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Abstract

Autoimmune diseases are caused by the break-down in self-tolerance mechanisms and can result in the generation of autoan-
tibodies specific to human antigens. Human autoantigen profiling technologies such as solid surface arrays and display
technologies are powerful high-throughput technologies utilised to discover and map novel autoantigens associated with
disease. This review compares human autoantigen profiling technologies including the application of these approaches in
chronic and post-infectious autoimmune disease. Each technology has advantages and limitations that should be considered
when designing new projects to profile autoantibodies. Recent studies that have utilised these technologies across a range of
diseases have highlighted marked heterogeneity in autoantibody specificity between individuals as a frequent feature. This
individual heterogeneity suggests that epitope spreading maybe an important mechanism in the pathogenesis of autoim-
mune disease in general and likely contributes to inflammatory tissue damage and symptoms. Studies focused on identifying
autoantibody biomarkers for diagnosis should use targeted data analysis to identify the rarer public epitopes and antigens,
common between individuals. Thus, utilisation of human autoantigen profiling technology, combined with different analysis

approaches, can illuminate both pathogenesis and biomarker discovery.
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Introduction

Autoimmune diseases are caused by the break-down in self-
tolerance mechanisms as a result of genetic and environ-
mental influences. It is estimated that 4.5% of the global
population are affected by an autoimmune disease, with the
incidence increasing, especially in low and middle income
countries [1]. The humoral immune response plays an
important role in autoimmunity, with autoantibodies trig-
gering downstream effects such as T cell activation and
inflammation. The current diagnosis of many autoimmune
diseases is lacking in sensitivity and specificity. The detec-
tion of autoantibodies is an ideal method for diagnosis as
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antibodies are abundant, stable, and multiple methods to
detect antibodies are available. In many autoimmune dis-
eases, such as rheumatoid arthritis, autoantibodies are circu-
lating prior to symptom onset, allowing for early diagnosis
and improved opportunities for treatment [2, 3].

There are remaining knowledge gaps as to which anti-
gens autoantibodies recognise in many autoimmune dis-
eases. New experimental techniques are continuously being
developed with the aim of discovering novel autoantigens,
including human solid surface arrays and display technolo-
gies. These new approaches have dramatically expanded the
number of antigens that can be explored for involvement
in autoimmune disease compared to traditional approaches.
The techniques enable hundreds to thousands of human anti-
gens to be printed on a solid surface or displayed in solu-
tion. Human samples such as serum, plasma or cerebrospinal
fluid can be applied, and antibody-antigen interactions are
detected. Autoantigens detected using these high-throughput
and high-content approaches can then be orthogonally vali-
dated on immunoassays such as ELISA or bead-based assays
such as Luminex, before being clinically validated for use
as a biomarker for diagnosis. This review summarises and
compares different types of human autoantigen profiling
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technologies, including solid surface arrays and display
technologies. Recent applications for novel biomarker dis-
covery, as well as how autoantibody profiling can contrib-
ute to improved understanding of disease pathogenesis, are
highlighted.

Solid surface arrays

Solid surface arrays display hundreds to thousands of anti-
gens on a surface such as nitrocellulose coated glass [4].
These arrays were originally adapted from oligonucleotide
arrays, which were developed in the 1990s and consisted
of DNA fragments displayed on a solid surface. However,
the initial oligonucleotide solid surface arrays were based
on whole-genomes and included non-expressed genes that
are not biologically relevant to disease. This was overcome
by the advent of solid surface arrays that incorporated only
proteins and peptides expressed in vivo. Solid surface arrays
now provide a high-throughput method used to investigate
protein-protein interactions, enzyme-substrate reactions,
protein-drug interactions, and antibody-antigen interactions.
Detection methods of solid surface arrays include fluores-
cence, mass spectrometry and surface plasmon resonance.

Protein arrays

Protein arrays comprise full-length proteins or protein
domains being displayed on the solid surface. Some of the
first high content protein arrays were established in the year
2000, with over 10,000 full-length human proteins displayed
on a glass slide [5]. Since then, protein arrays displaying
human proteins have been used for a wide range of appli-
cations, including detecting novel antibody biomarkers in
autoimmune diseases. Protein arrays can be divided into
two categories based on their method of protein synthesis:
those that are produced using cellular expression, or those
produced using cell-free methods such as in situ synthe-
sis. Cellular produced arrays utilise recombinant proteins
expressed in a host organism prior to immobilising on the
solid surface. The choice of the expression host is important
to consider with common host organisms including bacte-
ria (mostly commonly Escherichia coli), Saccharomyces
cerevisiae cells (yeast), insect cells, and human cells. The
expression host can affect the protein glycosylation and other
post-translational modifications such as citrullination, and it
is known that antibodies have the ability to recognise these
post-translational modifications [3, 6]. Proteins expressed in
yeast and insect cells will be glycosylated, unlike proteins
expressed in bacterial hosts such as E. coli, though the gly-
cosylation patterns still differ to that of humans. The num-
ber of proteins included in the array is limited to the labour
and cost associated with expression and purification of the

proteins. This led to the development of cell-free or in situ
protein array synthesis, in which proteins are synthesised
directly onto the solid surface [7]. DNA or RNA libraries are
bound to the solid surface, and just hours prior to running a
sample across the array, the proteins are freshly synthesised,
minimising the risk of protein denaturation [7].

While custom protein arrays can be produced for a par-
ticular purpose, there are a variety of protein arrays available
commercially. One of the most widely used for the discovery
of novel biomarkers in autoimmune diseases is the Human
ProtoArray (Thermo Fisher Scientific), based on over 9000
human proteins expressed with an N-terminal GST-tag in
baculovirus, purified from SF9 insect cells and bound to a
nitrocellulose-coated glass slide. The N-terminal GST tag
allows for the direction of the binding of the protein on the
solid surface to be controlled, which may also influence
how accessible epitopes within each protein are displayed.
The majority of antigens represented on the ProtoArray are
metabolism-based proteins (35%), while 16% of displayed
proteins are membrane associated or secreted, and 5% are
nuclear based proteins. Although the Human ProtoArray was
discontinued in 2018, many research groups have employed
the platform to discover autoantibodies in autoimmune dis-
eases (Table 1) including type 1 diabetes [8], systemic lupus
erythematosus (SLE) [4], multiple sclerosis [9], and acute
rheumatic fever [10].

The more recent and most expansive protein array cur-
rently available is the HuProt Human Proteome microarray
(v4.0, CDI laboratories). The 20,000 proteins cover 81% of
the human proteome including 87% of predicted secreted
proteins and 78% of plasma membrane proteins based on
the Human Protein Atlas. This increased proportion of
secreted and plasma membrane proteins offers an advan-
tage compared to the Human ProtoArray for detection of
novel autoantibody biomarkers that are more likely to tar-
get extracellular and exposed antigens. The HuProt Array
has been employed to detect novel autoantibodies in several
autoimmune diseases (Table 1) including autoimmune hepa-
titis [11], multiple sclerosis [12], acute rheumatic fever [10]
and SLE [13].

Nucleic Acid Programmable Protein Array (NAPPA) is a
popular format of in situ protein synthesis in which proteins
are synthesised and captured directly onto the solid surface.
For example, a NAPPA developed at the BioDesign Institute
in the USA, includes over 12,000 genes encoded to express
proteins with a C-terminal GST tag to ensure full transla-
tion of the protein prior to local capture on the solid surface
[14]. Mammalian cell-free lysates and accessory proteins
are added to synthesise the proteins in vitro enabling simple
post-translational modifications to be represented such as
phosphorylation and citrullination. Autoimmune diseases
in which NAPPA has been utilised (Table 1) include type 1
diabetes [15, 16] and rheumatoid arthritis [17].
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An emerging human protein array approach is the
i-Ome Protein Array Kit (Sengenics), which comprises
over 1600 antigens including signalling molecules and
cytokines. The proteins are expressed in insect cells with
a carboxy-biotin carrier protein signal that marks for cor-
rect protein folding to ensure display of conformational
epitopes. While the inclusion of structural epitopes is
an advantage of the i-Ome array, a limitation is the size,
particularly as a discovery technology when the poten-
tial breadth of the autoantibody repertoire in autoimmune
disease is considered. Examples of autoimmune diseases
the i-Ome Protein Array Kit has been utilised to detect
novel autoantibodies include SLE [18, 19] and rheumatoid
arthritis [20] (Table 1). Another emerging protein array is
ImmunoINSIGHTS (formally known as Serotag (Oncim-
mune)), which differs from the prior examples based on
planar solid surfaces, as the over 8000 human proteins are
immobilised on Luminex bead-based suspension arrays
enabling solution phase antigen binding. Although a rela-
tively new technology, it has been utilised (Table 1) in
rheumatoid arthritis [21, 22] and SLE [23].

Peptide and protein fragment arrays

In contrast to protein arrays, peptide arrays comprise of
small protein fragments or peptides, rather than full-length
proteins. Peptide arrays with overlapping, or tiled, peptides
(6-20 amino acids in length) are generally used for epitope
mapping within proteins that have previously been associ-
ated with autoimmune diseases [24-26]. Arrays that employ
longer peptide or protein fragments (80—100 amino acids
in length) are more often used to discover novel antigens
associated with an autoimmune disease. Longer peptides
or protein fragments are more likely to have some second-
ary structure and contain conformational epitopes present
in native proteins, compared with short peptides [12, 27].
Like protein arrays, a limiting factor in array production is
the labour and cost associated with peptide synthesis. In situ
synthesis is also available for peptide arrays, in which the
peptides are synthesised in parallel directly onto the solid
surface [28]. Commercial peptide array synthesisers such as
the Multipep Synthetiser (Invatis) allow for research groups
to design and synthesise custom peptide arrays relevant to
the autoimmune disease being studied [29].

Examples of autoimmune diseases for which peptide
arrays have been utilised to map epitopes within previously
identified autoantigens include multiple sclerosis [26] and
SLE [25] (Table 1). The largest peptide array to date con-
tains approximately 2.2 million overlapping 12 amino acid
long peptides that represent the entire human proteome and
has been used to discover novel autoantibodies in multiple
sclerosis [24]. Other examples of commercially available
short peptide arrays include PEPperCHIP (PEPperPRINT),

BioSynth (BioSynth), and PEPstar and Pepspots (JPT
Innovative Peptide Solutions), which can provide custom-
designed or standard arrays based on protein sequences.

The Human Peptide Array (SciLifeLab) utilises longer
peptides and protein fragments ranging 80—100 amino acids
in length allowing for novel autoantigen discovery. The array
is based on unique Protein Epitope Signature Tags (PrESTs)
designed by the Human Protein Atlas. These PrESTs have
low homology to other human protein sequences so that
every fragment is unique. The 42,000 fragments, represent-
ing 94% of the human proteome, are routinely expressed in
E. coli, purified, and immobilised on microarrays to create
the Human Peptide Arrays. Examples of autoimmune dis-
eases in which these peptide arrays have been used include
multiple sclerosis [12, 27], rheumatoid arthritis [17, 30], and
sarcoidosis [31] (Table 1).

Display technologies

Display technology is a next-generation approach in which
a biological organism such as bacteriophage or yeast both
produces and displays the antigens. This reduces the cost of
producing the array, which is often a limiting factor for solid
surface arrays. Display technologies are also adaptable to a
96-well plate format allowing for higher sample throughput
compared to planar solid surface arrays. Next-generation
DNA sequencing of genes encoding the displayed antigens
is used to detect antibody binding, in contrast to direct detec-
tion using fluorescence or similar in solid surface arrays.
This provides the ability to retrieve information relating to
the magnitude of the autoantibody response via the number
of reads detected.

Phage immunoprecipitation sequencing

Phage immunoprecipitation sequencing (PhIP-Seq)
involves displaying a synthetic library of peptide or protein
fragments of between 40 and 90 amino acids on bacterio-
phage. An oligonucleotide library encoding the fragments
is amplified and cloned into a T7 phage display system
[32, 33]. The phage library is incubated with sera, and
phage bound by serum IgG is precipitated with protein A/G
coated magnetic beads [33, 34]. The fragment displayed
(phenotype) is linked with the fragment encoded within the
genome of each phage (genotype) so that next-generation
sequencing of precipitated phage provides insight into
serum antigen specificity. Once a phage library has been
constructed, the immunoprecipitation and sequence data
can be collected within 1 week, making the technique quick
and affordable [31].

The affordability and depth of data that can be obtained
from PhIP-seq has led to its increasing use in autoimmune
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disease research (Table 1) including type-1 diabetes, mul-
tiple sclerosis, rheumatoid arthritis [32], autoimmune
encephalitis [35], and most recently the post-COVID-19,
multi-inflammatory syndrome in children (MIS-C) [36].
As display technologies are adaptable to a 96-well format,
sample throughput is high. The depth of data obtained, as
result of the incorporation of next-generation sequencing
approaches, has highlighted the huge diversity of autoanti-
body reactivity between individuals. These unique autoan-
tibody fingerprints maybe a hallmark of autoimmune dis-
ease that is only beginning to be appreciated [27, 37].

Molecular indexing of proteins by self-assembly

Molecular Indexing of Proteins by Self-Assembly (MIPSA)
was recently developed to complement peptide display
approaches, in particular PhIP-Seq. In MIPSA over 11,000
proteins are displayed on ribosomes [38], and each protein
has a unique, conjugated amplifiable DNA-barcode that ena-
bles paralleled sequencing. MIPSA was first described at the
time of writing and has been used to investigate autoreactive
antibodies in severe SARS-CoV-2 infections as a proof of
concept [38]. As MIPSA utilises full-length antigens, this
technique can be used to detect discontinuous and confor-
mational epitopes, whereas the use of protein fragments
in PhIP-Seq is more likely to detect linear epitopes [38].
The complementary nature of these approaches, including
assay conditions and amplification and sequencing primers,
provides opportunities for PhIP-Seq and MIPSA to be per-
formed together in a single reaction in the future [38].

Rapid extracellular antigen profiling

Rapid extracellular antigen profiling (REAP) was recently
developed to increase the sensitivity of autoantibody detec-
tion to extracellular proteins, limited in other technologies
by complex folding and post-translational modification
requirements [39]. Human extracellular and secreted pro-
teins, selected as those most accessible to autoantibodies
in vivo, are displayed on the surface of yeast cells. Unlike
phage produced by E. coli, yeast is a eukaryotic organ-
ism capable of producing post-translational modifications,
although the glycosylation patterns differ slightly to that
of humans [39]. Each displayed antigen is genetically bar-
coded and like PhIP-Seq, next-generation sequencing is
used to identify autoantigens following incubation with
sera and magnetic isolation of IgG bound yeast. The REAP
library consists of 2688 extracellular proteins, encompass-
ing a wide range of protein families and representing 87%
of all human exoproteins. The length of the extracellu-
lar regions displayed ranges between 50 and 600 amino
acids [40]. REAP is a very new technique, and proof of
concept was shown in the autoimmune diseases APS-1

@ Springer

and SLE [40] (Table 1). Of note, the technology was also
utilised to show that patients with severe SARS-CoV-2
infections develop autoantibodies, indicative of immune
dysregulation [41]. The increased sensitivity for REAP to
identify extracellular autoantigens was illustrated by the
identification of autoantibodies to chemokines, cytokines,
and growth factors in SLE patients [40]. This adds to the
autoantibodies to intranuclear proteins identified with
the Human Protoarray [4] and provides new avenues for
research into SLE pathogenesis.

Strengths and limitations of human antigen
profiling technologies

Each of the solid surface array and display technologies has
advantages and limitations, and the selection of technology
should be driven by the projects main purpose. Short peptide
antigens utilised in many of the array technologies are lim-
ited in secondary structure but maybe well suited if the pri-
mary goal is epitope mapping. Synthetic peptides and those
generated using prokaryote expression systems, including
PhIP-Seq [32], will lack post-translational modification but
offer the advantage of an increased coverage of the human
proteome, which may be desirable when the autoantigen rep-
ertoire is largely unknown. In contrast, full-length protein
arrays, MIPSA and REAP that employ eukaryotic expres-
sion hosts are more likely to present conformational and
post-translationally modified epitopes. This is important as
it is estimated that 90% of autoantibodies recognise confor-
mational epitopes [26, 42] and modifications such as citrul-
lination [3].

These considerations are exemplified by the fact that the
various technologies have detected different, and often non-
overlapping autoantigens, in the same disease. For exam-
ple, PhIP-Seq did not detect the known autoantigen insulin
in type-1 diabetes, or citrullinated proteins associated with
rheumatoid arthritis [32], likely due to the lack of con-
formational epitopes and post-translational modifications
represented. However, PhIP-Seq did detect two clusters
of peptides that clearly distinguished rheumatoid arthritis
patients from healthy controls as well as a new epitope in
multiple sclerosis patients [32]. Peptide approaches can
also identify epitopes that are exposed during the disease
process, such as during inflammatory induced tissue dam-
age, that are not able to be detected using technology based
on full-length proteins. For example, a peptide approach
identified epitopes in myelin oligodendrocyte glycoprotein
(MOG) and myelin basic protein (MBP) in patients with
multiple sclerosis proteins [26], but these proteins were
not identified using the Human ProtoArray [9]. Similarly,
there was little overlap in the autoantigens identified in
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multiple sclerosis patients in a side-by-side comparison of
the Human Peptide Array and the HuProt Array [12]. This
highlights a potential need to consider multiple profiling
technologies to ensure all possible autoantigen sequence
space is covered for a particular disease.

Data analysis approaches

The data generated from the different technologies is platform
specific, which influences downstream analysis. Array tech-
nology tends to generate fluorescence data with higher fluo-
rescence intensities equating to increased binding of autoanti-
bodies to immobilised antigens, whereas display technologies
generate sequencing count data with higher read counts equat-
ing to more binding to the antigen displayed. Prior to further
data analysis, raw data is generally pre-processed and nor-
malised in a platform specific manner to generate processed,
continuous data for input into various analysis pipelines.

A common approach to identify disease specific autoan-
tibodies with biomarker potential is to compare reactivities
in serum from the disease group to that of control groups.
The control group maybe drawn from a healthy population,
but wherever possible, these comparator groups should be
closely matched with the disease group to minimise con-
founders and enable identification of true, disease-specific
markers. This type of analysis generates fold-change and
statistical P values (often corrected for multiple compari-
sons and reported as a false-discovery-rate (FDR) or g
value), which can be used as cut-offs to narrow down the
potential autoantigens to those with the largest and most
significant fold-change compared to controls. These results
are often visualised as volcano-plots (Fig. 1) and the identi-
fied autoantigens referred to as “hits” [10, 43]. An alterna-
tive approach is to use hierarchical clustering techniques
to identify autoantigens that cluster cases from controls,
often visualised as heatmaps with dendrograms (Fig. 1)
[10, 40]. These two analyses can also be combined, with
only the enriched, significant hits being subjected to hierar-
chical clustering to then identify potential autoantigens that
segregate disease groups from controls. More recently, as
datasets have increased in complexity, including the need to
compare multiple disease groups across different platforms,
more powerful multivariate analyses have become neces-
sary. These include principal component analysis (PCA) to
visualise large amounts of data from multiple groups, as well
as partial-least-squares discriminant analysis (PLS-DA) to
identify hits that drive the discrimination between groups
[44].

Potential autoantigens that have been identified statisti-
cally can also be interrogated with respect to the patho-
physiology of disease to further narrow down the hits for
validation. For example, hits can be subjected to pathway

analysis to identify autoantigens from relevant disease
pathways [45] or filtered by expression location to iden-
tify those found in disease relevant tissues [46]. Hits from
different platforms can also be compared allowing for iden-
tification of autoantigens detected by multiple platforms,
which may indicate more robust targets [10]. Finally, data
can be converted into binary values based on a specific
cut-off, classifying each sample as reactive or non-reactive
to a potential autoantigen. Binary data can provide further
insight into the diagnostic potential of a hit, with the “cut-
off” value generally a trade-off between sensitivity and
specificity, assessed using receiver operator curve (ROC)
analysis [47]. Ultimately, the statistical approach applied
in any autoantibody profiling project should be that most
suited to the characteristics and distribution of the dataset,
as well as the hypothesis being explored.

Validation and disease insights

The autoantigens identified from the approaches described
tend to be hypothesis generating, and it is recommended
that the targets identified are orthogonally validated using
immunoassay methods such as ELISA and Luminex bead-
based assays (Fig. 1). Discovered targets can be coated
onto an ELISA plate or coupled to beads to generate a
specific autoantigen assay on which a larger, or different
cohort of the same disease can be assessed to confirm novel
findings and inform new insights into pathogenesis [10, 24,
25, 27, 30, 48-50]. Several representations of an antigen
can be included such as short peptides, protein fragments,
or full-length proteins to maximise the antigen-epitope
space investigated. The antibody isotype investigated in
the autoantigen array is also an important consideration.
Most studies focus on IgG as this is the most stable and
abundant isotype; however, detection of IgA in rheumatoid
arthritis [30] and MIS-C [36] provided additional insight
into autoantibodies associated with mucosal surfaces in
these diseases.

Increasingly, studies using human antigen profiling
technologies are recognising the substantial heteroge-
neity of autoantibody reactivities among individuals,
with the majority being private epitopes (found in few
individuals) compared to public epitopes (found in many
individuals) [25-27, 32, 37]. For example, a study of
92 multiple sclerosis patients using a Human Peptide
Array found 64% of the antigens were reactive in only
one individual [27], and marked diversity in autoanti-
gen reactivity was observed in patients with SLE using
REAP technology [39]. This heterogeneous autoantibody
profile suggests epitope spreading, that is the presence
of autoantibodies beyond those that trigger disease, may
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be an important mechanism in the progression of many
autoimmune diseases, contributing to inflammatory tis-
sue damage and disease symptoms. It follows that for
studies focused on identifying autoantibody biomarkers
for diagnosis, data analysis should filter for the rarer
public epitopes and antigens, common between individu-
als with the same disease (or disease subgroup).

In summary, human solid surface arrays and display
technologies are powerful high-throughput approaches
capable of identifying novel autoantigens with bio-
marker potential, as well as illuminating the pathogen-
esis of autoimmune diseases. The human autoantibody

@ Springer

profiling technology field is rapidly changing, as shown
by the discontinuation and emergence of technologies
throughout the past two decades. There are advantages
and limitations to the various platforms, and multi-
ple approaches should be employed to capture the full
diversity of autoantibodies in a particular disease. This
includes not only chronic autoimmune disease, but also
post-infectious sequelae such as acute rheumatic fever,
and those associated with SARS-CoV-2 infection, that
have an ever-growing global burden as a result of the
COVID-19 pandemic.
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