosensory cells, were first found in rat tracheal epithelial, later 
gradually confirmed to exist in various mucosal and non-mucosal tissues. Although tuft cells are epithelial-derived, because 
of their wide heterogeneity, they show functions similar to cholinergic and immune cells in addition to chemosensory abil-
ity. As newly discovered non-mucosal tuft cells, thymic tuft cells have been demonstrated to be involved in and play vital 
roles in immune responses such as antigen presentation, immune tolerance, and type 2 immunity. In addition to their unique 
functions in the thymus, thymic tuft cells have the characteristics of peripheral tuft cells, so they may also participate in the 
process of tumorigenesis and virus infection. Here, we review tuft cells’ characteristics, distribution, and potential functions. 
More importantly, the potential role of thymic tuft cells in immune response, tumorigenesis, and severe acute respiratory 
syndrome coronavirus 2(SARS-CoV-2) infection was summarized and discussed.
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Introduction

The thymic microenvironment determines T cells' prolif-
eration, differentiation, and selective development, mainly 
composed of thymic stromal cells, extracellular matrix, and 
local active factors. Various cells interact with thymocytes 
through corresponding mechanisms to form central toler-
ance in the thymic microenvironment. Tuft cells are one of 
the newly discovered cell types, widely distributed in the 
intestines, gallbladder, thymus, and other organs, and play 

a vital role in immune response, inflammatory response, 
tumorigenesis, and other diseases [1, 2]. Thymic tuft cells 
simultaneously have the characteristics of medullary thymic 
epithelial cells (mTECs) and peripheral tuft cells and are 
a subset of terminally differentiated mTECs [3]. Thymic 
tuft cells can promote the development of thymocytes and 
induce immune tolerance, which makes the thymus without 
tuft cells unable to form a complete immune tolerance, and 
some T cells begin to attack their tissues, resulting in auto-
immune reactions [4–6]. Here, we mainly review the distri-
bution differences and functional heterogeneity of tuft cells 
discovered in recent years and discuss in detail the regula-
tion of development and the potential functions of tuft cells 
in the thymus.

Tuft cells

Discovery of tuft cells

As chemosensory cells with unique morphology, tuft cells 
are widely distributed in various organs and play various 
important roles [1, 2, 7]. Tuft cells were first found in the 
epithelium of rats’ tracheal mucosa, and they gained the 
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name because of their microvilli on the top surface of the 
cells, which were similar to the tuft [8]. With further study 
of tuft cell distribution, they were found in the epithelium of 
the salivary gland, gallbladder, and gastrointestinal tract and 
distributed in a preferential manner [1, 7]. At first, tuft cells 
were considered to act as chemical signal sensors because 
they could secrete a variety of physical mediums [1]. People 
have gradually paid more attention to the immunoregula-
tion and acetylcholine (Ach) synthesis of tuft cells in recent 
years [2, 9, 10]. Nevertheless, although tuft cells have been 
discovered for a long time, their distribution and function 
remain unknown and need to be explored further.

Distribution and markers of tuft cells

Tuft cells express various markers in different 
microenvironments. Although tuft cells have been confirmed 
to be widely distributed in many organs and tissues [7], there 
are significant differences in the distribution frequency of 
tuft cells in different microenvironments as well as in their 
markers (Table 1) [2]. In the rat airway where they were first 
found, the tuft cells accounted for 5–10% of all epithelial 
cells and expressed markers such as ChAT, TRPM5, and 
DCLK1 [2, 11, 12], thereby regulating respiratory reflex 
and airway remodeling [13, 14]. Moreover, Wattel et al. 
discovered many years ago that tuft cells frequently appeared 
in the forestomach ridge of rats, accounting for about 20% 
of the epithelial cells there [7, 15, 16]. Under the conditions 
of gastritis and mucus cell proliferation, the mRNA of tuft 
cells DCLK1 was significantly increased, which meant that 
the number of tuft cells in epithelial tissue increased with 
inflammation, proliferation, and metaplasia [17]. Huang 
et al. reported that when functional dyspepsia occurred, the 
number of tuft cells in duodenal epithelial tissue increased, 
further providing evidence for this view [18]. As one of the 
earliest tuft cell markers, villus protein was expressed in tuft 
cells and intestinal cells, making it not a specific marker for 
intestinal tuft cells [19]. Ruppert et al. further found that the 
expression of villin-related protein AVIL was limited to tuft 
cells, which enabled the intestinal tuft cells to be effectively 
identified and selected, although their expression accounted 
for only 0.4% of the local cell population [19–21]. Tuft cells 
can also be present in the urethral epithelium and induce 
bladder detrusor contraction by expressing Trpm5, expelling 
harmful substrates [12, 22, 23].

Besides the various distribution in various tissue micro-
environments, organism species also cause the different 
distribution of tuft cells (Table 1). Previous studies have 
shown that tuft cells were present in the entire respiratory 
tract in rats, while they were rarely seen in the respiratory 
tract below the bronchial bifurcation in mice [2]. In addi-
tion, the tuft cells in the mice’s stomachs were mainly con-
centrated in the limiting ridge, while the human gastric tuft 

cells were widely distributed in the whole stomach, further 
proving the species difference in the distribution of the tuft 
cells [9]. Even in the same tissue and organ of the same spe-
cies, tuft cells were not uniformly distributed. In the study 
of Chang et al., tuft cells were found in rat airways, account-
ing for approximately 3% of tracheal epithelium and 1.4% 
of terminal bronchi, while few tuft cells were seen in lobar 
bronchi, which meant that there were frequency differences 
in the distribution of tuft cells along the airways of rats [24].

For the molecular markers, tuft cells also showed dif-
ferences between humans and mice, most notably DCLK1, 
whose expression has not been confirmed in human intesti-
nal tuft cells [25, 26]. Miller et al. found that approximately 
10% of mTECs in the thymus of adult mice were DCLK1-
positive, while only 3.5% of mTECs were DCLK1-positive 
cells in the human thymus [5]. However, the effect of the 
difference in tuft cells between these species on their func-
tions is still unknown and deserves to be explored.

Functions of tuft cells

Due to the unique morphology and distribution differ-
ences, the tuft cells show diverse effects in different tissues 
(Table 1). Tuft cells were scattered throughout the gastroin-
testinal tract and expressed a variety of taste receptors and 
signaling proteins; therefore, they were thought to be chemo-
receptors similar to type II taste cells [1, 7, 26, 46]. Through 
the expression of taste signaling molecules such as bitter and 
sweet taste receptors and gustducin, gastrointestinal tuft cells 
were involved in the perception of sweet, bitter, and umami 
taste [26, 46]. In addition to sensing taste, the tuft cells can 
sense harmful stimuli, inflammation, and stimulation of 
harmful bacteria and parasites and express various signal-
ing molecules to regulate the altered microenvironment [47]. 
Previous studies have found that tuft cells can respond to the 
destruction of intestinal microbiota caused by the influenza 
virus, which proved the sensory effect of tuft cells on harm-
ful stimuli [32]. At the same time, tuft cells were necessary 
for the increase of type 2 innate lymphocytes (ILC2s) in the 
small intestine induced by the influenza virus, which sug-
gested the regulator role of tuft cells in the immune response 
[32]. Xiong et al. also reported that intestinal tuft cells could 
sense bacterial metabolites and exert antibacterial immunity, 
further proving that the tuft cells had not only chemosensory 
effects but also mediated immune effects [48]. Moreover, 
Ach biosynthesis by tuft cells was another important effect 
in addition to immunologic and chemosensory functions. 
Ach derived from the tuft cells played vital roles in regu-
lating airway remodeling, promoting muscle contraction, 
maintaining epithelial homeostasis, and promoting the 
occurrence of cancer [2].

Even in different parts of the same tissue, the function of 
tuft cells is varied (Table 1). In every anatomical position, tuft 
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cells showed a high degree of specificity and adaptability to 
adjust their response to each microenvironment change. Haber 
et al. found two subtypes when observing intestinal tuft cells 
[34, 49]. Type 1 tuft cells signal contained genes related to neu-
ral development, while type 2 tuft cells were rich in immune-
related genes. However, little is known about the number of 
regulated tuft cells in the process of different microenvironment 
alterations and how these sub-populations of tuft cells work, 
which still need to be further explored.

Tuft cells in the thymus

Thymus is a central immune organ responsible for pro-
ducing various but self-tolerant T lymphocyte banks, 
which are essential for the development and maturity of 
T cells [50]. mTECs help shape the thymic microenviron-
ment to promote the establishment of central self-toler-
ance by expressing multiple peripheral tissue-restricted 
antigens (TRAs) that bind to self-reactive T cells and 
induce negative selection of highly self-reactive T cells 
[51, 52]. To increase the diversity of TRAs, a portion 
of mTECs can “terminally differentiate” into atypical 
cells similar to peripheral epithelial cells [51]. Thymic 
tuft cells are one of the subsets of mTECs after terminal 
differentiation [5, 43]. Miller et al. confirmed the exist-
ence of tuft cells in the thymus through flow cytometry 
analysis [5].

Moreover, thymic tuft cells were found to share a large 
number of regulatory factors and specific genes with 
intestinal tuft cells [43]. This reflected that thymic tuft 
cells might have similar characteristics to peripheral tuft 
cells. However, thymic tuft cells also have their specific 
gene expression. When Nevo et al. explored the differ-
ences between thymic tuft cells and peripheral tuft cells, 
they found that thymic tuft cells specifically expressed 
L1CAM and MHC II (Fig. 1a) [1]. In addition to the dif-
ferences in gene expression, thymic tuft cells exist in tis-
sue epithelium rather than mucosal tissue. Their morpho-
logical characteristics do not have clear top and bottom 
like intestinal tuft cells, but show lateral microvilli [33]. 
Therefore, understanding the development, heterogene-
ity, and potential functions of tuft cells in the thymus 
will help us to better understand the role of the thymus.

Development and expression regulation of thymic 
tuft cells

Sox4 regulates the differentiation of stem cells in various 
tissues and is also significant for the development of 
various lymphocytes [53–56]. Thymic tuft cells are a subset 
of recently discovered terminally differentiated mTECs 
for which SRY-related high-mobility-group box 4 (Sox4) 
is essential for their development. Previous studies have 

proved that a certain abundance of Sox4 can maintain 
the normal development of thymic tuft cells. By gene 
expression analysis, Mino et al. assessed that in mTECs 
of mice lacking of Sox4, the mRNA expression level of 
Dclk1 and Pou2f3 decreased, which were the tuft cell-
related genes and the tuft cell markers [51]. When the level 
of Sox4 in thymic epithelial cells decreased, the thymus 
only showed the normal development of conventional 
mTECs, while the number of thymic tuft cells decreased 
(Fig. 1b) [51]. This indicated that Sox4 might influence the 
terminal differentiation of mTECs into thymic tuft cells, thus 
affecting the development of thymic tuft cells.

In addition, taste signal molecules Pou2f3 and Trpm5 
were also considered to be necessary for the development 
and function of thymic tuft cells. In the study of Miller 
et al.,  Pou2f3−/− mice and  Trpm5−/− mice showed specific 
loss of thymic tuft cells [5, 43]. In normal thymic tuft 
cells, the co-expression of Pou2f3 and uncharacterized 
proteins C11orf53 (OCA-T1) activated the tuft cell-specific 
gene Trpm5, which further promoted the development 
of thymic tuft cells (Fig. 1c) [57]. The development and 
differentiation of thymic tuft cells also depended on the 
epigenetic regulatory factor Sirtuin 6 (Sirt6). The deletion 
of Sirt6 reduced the expression of the Pou2f3-regulated gene 
and chromatin accessibility in thymic tuft cells (Fig. 1d), 
thereby inhibiting Pou2f3-mediated differentiation of thymic 
tuft cells and finally significantly reducing the presence of 
thymic tuft cells [45]. Therefore, it suggested that nuclear 
transcription factors and epigenetic regulatory factors are 
crucial for the development and differentiation of thymic 
tuft cells, and the taste signal transduction pathway plays 
a significant role in maintaining the function of thymic tuft 
cells.

Effect on thymus development of tuft cells

Thymic tuft cells played an essential role in shaping T  
lymphocytes development [5, 42]. Similar to mucosal tuft 
cells, thymic tuft cells expressed high levels of IL-25, and 
IL-25 expression was limited to thymic tuft cells in the  
thymus [3, 42]. This meant that NKT2 cells expressing 
IL-25 receptor (IL-25 R) in the thymus might be regulated 
by thymic tuft cells. Lacus et al. discovered that the number 
of NKT2 cells was selectively decreased in the thymus of 
tuft-cell-deficient mice, and NKT2 cells were recovered after 
in vivo administration of IL-25, further proving that thymic 
tuft cells were a critical selective regulator of NKT2 [42]. 
NKT2 cells were confirmed to be the primary source of IL-4 
in the thymus [6]. Through the stable production of IL-4,  
selectively activated NKT2 cells can regulate the expression 
of chemokines by thymic dendritic cells (DCs) and regulate 
CD8 + cells to become memory phenotypes, which strongly 
affects the development of thymocytes (Fig. 1e) [6, 42]. 
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However, the stable production of IL-4 depends not only 
on the production of IL-25 by thymic tuft cells but also on 
the continuous production of T cell receptors (TCRs) in 
the thymic medulla [42]. The production of IL-25 by the 
thymic tuft cells affected the development of NKT2 cells, 
which were then stimulated by the TCR signal in the thymus  
medulla to differentiate, produce and maintain NKT2  
function [6].

Previous studies have displayed that tuft cells in mice thy-
mus medulla possessed the characteristics of cholinergic epi-
thelial cells and expressed ChAT, which meant that thymic 
tuft cells owned the possibility of synthesizing Ach [33]. 

Ach is expressed by thymic tuft cells bound to acetylcholine 
receptors in the thymus, which made DCs polarize towards 
T helper 2 (Th2) promoting mode [58, 59]. Moreover, Ach 
may also play roles in regulating the differentiation, matura-
tion, and selection of T cells, affecting the development of 
T cells and playing a pivotal role in maintaining the normal 
function of the thymus [1, 60].

Thymic tuft cells participating in immune response

Using the typical taste chemical sensory pathway, tuft 
cells can detect the potentially harmful compounds on the 

Fig. 1  a The difference between 
thymic tuft cells and other 
tuft cells. b Insufficient sox4 
level cannot maintain the nor-
mal development of thymic tuft 
cells. c Co-expression of Pou2f3 
and OCA-T1 activates Trpm5, 
thus promoting the develop-
ment of thymic tuft cells. d 
The deletion of Sirt6 reduces 
the accessibility of the Pou2f3 
chromosome, thus hindering 
the development of thymic tuft 
cells. e The expression of IL-25 
in thymic tuft cells promotes 
the expression of IL-4 in NKT2 
cells and causes DC to express 
chemokines, thus affecting the 
development of thymocytes
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mucosal surface and further prevent the invasion of bacteria 
or harmful compounds by starting a protective reaction [47]. 
Unlike mucosal tuft cells, tuft cells located in the thymic 
medulla were not often directly exposed to foreign bacteria 
and harmful substances [33]. However, previous studies have 
indicated that during systemic infection, viruses, bacteria, 
and bacterial products can still reach the thymus, and the 
thymus can also sense and respond to these harmful stimuli 
[1, 33, 61], which means that thymic tuft cells might rely on 
their taste signal transduction pathway to feel the harmful 
stimuli reaching the thymus and initiate the corresponding 
protective reactions.

Although thymic tuft cells and mucosal tuft cells share 
a large number of regulatory factors and tuft-specific genes 
and possess many similarities, thymic tuft cells also express 

a large number of different genes and display unique func-
tions [3, 43, 62]. Unlike intestinal tuft cells, which expressed 
MHC I and β2-microglobulin, thymic tuft cells were 
revealed to express Tas2r site at a relatively high level, as 
well as several members of MHC II and CD74 genes related 
to antigen presentation (Fig. 2) [3, 5, 10]. This specificity of 
thymic tuft cells increased their potential to present antigens 
to developing thymocytes.

The immune function of tuft cells was well reflected in 
the intestine. Similar to small intestinal tuft cells, thymic 
tuft cells also expressed IL-25 [42]. As IL-25 seems to be 
the key factor connecting tuft cell chemoperception with 
type 2 immunity [63], it can be speculated that thymic tuft 
cells may also participate in type 2 immunity. However, 
although a large number of thymic tuft cells expressed IL-25 

Fig. 2  Thymus tuft cells 
express IL-25, which affects the 
development of NKT2 cells and 
ILC2 cells, thus participating in 
the immune response. MHC II 
expressed by thymic tuft cells is 
involved in antigen presentation
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to activate NKT2 (Fig. 2), and the number of NKT2 cells 
and EOMES + CD8 + single positive thymocytes decreased 
in thymus lacking tuft cells, which could provide evidence 
for thymic tuft cells to participate in type 2 immunity [5], 
Nevo et al. showed that the frequency and number of thymic 
innate lymphocyte cells type 2 (ILC2) in mice with tuft cells 
deficiency increased due to feedback loop or intestinal- 
thymus crosstalk [1]. Therefore, whether thymic tuft cells 
are involved in the activation of type 2 immune response 
needs further exploration.

In addition to possibly being associated with the immune 
response process, thymic tuft cells also played a certain role 
in inducing immune tolerance. It was found that the athymic 
mice transplanted with  Pou2f3−/− thymus (with peripheral 
tuft cells but lacking thymic tuft cell antigen) produced a 
specific antibody response to IL-25 immune response, 
while the wild-type mice were tolerant [5, 63]. Therefore, 
we can speculate that thymic tuft cells seem to be involved 
in enhancing the tolerance of unique tuft-restricted antigens 
including IL-25.

Thymic tuft cells and thymic tumors

Tuft cells are thought to promote the occurrence of cancer 
because of their ability to regulate the microenvironment 
of the nerve around the tumor and their ability to act as 
progenitor cells leading to cancer [2, 17]. Recently, Yamada 
et al. discovered by immunohistochemistry that KIT and 
other known genes of thymic tuft cells were co-expressed in 
normal human thymus tuft cells and most thymic carcinoma, 
and even genes specific to thymic tuft cells, such as L1CAM, 
were expressed in thymic squamous cell carcinoma (Fig. 3) 
[64]. This suggests that thymic tuft cells may be involved in 
the occurrence and development of thymic tumors.

SRY-box transcription factor 9 (Sox9) plays a vital role in 
the occurrence and development of cancer because it is involved 
in the occurrence, transfer, and change of the tumor microenvi-
ronment [65]. When Yuan et al. explored the diagnostic value 
of Sox9 in thymic epithelial tumors (TETs), they found that 
Sox9 was highly expressed in the nucleus of TETs, and its high 
expression meant a lousy outcome for thymic tumors [66]. This 
reflects the possible role of Sox9 as a diagnostic and prognostic 
indicator for TETs. Notably, Sox9 could be used as a marker of 
tuft cells in some tissues, and its expression was also positively 
correlated with the expression of Pou2f3, an essential regulator 
of tuft cells [1, 66]. This further suggests that thymic tumors 
display a tuft cell-related phenotype.

However, as a thymic tumor, thymomas exhibit a much 
less tuft cell-like phenotype than thymic carcinoma [67]. 
This may be because many mTEC terminal differentiation 
genes are not expressed in thymomas, resulting in the final 
deletion of the developmental pathway of thymic tuft cells 
due to the non-expression of Pou2f3 in thymomas [64, 68]. 

However, thymic carcinoma expresses thymic tuft cells’ 
specific genes, which means that tuft cell-like thymic squa-
mous cell carcinoma may be produced by mutated mTEC 
precursors [64]. We realize that tuft cell-like carcinoma has 
the characteristics of tuft cell gene expression, which may 
provide vital information for a more accurate diagnosis 
of thymic carcinoma. However, the relationship between 
thymic tuft cells and thymic tumors remains unclear and 
needs further exploration.

The potential association between thymic tuft cells 
and SARS‑CoV‑2 infection

Previous studies have found that tuft cells could directly cause 
diseases as the target cells of virus infection; on the other hand, 
they can indirectly affect the occurrence of diseases through 
the immune response driven by co-infection [25]. It has been 
demonstrated that murine rotavirus can directly infect and 
replicate within tuft cells [69]. Coincidentally, Wilen et al. 
revealed that intestinal tuft cells expressed MNV virus recep-
tor CD300lf, and it was the main physiological target of the 
 MNVCR6 strain [70]. Therefore, the proliferation of intestinal 
tuft cells can promote the infection of  MNVCR6, which also 
reflects that the tuft cells have the potential to promote viral 
infection. In addition, the virus and tuft cell interacted with 
each other. While tuft cells promoted viral infection, viruses 
can also facilitate the development of nascent tuft cells [25].

Fig. 3  Thymic carcinoma expressed the specific marker L1CAM of 
thymic tuft cells
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During the SARS-CoV-2 global pandemic, the number 
of tuft cells in the upper respiratory tract of coronavirus-19 
disease (COVID-19) patients increased by three folds, and 
ectopic development of the tuft cells occurred in the lung, 
suggesting that the tuft cells may also be involved in the 
SARS-CoV-2 infection process [71]. As a part of the central 
immune organs which participates in the immune process, 
it is not clear whether thymic tuft cells are involved in the 
pathogenesis of SARS-CoV-2. However, the existing stud-
ies have confirmed that the CD74 gene was significantly 
upregulated, and the antigen presentation function was 
enhanced in asymptomatic SARS-CoV-2 infected patients 
[72]. Given the specific expression of MHC II and CD74 
in thymic tuft cells, compared to peripheral tuft cells, it is 
reasonable to suspect that thymic tuft cells may be involved 
in the process of infection with SARS-CoV-2. Previous stud-
ies have confirmed that SARS-CoV-2 required not only the 
combination of the S1 subunit of virus spike (S) protein 
and angiotensin-converting enzyme 2 (ACE2) of the host 

cell to locate the virus, but also the transmembrane serine 
protease 2 (TMPRSS2) of the host cell to cut the virus S 
protein and activate S2 subunit, thus promoting the virus to 
enter the host cell [73, 74]. In Bruchez et al.’s research, the 
MHC class II trans-activator (CIITA) activated the expres-
sion of the P41 subtype of CD74, and CD74 P41 inhibited 
the processing of S protein by TMPRSS2 (Fig. 4) [75]. This 
means that the specific high expression of the MHC II fac-
tor and CD74 gene in thymic tuft cells can not only play the 
role of antigen presentation but also prevent SARS-CoV-2 
from infecting host cells. Considering the decrease in lym-
phocytes in patients infected with SARS-CoV-2 [76], we 
speculate that, unlike peripheral tuft cells that promote the 
onset of the virus, thymic tuft cells may play a role in the 
anti-SARS-CoV-2 response and SARS-CoV-2 may also 
damage thymic tuft cells in turn during this process to cause 
immunodeficiency. However, there have been no reports of 
SARS-CoV-2 infection in thymic tuft cells, which needs 
further exploration.

Fig. 4  Specific expression of 
CD74 gene in thymic tuft cells. 
The P41 subtype of CD74 can 
inhibit the processing of SARS-
CoV-2 S protein by host cell 
TMPRSS2
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Conclusion and prospect

Although tuft cells can be distributed in different organs or 
tissues to produce a variety of effector molecules and play 
a variety of different effects, it is due to the differential 
distribution of tuft cells in organisms between diseases 
and health states, and among species, the known function 
of tuft cells varied. Collectively, thymic tuft cells express 
taste receptors, ChAT, IL-25, CD74, and MHC II, suggest-
ing that they may have the ability of chemosensory, cholin-
ergic, and immune response. However, thymic tuft cells’ 
role in thymic tumorigenesis, virus infection, and other 
diseases is still complex, and whether the thymic tuft cells 
own other thymic-specific effects needs further explora-
tion. The heterogeneous expression of bitter receptors in 
thymic tuft cells makes it a significant research direction 
to assess whether the pool of chemosensory receptors is a 
feature that drives the functional heterogeneity of thymic 
tuft cells. Not only that, but the discovery of thymic tuft 
cells also provides a potential target for medical interven-
tion strategies for immune aging and other related health 
problems and will provide the possibility for the diagnosis 
and treatment of autoimmune diseases and some tumors.
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