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Abstract
Autoimmune diseases are caused by the break-down in self-tolerance mechanisms and can result in the generation of autoan-
tibodies specific to human antigens. Human autoantigen profiling technologies such as solid surface arrays and display 
technologies are powerful high-throughput technologies utilised to discover and map novel autoantigens associated with 
disease. This review compares human autoantigen profiling technologies including the application of these approaches in 
chronic and post-infectious autoimmune disease. Each technology has advantages and limitations that should be considered 
when designing new projects to profile autoantibodies. Recent studies that have utilised these technologies across a range of 
diseases have highlighted marked heterogeneity in autoantibody specificity between individuals as a frequent feature. This 
individual heterogeneity suggests that epitope spreading maybe an important mechanism in the pathogenesis of autoim-
mune disease in general and likely contributes to inflammatory tissue damage and symptoms. Studies focused on identifying 
autoantibody biomarkers for diagnosis should use targeted data analysis to identify the rarer public epitopes and antigens, 
common between individuals. Thus, utilisation of human autoantigen profiling technology, combined with different analysis 
approaches, can illuminate both pathogenesis and biomarker discovery.

Keywords Autoimmune disease · Autoantigens · Epitope spreading · Biomarker discovery · Protein array · PhIP-Seq

Introduction

Autoimmune diseases are caused by the break-down in self-
tolerance mechanisms as a result of genetic and environ-
mental influences. It is estimated that 4.5% of the global 
population are affected by an autoimmune disease, with the 
incidence increasing, especially in low and middle income 
countries [1]. The humoral immune response plays an 
important role in autoimmunity, with autoantibodies trig-
gering downstream effects such as T cell activation and 
inflammation. The current diagnosis of many autoimmune 
diseases is lacking in sensitivity and specificity. The detec-
tion of autoantibodies is an ideal method for diagnosis as 

antibodies are abundant, stable, and multiple methods to 
detect antibodies are available. In many autoimmune dis-
eases, such as rheumatoid arthritis, autoantibodies are circu-
lating prior to symptom onset, allowing for early diagnosis 
and improved opportunities for treatment [2, 3].

There are remaining knowledge gaps as to which anti-
gens autoantibodies recognise in many autoimmune dis-
eases. New experimental techniques are continuously being 
developed with the aim of discovering novel autoantigens, 
including human solid surface arrays and display technolo-
gies. These new approaches have dramatically expanded the 
number of antigens that can be explored for involvement 
in autoimmune disease compared to traditional approaches. 
The techniques enable hundreds to thousands of human anti-
gens to be printed on a solid surface or displayed in solu-
tion. Human samples such as serum, plasma or cerebrospinal 
fluid can be applied, and antibody-antigen interactions are 
detected. Autoantigens detected using these high-throughput 
and high-content approaches can then be orthogonally vali-
dated on immunoassays such as ELISA or bead-based assays 
such as Luminex, before being clinically validated for use 
as a biomarker for diagnosis. This review summarises and 
compares different types of human autoantigen profiling 
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technologies, including solid surface arrays and display 
technologies. Recent applications for novel biomarker dis-
covery, as well as how autoantibody profiling can contrib-
ute to improved understanding of disease pathogenesis, are 
highlighted.

Solid surface arrays

Solid surface arrays display hundreds to thousands of anti-
gens on a surface such as nitrocellulose coated glass [4]. 
These arrays were originally adapted from oligonucleotide 
arrays, which were developed in the 1990s and consisted 
of DNA fragments displayed on a solid surface. However, 
the initial oligonucleotide solid surface arrays were based 
on whole-genomes and included non-expressed genes that 
are not biologically relevant to disease. This was overcome 
by the advent of solid surface arrays that incorporated only 
proteins and peptides expressed in vivo. Solid surface arrays 
now provide a high-throughput method used to investigate 
protein-protein interactions, enzyme-substrate reactions, 
protein-drug interactions, and antibody-antigen interactions. 
Detection methods of solid surface arrays include fluores-
cence, mass spectrometry and surface plasmon resonance.

Protein arrays

Protein arrays comprise full-length proteins or protein 
domains being displayed on the solid surface. Some of the 
first high content protein arrays were established in the year 
2000, with over 10,000 full-length human proteins displayed 
on a glass slide [5]. Since then, protein arrays displaying 
human proteins have been used for a wide range of appli-
cations, including detecting novel antibody biomarkers in 
autoimmune diseases. Protein arrays can be divided into 
two categories based on their method of protein synthesis: 
those that are produced using cellular expression, or those 
produced using cell-free methods such as in situ synthe-
sis. Cellular produced arrays utilise recombinant proteins 
expressed in a host organism prior to immobilising on the 
solid surface. The choice of the expression host is important 
to consider with common host organisms including bacte-
ria (mostly commonly Escherichia coli), Saccharomyces 
cerevisiae cells (yeast), insect cells, and human cells. The 
expression host can affect the protein glycosylation and other 
post-translational modifications such as citrullination, and it 
is known that antibodies have the ability to recognise these 
post-translational modifications [3, 6]. Proteins expressed in 
yeast and insect cells will be glycosylated, unlike proteins 
expressed in bacterial hosts such as E. coli, though the gly-
cosylation patterns still differ to that of humans. The num-
ber of proteins included in the array is limited to the labour 
and cost associated with expression and purification of the 

proteins. This led to the development of cell-free or in situ 
protein array synthesis, in which proteins are synthesised 
directly onto the solid surface [7]. DNA or RNA libraries are 
bound to the solid surface, and just hours prior to running a 
sample across the array, the proteins are freshly synthesised, 
minimising the risk of protein denaturation [7].

While custom protein arrays can be produced for a par-
ticular purpose, there are a variety of protein arrays available 
commercially. One of the most widely used for the discovery 
of novel biomarkers in autoimmune diseases is the Human 
ProtoArray (Thermo Fisher Scientific), based on over 9000 
human proteins expressed with an N-terminal GST-tag in 
baculovirus, purified from SF9 insect cells and bound to a 
nitrocellulose-coated glass slide. The N-terminal GST tag 
allows for the direction of the binding of the protein on the 
solid surface to be controlled, which may also influence 
how accessible epitopes within each protein are displayed. 
The majority of antigens represented on the ProtoArray are 
metabolism-based proteins (35%), while 16% of displayed 
proteins are membrane associated or secreted, and 5% are 
nuclear based proteins. Although the Human ProtoArray was 
discontinued in 2018, many research groups have employed 
the platform to discover autoantibodies in autoimmune dis-
eases (Table 1) including type 1 diabetes [8], systemic lupus 
erythematosus (SLE) [4], multiple sclerosis [9], and acute 
rheumatic fever [10].

The more recent and most expansive protein array cur-
rently available is the HuProt Human Proteome microarray 
(v4.0, CDI laboratories). The 20,000 proteins cover 81% of 
the human proteome including 87% of predicted secreted 
proteins and 78% of plasma membrane proteins based on 
the Human Protein Atlas. This increased proportion of 
secreted and plasma membrane proteins offers an advan-
tage compared to the Human ProtoArray for detection of 
novel autoantibody biomarkers that are more likely to tar-
get extracellular and exposed antigens. The HuProt Array 
has been employed to detect novel autoantibodies in several 
autoimmune diseases (Table 1) including autoimmune hepa-
titis [11], multiple sclerosis [12], acute rheumatic fever [10] 
and SLE [13].

Nucleic Acid Programmable Protein Array (NAPPA) is a 
popular format of in situ protein synthesis in which proteins 
are synthesised and captured directly onto the solid surface. 
For example, a NAPPA developed at the BioDesign Institute 
in the USA, includes over 12,000 genes encoded to express 
proteins with a C-terminal GST tag to ensure full transla-
tion of the protein prior to local capture on the solid surface 
[14]. Mammalian cell-free lysates and accessory proteins 
are added to synthesise the proteins in vitro enabling simple 
post-translational modifications to be represented such as 
phosphorylation and citrullination. Autoimmune diseases 
in which NAPPA has been utilised (Table 1) include type 1 
diabetes [15, 16] and rheumatoid arthritis [17].
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An emerging human protein array approach is the 
i-Ome Protein Array Kit (Sengenics), which comprises 
over 1600 antigens including signalling molecules and 
cytokines. The proteins are expressed in insect cells with 
a carboxy-biotin carrier protein signal that marks for cor-
rect protein folding to ensure display of conformational 
epitopes. While the inclusion of structural epitopes is 
an advantage of the i-Ome array, a limitation is the size, 
particularly as a discovery technology when the poten-
tial breadth of the autoantibody repertoire in autoimmune 
disease is considered. Examples of autoimmune diseases 
the i-Ome Protein Array Kit has been utilised to detect 
novel autoantibodies include SLE [18, 19] and rheumatoid 
arthritis [20] (Table 1). Another emerging protein array is 
ImmunoINSIGHTS (formally known as Serotag (Oncim-
mune)), which differs from the prior examples based on 
planar solid surfaces, as the over 8000 human proteins are 
immobilised on Luminex bead-based suspension arrays 
enabling solution phase antigen binding. Although a rela-
tively new technology, it has been utilised (Table 1) in 
rheumatoid arthritis [21, 22] and SLE [23].

Peptide and protein fragment arrays

In contrast to protein arrays, peptide arrays comprise of 
small protein fragments or peptides, rather than full-length 
proteins. Peptide arrays with overlapping, or tiled, peptides 
(6–20 amino acids in length) are generally used for epitope 
mapping within proteins that have previously been associ-
ated with autoimmune diseases [24–26]. Arrays that employ 
longer peptide or protein fragments (80–100 amino acids 
in length) are more often used to discover novel antigens 
associated with an autoimmune disease. Longer peptides 
or protein fragments are more likely to have some second-
ary structure and contain conformational epitopes present 
in native proteins, compared with short peptides [12, 27]. 
Like protein arrays, a limiting factor in array production is 
the labour and cost associated with peptide synthesis. In situ 
synthesis is also available for peptide arrays, in which the 
peptides are synthesised in parallel directly onto the solid 
surface [28]. Commercial peptide array synthesisers such as 
the Multipep Synthetiser (Invatis) allow for research groups 
to design and synthesise custom peptide arrays relevant to 
the autoimmune disease being studied [29].

Examples of autoimmune diseases for which peptide 
arrays have been utilised to map epitopes within previously 
identified autoantigens include multiple sclerosis [26] and 
SLE [25] (Table 1). The largest peptide array to date con-
tains approximately 2.2 million overlapping 12 amino acid 
long peptides that represent the entire human proteome and 
has been used to discover novel autoantibodies in multiple 
sclerosis [24]. Other examples of commercially available 
short peptide arrays include PEPperCHIP (PEPperPRINT), 

BioSynth (BioSynth), and PEPstar and Pepspots (JPT 
Innovative Peptide Solutions), which can provide custom-
designed or standard arrays based on protein sequences.

The Human Peptide Array (SciLifeLab) utilises longer 
peptides and protein fragments ranging 80–100 amino acids 
in length allowing for novel autoantigen discovery. The array 
is based on unique Protein Epitope Signature Tags (PrESTs) 
designed by the Human Protein Atlas. These PrESTs have 
low homology to other human protein sequences so that 
every fragment is unique. The 42,000 fragments, represent-
ing 94% of the human proteome, are routinely expressed in 
E. coli, purified, and immobilised on microarrays to create 
the Human Peptide Arrays. Examples of autoimmune dis-
eases in which these peptide arrays have been used include 
multiple sclerosis [12, 27], rheumatoid arthritis [17, 30], and 
sarcoidosis [31] (Table 1).

Display technologies

Display technology is a next-generation approach in which 
a biological organism such as bacteriophage or yeast both 
produces and displays the antigens. This reduces the cost of 
producing the array, which is often a limiting factor for solid 
surface arrays. Display technologies are also adaptable to a 
96-well plate format allowing for higher sample throughput 
compared to planar solid surface arrays. Next-generation 
DNA sequencing of genes encoding the displayed antigens 
is used to detect antibody binding, in contrast to direct detec-
tion using fluorescence or similar in solid surface arrays. 
This provides the ability to retrieve information relating to 
the magnitude of the autoantibody response via the number 
of reads detected.

Phage immunoprecipitation sequencing

Phage immunoprecipitation sequencing (PhIP-Seq) 
involves displaying a synthetic library of peptide or protein 
fragments of between 40 and 90 amino acids on bacterio-
phage. An oligonucleotide library encoding the fragments 
is amplified and cloned into a T7 phage display system 
[32, 33]. The phage library is incubated with sera, and 
phage bound by serum IgG is precipitated with protein A/G 
coated magnetic beads [33, 34]. The fragment displayed 
(phenotype) is linked with the fragment encoded within the 
genome of each phage (genotype) so that next-generation 
sequencing of precipitated phage provides insight into 
serum antigen specificity. Once a phage library has been 
constructed, the immunoprecipitation and sequence data 
can be collected within 1 week, making the technique quick 
and affordable [31].

The affordability and depth of data that can be obtained 
from PhIP-seq has led to its increasing use in autoimmune 
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disease research (Table 1) including type-1 diabetes, mul-
tiple sclerosis, rheumatoid arthritis [32], autoimmune 
encephalitis [35], and most recently the post-COVID-19, 
multi-inflammatory syndrome in children (MIS-C) [36]. 
As display technologies are adaptable to a 96-well format, 
sample throughput is high. The depth of data obtained, as 
result of the incorporation of next-generation sequencing 
approaches, has highlighted the huge diversity of autoanti-
body reactivity between individuals. These unique autoan-
tibody fingerprints maybe a hallmark of autoimmune dis-
ease that is only beginning to be appreciated [27, 37].

Molecular indexing of proteins by self‑assembly

Molecular Indexing of Proteins by Self-Assembly (MIPSA) 
was recently developed to complement peptide display 
approaches, in particular PhIP-Seq. In MIPSA over 11,000 
proteins are displayed on ribosomes [38], and each protein 
has a unique, conjugated amplifiable DNA-barcode that ena-
bles paralleled sequencing. MIPSA was first described at the 
time of writing and has been used to investigate autoreactive 
antibodies in severe SARS-CoV-2 infections as a proof of 
concept [38]. As MIPSA utilises full-length antigens, this 
technique can be used to detect discontinuous and confor-
mational epitopes, whereas the use of protein fragments 
in PhIP-Seq is more likely to detect linear epitopes [38]. 
The complementary nature of these approaches, including 
assay conditions and amplification and sequencing primers, 
provides opportunities for PhIP-Seq and MIPSA to be per-
formed together in a single reaction in the future [38].

Rapid extracellular antigen profiling

Rapid extracellular antigen profiling (REAP) was recently 
developed to increase the sensitivity of autoantibody detec-
tion to extracellular proteins, limited in other technologies 
by complex folding and post-translational modification 
requirements [39]. Human extracellular and secreted pro-
teins, selected as those most accessible to autoantibodies 
in vivo, are displayed on the surface of yeast cells. Unlike 
phage produced by E. coli, yeast is a eukaryotic organ-
ism capable of producing post-translational modifications, 
although the glycosylation patterns differ slightly to that 
of humans [39]. Each displayed antigen is genetically bar-
coded and like PhIP-Seq, next-generation sequencing is 
used to identify autoantigens following incubation with 
sera and magnetic isolation of IgG bound yeast. The REAP 
library consists of 2688 extracellular proteins, encompass-
ing a wide range of protein families and representing 87% 
of all human exoproteins. The length of the extracellu-
lar regions displayed ranges between 50 and 600 amino 
acids [40]. REAP is a very new technique, and proof of 
concept was shown in the autoimmune diseases APS-1 

and SLE [40] (Table 1). Of note, the technology was also 
utilised to show that patients with severe SARS-CoV-2 
infections develop autoantibodies, indicative of immune 
dysregulation [41]. The increased sensitivity for REAP to 
identify extracellular autoantigens was illustrated by the 
identification of autoantibodies to chemokines, cytokines, 
and growth factors in SLE patients [40]. This adds to the 
autoantibodies to intranuclear proteins identified with 
the Human Protoarray [4] and provides new avenues for 
research into SLE pathogenesis.

Strengths and limitations of human antigen 
profiling technologies

Each of the solid surface array and display technologies has 
advantages and limitations, and the selection of technology 
should be driven by the projects main purpose. Short peptide 
antigens utilised in many of the array technologies are lim-
ited in secondary structure but maybe well suited if the pri-
mary goal is epitope mapping. Synthetic peptides and those 
generated using prokaryote expression systems, including 
PhIP-Seq [32], will lack post-translational modification but 
offer the advantage of an increased coverage of the human 
proteome, which may be desirable when the autoantigen rep-
ertoire is largely unknown. In contrast, full-length protein 
arrays, MIPSA and REAP that employ eukaryotic expres-
sion hosts are more likely to present conformational and 
post-translationally modified epitopes. This is important as 
it is estimated that 90% of autoantibodies recognise confor-
mational epitopes [26, 42] and modifications such as citrul-
lination [3].

These considerations are exemplified by the fact that the 
various technologies have detected different, and often non-
overlapping autoantigens, in the same disease. For exam-
ple, PhIP-Seq did not detect the known autoantigen insulin 
in type-1 diabetes, or citrullinated proteins associated with 
rheumatoid arthritis [32], likely due to the lack of con-
formational epitopes and post-translational modifications 
represented. However, PhIP-Seq did detect two clusters 
of peptides that clearly distinguished rheumatoid arthritis 
patients from healthy controls as well as a new epitope in 
multiple sclerosis patients [32]. Peptide approaches can 
also identify epitopes that are exposed during the disease 
process, such as during inflammatory induced tissue dam-
age, that are not able to be detected using technology based 
on full-length proteins. For example, a peptide approach 
identified epitopes in myelin oligodendrocyte glycoprotein 
(MOG) and myelin basic protein (MBP) in patients with 
multiple sclerosis proteins [26], but these proteins were 
not identified using the Human ProtoArray [9]. Similarly, 
there was little overlap in the autoantigens identified in 
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multiple sclerosis patients in a side-by-side comparison of 
the Human Peptide Array and the HuProt Array [12]. This 
highlights a potential need to consider multiple profiling 
technologies to ensure all possible autoantigen sequence 
space is covered for a particular disease.

Data analysis approaches

The data generated from the different technologies is platform 
specific, which influences downstream analysis. Array tech-
nology tends to generate fluorescence data with higher fluo-
rescence intensities equating to increased binding of autoanti-
bodies to immobilised antigens, whereas display technologies 
generate sequencing count data with higher read counts equat-
ing to more binding to the antigen displayed. Prior to further 
data analysis, raw data is generally pre-processed and nor-
malised in a platform specific manner to generate processed, 
continuous data for input into various analysis pipelines.

A common approach to identify disease specific autoan-
tibodies with biomarker potential is to compare reactivities 
in serum from the disease group to that of control groups. 
The control group maybe drawn from a healthy population, 
but wherever possible, these comparator groups should be 
closely matched with the disease group to minimise con-
founders and enable identification of true, disease-specific 
markers. This type of analysis generates fold-change and 
statistical P values (often corrected for multiple compari-
sons and reported as a false-discovery-rate (FDR) or q 
value), which can be used as cut-offs to narrow down the 
potential autoantigens to those with the largest and most 
significant fold-change compared to controls. These results 
are often visualised as volcano-plots (Fig. 1) and the identi-
fied autoantigens referred to as “hits” [10, 43]. An alterna-
tive approach is to use hierarchical clustering techniques 
to identify autoantigens that cluster cases from controls, 
often visualised as heatmaps with dendrograms (Fig. 1) 
[10, 40]. These two analyses can also be combined, with 
only the enriched, significant hits being subjected to hierar-
chical clustering to then identify potential autoantigens that 
segregate disease groups from controls. More recently, as 
datasets have increased in complexity, including the need to 
compare multiple disease groups across different platforms, 
more powerful multivariate analyses have become neces-
sary. These include principal component analysis (PCA) to 
visualise large amounts of data from multiple groups, as well 
as partial-least-squares discriminant analysis (PLS-DA) to 
identify hits that drive the discrimination between groups 
[44].

Potential autoantigens that have been identified statisti-
cally can also be interrogated with respect to the patho-
physiology of disease to further narrow down the hits for 
validation. For example, hits can be subjected to pathway 

analysis to identify autoantigens from relevant disease 
pathways [45] or filtered by expression location to iden-
tify those found in disease relevant tissues [46]. Hits from 
different platforms can also be compared allowing for iden-
tification of autoantigens detected by multiple platforms, 
which may indicate more robust targets [10]. Finally, data 
can be converted into binary values based on a specific 
cut-off, classifying each sample as reactive or non-reactive 
to a potential autoantigen. Binary data can provide further 
insight into the diagnostic potential of a hit, with the “cut-
off” value generally a trade-off between sensitivity and 
specificity, assessed using receiver operator curve (ROC) 
analysis [47]. Ultimately, the statistical approach applied 
in any autoantibody profiling project should be that most 
suited to the characteristics and distribution of the dataset, 
as well as the hypothesis being explored.

Validation and disease insights

The autoantigens identified from the approaches described 
tend to be hypothesis generating, and it is recommended 
that the targets identified are orthogonally validated using 
immunoassay methods such as ELISA and Luminex bead-
based assays (Fig. 1). Discovered targets can be coated 
onto an ELISA plate or coupled to beads to generate a 
specific autoantigen assay on which a larger, or different 
cohort of the same disease can be assessed to confirm novel 
findings and inform new insights into pathogenesis [10, 24, 
25, 27, 30, 48–50]. Several representations of an antigen 
can be included such as short peptides, protein fragments, 
or full-length proteins to maximise the antigen-epitope 
space investigated. The antibody isotype investigated in 
the autoantigen array is also an important consideration. 
Most studies focus on IgG as this is the most stable and 
abundant isotype; however, detection of IgA in rheumatoid 
arthritis [30] and MIS-C [36] provided additional insight 
into autoantibodies associated with mucosal surfaces in 
these diseases.

Increasingly, studies using human antigen profiling 
technologies are recognising the substantial heteroge-
neity of autoantibody reactivities among individuals, 
with the majority being private epitopes (found in few 
individuals) compared to public epitopes (found in many 
individuals) [25–27, 32, 37]. For example, a study of 
92 multiple sclerosis patients using a Human Peptide 
Array found 64% of the antigens were reactive in only 
one individual [27], and marked diversity in autoanti-
gen reactivity was observed in patients with SLE using 
REAP technology [39]. This heterogeneous autoantibody 
profile suggests epitope spreading, that is the presence 
of autoantibodies beyond those that trigger disease, may 
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be an important mechanism in the progression of many 
autoimmune diseases, contributing to inflammatory tis-
sue damage and disease symptoms. It follows that for 
studies focused on identifying autoantibody biomarkers 
for diagnosis, data analysis should filter for the rarer 
public epitopes and antigens, common between individu-
als with the same disease (or disease subgroup).

In summary, human solid surface arrays and display 
technologies are powerful high-throughput approaches 
capable of identifying novel autoantigens with bio-
marker potential, as well as illuminating the pathogen-
esis of autoimmune diseases. The human autoantibody 

profiling technology field is rapidly changing, as shown 
by the discontinuation and emergence of technologies 
throughout the past two decades. There are advantages 
and limitations to the various platforms, and multi-
ple approaches should be employed to capture the full 
diversity of autoantibodies in a particular disease. This 
includes not only chronic autoimmune disease, but also 
post-infectious sequelae such as acute rheumatic fever, 
and those associated with SARS-CoV-2 infection, that 
have an ever-growing global burden as a result of the 
COVID-19 pandemic.

Fig. 1  Flow chart depicting the 
process of autoantigen discov-
ery using human autoantigen 
profiling technologies. Auto-
immune patient and healthy 
control sera are used in the 
autoantigen profiling technology 
in the Autoantigen Discovery 
phase. Complex bioinformatics 
is required, including targeted 
data analysis to filter for public 
epitopes and antigens for novel 
biomarker discovery. Detected 
antigens are then orthogonally 
validated on an immunoassay 
such as ELISA or Luminex 
bead-based assays with a larger 
sample cohort to confirm 
novel findings and inform new 
insights into disease pathogen-
esis. Figure created with Biore 
nder. com

http://biorender.com
http://biorender.com
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