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Abstract
COVID-19 is an infectious disease caused by a single-stranded RNA (ssRNA) virus, known as SARS-CoV-2. The disease, 
since its first outbreak in Wuhan, China, in December 2019, has led to a global pandemic. The pharmaceutical industry has 
developed several vaccines, of different vector technologies, against the virus. Of note, among these vaccines, seven have 
been fully approved by WHO. However, despite the benefits of COVID-19 vaccination, some rare adverse effects have been 
reported and have been associated with the use of the vaccines developed against SARS-CoV-2, especially those based on 
mRNA and non-replicating viral vector technology. Rare adverse events reported include allergic and anaphylactic reactions, 
thrombosis and thrombocytopenia, myocarditis, Bell’s palsy, transient myelitis, Guillen-Barre syndrome, recurrences of 
herpes-zoster, autoimmunity flares, epilepsy, and tachycardia. In this review, we discuss the potential molecular mechanisms 
leading to these rare adverse events of interest and we also attempt an association with the various vaccine components 
and platforms. A better understanding of the underlying mechanisms, according to which the vaccines cause side effects, 
in conjunction with the identification of the vaccine components and/or platforms that are responsible for these reactions, 
in terms of pharmacovigilance, could probably enable the improvement of future vaccines against COVID-19 and/or even 
other pathological conditions.
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PMPs	� Platelet microparticles
POTS	� Postural orthostatic tachycardia
S protein	� Spike protein
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus 2
SNPs	� Single nucleotide polymorphisms
ssRNA	� Single-stranded RNA
TLRs	� Toll-like receptors
tPA	� Tissue plasminogen activator
VITT	� Vaccine-induced immune thrombotic 

thrombocytopenia
WHO	� World Health Organization

Introduction

COVID-19 is an infectious disease caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), a 
single-stranded RNA (ssRNA) virus. The virus was first 
observed in Wuhan, China, in December 2019, and quickly 
spread to other parts of the world. On 11 March 2020, the 
World Health Organization (WHO) declared a global pan-
demic. Fortunately, there are currently several vaccines 
widely available to confront the disease. Up to now, over 
twenty vaccines have been granted approval for emer-
gency use. Among these vaccines, seven have been fully 
approved by WHO. The fully approved vaccines consist of 
the mRNA-1273 by Moderna, the BNT16b2 by Pfizer/Bion-
tech, the Ad26.CoV2.S by Janssen/Johnson and Johnson, the 
AZD1222 which is also referred to as ChAdOx1 nCoV-19 
by Oxford/Astrazeneca, an Oxford/Astrazeneca formulation 
known as Covishield, the BBIBP-CorV by Sinopharm and 
last Sinovac’s CoronaVac [1].

COVID-19 vaccines are based on new technology (mostly 
mRNA and viral vector based platforms) and as a result, 
many people are hesitant to get vaccinated, especially due to 
reported adverse events. Among the most common reported 
side effects are fatigue, headache, myalgia, fever, pain, and/
or redness at the injection site, with mild or moderate symp-
toms [2, 3]. On the other hand, there are some rare adverse 
events reported, such as allergic and anaphylactic reactions 
following mRNA vaccination, and thrombosis and thrombo-
cytopenia following non-replicating viral vector vaccination 
[4–6]. Other rare adverse events described were myocarditis, 
Bell’s Palsy, Transient Myelitis, Guillen-Barre syndrome, 
recurrences of herpes-zoster, autoimmunity flares, epilepsy, 
and orthostatic tachycardia. Of note, most of these adverse 
events are considered mild to moderate in severity, indicat-
ing that COVID-19 vaccines are actually safe [7–14].

In this review, we discuss the potential molecular mech-
anisms leading to the aforementioned rare adverse events 
and we also associate them with the various vaccine com-
ponents and vectors. An emphasis is put on mRNA-1273 

and BNT16b2 RNA vaccines, as well as Ad26.CoV2.S and 
AZD1222/ChAdOx1 nCoV-19 non-replicating viral vector 
based vaccines, as these four COVID-19 vaccines are the 
most widely used (at least, in Europe). A search of the lit-
erature was conducted using PubMed and Google Scholar 
databases. The search, which refers to December 2019 to 
December 2021 time period, was based on keywords such 
as “COVID-19 vaccines,” “Adverse events,” “Adverse 
effects,” “Adverse drug reactions,” “Side effects,” and 
“Mechanisms.” Based on the glossary of WHO that defines 
that “adverse event” is “any untoward medical occurrence 
that may be present during treatment with a medicine but 
does not necessarily have a causal relationship with this 
treatment, that is, an adverse outcome that occurs while 
the patient is taking the medicine but is not, or not neces-
sarily, attributable to it,” we used the term adverse event 
throughout the manuscript [15].

COVID‑19 vaccine platforms

RNA vaccines

For the first time ever, mRNA vaccines have gained approval 
for human use. These vaccines utilize an mRNA that encodes 
the spike (S) protein of SARS-CoV-2, encapsulated in lipid 
nanoparticles (LNPs) [16, 17]. The mRNA-1273 consists of 
a nucleoside-modified mRNA that encodes a perfusion-sta-
bilized form, known as SARS-CoV-2P antigen, which elicits 
a vigorous immune response [17–19]. The LNPs consist of 
four negative charged lipids, in a fixed ratio of mRNA and 
lipid. Once the LNP encapsulated mRNA enters the cell, 
the LNP surface obtains is positively charged, facilitating 
mRNA’s release in the cytosol [17, 18, 20]. The BNT16b2 
vaccine also consists of a single stranded mRNA, embedded 
in a lipid nanoparticle. This mRNA encodes a perfusion sta-
bilized, membrane anchored, SARS-CoV-2 full length spike 
protein, which carries two point mutations within the central 
helix [18, 19].

Non‑replicating viral vector vaccines

These vaccines exploit the ability of an adenovirus to infect 
and produce viral mRNA, using the mechanisms of the 
host’s cells [16]. The Ad26.CoV2.S vaccine, in more detail, 
is using a recombinant non-replicating adenovirus sero-
type 26 (Ad26) vector, encoding a full length SARS-CoV-2 
spike protein [3, 18], whereas the AZD1222 vaccine, also 
known as ChAdOx1 nCoV-19, is a non-replicating simian 
adenovirus(ChAdOx1) vector, encoding the SARS-CoV-2 
S-glycoprotein, along with a tissue plasminogen activator 
(tPA) leader sequence [19, 21].
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Other vaccine platforms

Apart from the mRNA and the non-replicating viral vec-
tor DNA vaccines, other vaccine platforms that have been 
approved for emergency use against SARS-CoV-2 include 
protein subunit vaccines, inactivated vaccines, and a circular 
strand of DNA-based vaccine [1]. These latter types of vac-
cine platforms have not been widely used in Europe; thus, 
we do not extensively refer to them in the review. However, 
in order to be completely accurate, we find it important to 
mention their existence as well.

Adverse events of COVID‑19 vaccines

Allergic reactions and anaphylaxis

COVID-19 vaccines, especially the mRNA platforms, have 
been associated with allergic reactions and anaphylaxis. 
The anaphylactic reports had a prevalence of 11.1 cases per 
million for the BNT16b2 vaccine and 2.5 cases per million 
for the mRNA-1273 vaccine [22]. It is worth noting that, 
among these reactions, some refer to delayed local reac-
tions (painful edematous plaques) in the injection site, with 
a median onset of 8 days after mRNA-1273 vaccination [23, 
24]. These skin reactions diminish soon after the onset and 
thus are not considered severe adverse events [23, 24]. As 
far as adenoviral vector vaccines are concerned, there are 
no reports of allergic reactions released by the Center for 
Disease Control and Prevention (CDC) so far.

The approved mRNA vaccines contain polyethylene gly-
col (PEG), a family of hydrophilic polymers of ethylene 

oxide, as well as a phospholipid known as distearoylphos-
phatidylcholine (DSPC). Moderna’s vaccine also contains 
trometamol as an excipient, whereas AstraZeneca’s and 
Johnson & Johnson’s vaccine contains polysorbate 80, a 
nonionic surfactant and emulsifier often used in foods and 
cosmetics. AstraZeneca’s vaccine also contains ethylenedi-
aminetetraacetic acid (EDTA) [25, 26].

PEG is widely used in everyday products, such as cos-
metics, food, and pharmaceutical products. The molecular 
weight (MW) of PEG can vary from 300 to over 10.000 g/
mol, and thus can elicit hypersensitivity reactions [27]. More 
specifically, low molecular weight (LMW) PEG can cause 
contact dermatitis or rash on repeated exposure, whereas 
high molecular weight PEG (HMW), such as the one found 
in laxatives, can trigger systemic reactions [27, 28]. PEG 
2000 in Pfizer’s and Moderna’s vaccine may cause a hyper-
sensitivity reaction to previously sensitized patients [29, 30]. 
Female subjects might be more susceptible to allergies, due 
to potential previous sensitization from cosmetic products 
and/or due to mRNA vaccine’s mRNA mediated stimulation 
of TLR7 receptor, whose expression is enhanced by estro-
gens, thus mounting a stronger immune response [31–33].

The proposed mechanisms for vaccine induced related 
allergies are being described below. IgE-mediated reactions, 
via mast cell activation and degranulation, may occur when 
allergen specific IgE antibodies bind to FcεRI receptors on 
mast cells and basophiles [25, 31, 34, 35] (Fig. 1). On the 
other hand, non-IgE-mediated reactions, the so called com-
plement activation-related pseudoallergy (CARPA), result 
in mast cell degranulation that occurs via complement acti-
vation and generation of inflammatory stimulators, such as 

Fig. 1   Proposed mechanism 
of allergic and anaphylactic 
reactions, following mRNA 
vaccination. a PEG nanoparticle 
packaging S protein mRNA 
enters an APC cell, such as 
dendritic cells, via endocytosis. 
The mRNA is then translated to 
S protein, in the ribosomes. b 
The APC presents free floating 
PEG or S protein epitopes, as 
antigens, to T helper cells. The 
latter secrete cytokines and 
thus lead to B cell activation. 
c B cells produce IgE antibod-
ies against PEG or S protein 
epitopes. d Antigen specific 
IgE antibodies bind to FcεRI 
receptor. The engagement of 
the aforementioned receptor 
leads to histamine release from 
basophils and/or mast cells, thus 
leading to allergic/anaphylactic 
reactions
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C1q, C3a, C4, anaphylatoxins, C5a, and complement fac-
tor B. The latter mechanism is the most plausible, consid-
ering the fact that PEG is present in mRNA vaccines and 
plays a role in hypersensitivity reactions [25, 31, 34–36]. 
Another possible scenario suggests LNP-mediated activa-
tion of the Mas-related G protein-coupled receptor X2 which 
in turn activates mast cells [31, 34, 35, 37]. Allergy may 
also be the result of a cell mediated hypersensitivity reac-
tion caused by overstimulation of T cells and macrophages 
[34, 35]. Previous formation of antibodies against LNPs /
PEG (IgM,IgG,IgE) can lead to hypersensitivity reactions, 
after re-exposure [31, 38]. LNP formulation can, up to a 
point, protect against naked RNA’s proinflammatory proper-
ties since they get disrupted intracellularly, releasing their 
payload after phagocytosis [31, 39]. It is also important to 
mention that, according to a new study, amino acid residues 
(437–508 sequence of the spike protein) may cause anaphy-
laxis [40]. In addition, genetic and environmental factors can 
lead to mast cell hyperactivation [31]. For instance, estro-
gen activates Th2 responses, while testosterone diminishes 
them [33, 40]. Stress and drugs also, such as non-steroidal 
anti-inflammatory drugs and opioids, can affect mast cell 
degranulation [41, 42]. Other genetic factors such as masto-
cytosis, idiopathic mast cell activation syndrome, hereditary 
alpha tryptasemia, and rare mutations in KARS, a dual local-
ized lysyl-tRNA synthetase, are also to be taken into account 
[31, 35, 43, 44].

AstraZeneca and Janssen (Johnson & Johnson) vaccines 
contain a stabilizer and emulsifier, which is an analog of 
PEG, called polysorbate 80. Polysorbate 80 has been asso-
ciated with hypersensitivity reactions from viral vectored 
vaccines, due to cross-reactivity with PEG. Both of these 
excipients share a common allergenic epitope, the polyether 
domain. Immediate hypersensitivity reactions can occur 
after a previous sensitization from PEG [26, 29, 45].

Other excipients associated with hypersensitivity reac-
tions are trometamol, a component in Moderna’s vaccine, 
that regulates the pH of nucleic acid solutions [29, 45]. 
DSPC is another component present in mRNA vaccines that 
may have an allergenic potential, because it is a substrate 
for phospholipase A2, a proinflammatory mediator [26, 29]. 
Moreover, AstraZeneca’s vaccine contains EDTA which may 
cause systemic allergic reactions [26, 29, 35, 46]. Lastly, 
chlorhexidine, used for sterilization of the injection site, may 
also cause an allergic reaction [45].

Thrombosis and thrombocytopenia

COVID-19 adenoviral vector vaccines, Ad26.CoV2.S and 
AZD1222 (ChAdOx1 nCoV-19), have been associated with 
thrombosis and thrombocytopenia [5, 6, 47–51]. Cases of 
thrombosis and thrombocytopenia have also been reported 
following COVID-19 mRNA vaccination, although no 

association was established thus far [52, 53]. Following, we 
present the different molecular mechanisms through which 
thrombotic phenomena may arise after adenoviral vector 
vaccination.

The most accepted mechanism of induction of throm-
botic phenomena is the vaccine-induced immune thrombotic 
thrombocytopenia (VITT) syndrome [47–49] (Fig. 2). This 
syndrome resembles heparin-induced thrombocytopenia 
(HIT), in which IgG specific antibodies against platelet fac-
tor 4(PF4)(anionic) and heparin(cationic)form complexes, 
causing platelet activation through the FcγRIIA receptor 
[54]. In VITT, since patients have not received heparin, anti 
PF4-antibody (IgG) production may be elicited by the vac-
cine induced immune response and/or even by the vaccine 
itself. Supporting the above is the fact that adenoviruses are 
known to directly interact with PF4 and cause platelet aggre-
gation [55, 56]. It is important to mention that no confirma-
tive evidence exist so far, regarding enhanced risks of VITT 
syndrome in patients with prior history of HIT [57, 58].

The adenoviral double stranded DNA is negatively 
charged and interacts with PF4, forming DNA-PF4 com-
plexes. These complexes amplify TLR9 and interferon-α 
(IFNα) production, thus contibuting to immunothrombosis 
[59, 60]. Of note, RNA vaccines utilize TLR7 as a pattern 
recognition receptor, whereas viral vector vaccines can exert 
their effects through TLR9 to promote cellular and humoral 
immunity against the spike protein [61]. It is important to 
mention that, not only DNA but also RNA can be trans-
ported to plateletes via endocytosis, and form complexes 
with PF4, leading to the induction of PF4/heparin antibodies 
in mice [55, 62, 63]. Moreover, a hypothesis suggests that 
the DNA-PF4 interplay may be a component of antiviral 
innate immunity system that, in rare cases, may lead to auto-
immunity and thrombosis [59]. Interestingly, a DNA/PF4 
interaction in the injection site has been documented, has-
tening antigen presenting cell (APCs) uptake and memory 
B cell activation, leading to anti-PF4 antibody production or 
T-cell dependent persistant autoantibody responses [59, 64]. 
VITT may also be an atypical form of COVID-19 infection, 
as both feature platelet activation, thrombosis, and throm-
bocytopenia with the presence of anti PF4 antibodies [64]. 
Another hypothesis suggests that, in order for thrombosis to 
be triggered, three requirements need to be met. The first one 
refers to adenoviral leakage from the injection site,capable 
of leading to adenoviremia and high production of spike pro-
tein. The second and third requirements, respectively, refer 
to the presense of specific and cross reactive antibodies, as 
well as high titer of glycosilated antibodies (glycosilation 
of anti SARS-COV-2 IgG is a pro thrombotic stimulus for 
platelets) [65].

Self DNA released by neutrophil extracellular traps 
(NETS) at injury sites is citrullinated and thus leads to 
electric charge rebalancing by eliminating DNA–protein 
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interactions [59, 66]. This process, called NETosis, is a 
physiologial process that traps pathogens. Excessive forma-
tion of NETS contributes to inflammation. Immune com-
plexes, composed of PF4/heparin antibodies, can activate 
NETosis, after stimulation of platelets, and further contrib-
ute to hypercoagulation [67–69].

Platelets express CAR (coxsackie/adenovirus receptor); 
thus, it can be hypothesized that vaccine adenoviruses can 
“infect” megakaryocytes [70, 71]. Adenoviruses may also 
bind to circulating platelets, in a von Willebrand Factor or 
P-selectin dependent manner, causing their activation and an 
increase in prothrombotic phenomena [70, 72, 73]. Support-
ing this mechanism is the fact that high adenoviral load in 
the blood can lead to thrombocytopenia [63, 74]. Moreover, 
once COVID-19 spike protein is expressed, platelets might 
become antibody targets and/or enhance thromboxane A2 
production [63]. Mast cells also express CAR. The mast cell 
activation syndrome (MCAS), a genetic disorder, can cause 
chronic and abberant mast cell activation, inflammation, and 
heparin release, characterized by a potential anti PF4/hepa-
rin antibodies production [75]. Anti PF4 – antibodies can 
directly bind to neutrophils, monocytes, or endothilial cells, 
promoting subsequent thrombotic events [70].

Cell entry of adenovirus type 26 (Ad26) does not depend 
on CAR receptor. CD46 molecule was first proposed to be the 
primary cellular receptor for the virus, but this scenario has 
recently been excluded. According to new data, sialic acid has 
been demonstrated to be the primary cell receptor. Human 
platelets differ in their content of sialic acid and it seems that 

adenovirus-platelet interactions, after Ad26.CoV2.S vaccina-
tion, may result in platelet aggregation [63, 76]. Furthermore, 
binding of Ad26 vector to CD46 upregulates the complement 
pathways and leads to thrombosis [62, 77].

EDTA contained in AstraZeneca’s vaccine may increase 
local vascular permeability in the injection site, causing a 
serum sickness-like illness, activating anti-PL4 antibodies 
[70, 75, 78]. The spike protein DNA payload may also affect 
the charge of EDTA and promote DNA/PF4 interaction 
[59]. Moreover, chimpanzee adenoviral vectors are cultured 
using an immortilized kidney cell line (REx-HEK293) and, 
although the product is purified, some vaccine preparations 
may contain DNA and protein contaminants that may inter-
act with platelets [75].

Splicing events have been demonstrated, following the 
transcription of the viral DNA vector to RNA (a process 
which is absent from the direct mRNA transcripion), leading 
to shorter spike protein variants which bind to angiotensin-
converting enzyme 2 (ACE2) receptors, causing thrombosis 
[70, 79]. The neo-synthesized spike protein can also directly 
activate platelets and thus lead to prothrombotic events. 
This spike protein can either be a product of viral vector 
or mRNA vaccines [18, 63, 75, 80]. Note that molecular 
mimicry between spike protein and PF4 may be possible, 
although it has not yet been confirmed [63].

Platelet microparticles (PMPs) may play a role in pro-
thrombotic events, due to their smaller size and better diffu-
sion in unreachable sites, compared to platelets. Additionaly, 
phosphatidyloserine and membrane proteins, participating 

Fig. 2   Proposed mechanism 
for VITT syndrome, following 
vaccination with viral vector 
DNA vaccines. a and b Platelets 
secrete PF4 (anionic), which 
potentially forms complexes 
with viral vector DNA (cati-
onic). c IgG antibodies against 
PF4-viral DNA complexes are 
produced. d The IgG antibodies 
bind to FcγRIIa receptor, whose 
engagement leads to platelet 
activation and aggregation
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in the binding of coagulation factors, are both concentrated 
in the PMPs [72]. Another factor that may aggravate the 
situation is the DNA and histone release that takes place 
during inflammation which might stimulate coagulation and 
thrombosis [72].

An association between periodontal pathogen infection 
and natural circulating anti-PF4/heparin antibodies has been 
described. The periodontal pathogens involved serve as pri-
mary immunogens [81]. Anti-phospholipid autoantibodies 
and/or other autoantibodies may be ivolved in thrombosis 
and thrombocytopenia, after vaccination [72]. Post-vaccina-
tion anti vector-antibodies may play a role in the observed 
VITT as well, but this hypothesis requires further investi-
gation [63]. FcγRIIA receptor gene polymorphism is also 
associated with the development of thrombosis [72, 82]. 
Other genetic factors need to be taken into account, such as 
single nucleotide polymorphisms (SNPs) in the T cell death 
associated gene 8 and a SNP on the HLA class II alpha chain 
gene (HLA-DRA), since they are associated with the forma-
tion of anti-PF4/Heparin antibodies in non heparin treated 
patients [72, 83]. Platelet endothelial cell adhesion molecule 
1 gene (PECAM-1) is expressed in platelets and neutrophils 
andits polymorphism has being associated with HIT. Human 
platelet antigen genotype (HPA-1a/b) has also been associ-
ated with HIT. Lastly, CXADR (encoding for coxsackie and 
adenovirus receptor) enhances the affinity of adenoviruses 
for platelets [84].

The adenoviral vector vaccines contain a tPA leader 
sequence, which has been previously associated with throm-
bosis, although such incidents are unlikely due to low per-
centage of cases [62, 85]. Both RNA and viral vector DNA 
vaccines can cause thrombosis and thrombocytopenia, after 
interaction of the spike protein with heparin sulfate proteo-
glycans, C-type lectin receptors, and/or CD147, on the host 
cell surface. These molecules can regulate the complement 
pathway [62, 86]. Furthermore, heparin sulfate proteogly-
cans, shed from damaged endothelial cells, contribute to 
PF4 immunogenicity [87]. SARS-CoV-2 is also known to 
target dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN), a C-type lectin recep-
tor, in order to enter the host’s cell, in low ACE2 expressed 
tissues. DC-SIGN has been linked to thombocytopenia; thus, 
the vaccine’s spike protein may cause such a blood disorder 
via a DC-SIGN dependent manner [62, 88].

Myocarditis

Myocarditis has been associated with COVID-19 mRNA 
vaccines. The risk rate seems to be about threefold to four-
fold higher for mRNA-1273, compared to the BNT16b2 
[89, 90]. The discrepancy, regarding the frequencies of 
myocarditis occurrence for the two vaccines, could prob-
ably be explained by the different time span between the 

two doses, the differences in composition (LNPs) and in 
purity of the materials, as well as in the production pro-
tocols [90, 91]. Despite the higher rate of myocarditis for 
the mRNA-1273, CDC considers the complication as rare 
in all cases of mRNA COVID-19 vaccination [92, 93]. 
COVID-19 infection is a potential trigger of myocarditis, 
as it affects the vascular system, resulting in myocardial 
injury in 12–20% of hospitalized patients [92, 93]. Since 
a variety of reports is linking the mRNA vaccines to myo-
carditis adverse events, several mechanisms have been 
proposed [94–96].

SARS-CoV-2 spike protein binds to ACE2 receptors, 
which are abundant in cardiovascular tissues [97]. Naïve 
T cells can be primed by viral antigens or other proteins 
released by damaged cardiomyocytes, leading to inflam-
mation [98]. Moreover, a past COVID-19 infection can 
predispose a higher incidence of myocarditis after vac-
cination, with previously primed T cells attacking both 
the vaccine’s spike protein and the cardiac antigens [95, 
96]. Molecular mimicry between the spike protein and 
self antigens is another possible mechanism. The spike 
glycoprotein has been shown to cross-react with proteins 
with similar sequence, such as α myosin, and so it is pos-
sible that inflammatory reactions may occur in predisposed 
patients [92, 99]. Also, heart reactive autoantibodies have 
been linked to higher rates of myocarditis, although it has 
yet to be determined if they are pathogenic or simply a 
result of myocardial injury [100]. These autoantibodies 
are present mostly in first degree relatives of patients with 
cardiomyopathy, a fact that indicates an important role for 
the individual’s genetic background. Moreover, in some 
patients, a deregulation of proinflammatory cytokines and 
an elevated number of NK cells, in conjunction with the 
autoantibodies, may result to heart injury, after COVID-19 
vaccination [92].

RNA molecules are immunogenic and, in some individu-
als with genetic predisposition, the modified RNA of the 
vaccine may be recognized as an antigen [101]. As a result, 
a proinflammatory cascade can be activated playing a poten-
tial role in myocarditis [92, 101]. Of note, male’s predomi-
nance in myocarditis incidents may be due to testosterone’s 
anti-inflammatory properties and, also, due to the activa-
tion of Th1 responses. Estrogens inhibit pro inflammatory 
T-cells, decreasing cell mediated immune responses [92, 
102]. Moreover, myocarditis may be associated with ingre-
dients of the vaccine. Cases of myocarditis, due to vaccine 
adjuvants, have been described in the past, although mRNA 
COVID-19 vaccines do not contain the same components as 
the vaccines used thus far (non mRNA vaccines) [94]. Minor 
differences in the manufacturing practices, during biologic 
vaccine’s production, as well as the inherent instability of 
the mRNA, should be taken into account, as they may play 
a role in immunogenicity and myocarditis [103].
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Neurological adverse events

After the initiation of the mass vaccination program against 
COVID-19, reports concerning neurological adverse events 
of the vaccines started to emerge. Among these neurologi-
cal adverse events, the most common observed were Guil-
lain–Barre syndrome, transverse myelitis and Bell’s Palsy, 
although no association with COVID-19 vaccines has been 
confirmed yet [9, 104–108].

Guillain–Barre syndrome has been linked with viral vec-
tor vaccines. Molecular mimicry, anti-gaglioside antibodies, 
and compliment activation play a role in the pathogenesis of 
the disease, which may result from viral infections, such as 
in cases of infections with adenoviruses [106]. It has been 
also postulated that the vaccine’s components, as well as 
contaminating proteins, can induce anti-gaglioside antibod-
ies leading to inflammation [64, 104] (Fig. 3).

Transverse myelitis is an demyeliting disease, linked to 
COVID-19 vaccines. It has been suggested that post-vac-
cination demyelination might be a trigger for the disease’s 
expression, in people already predisposed towards it [104, 
109]. Transverse myelitis can also appear as a result of 
viral infection, suggesting that viral antigens, present in the 
vaccine, or even the adenovirus itself can induce relevant 
immune responses. The most likely mechnanism is molecu-
lar mimicry and bystander activation of the immune system, 
leading to autoimmunity [9]. In cases where mRNA vaccines 
had being used, the possible mechanisms differ from those 

mentioned above. In more detail, SARS-CoV-2 spike protein 
antibody, directly reacts with the myelin. Additionally, inter-
action of the spike protein with ACE2 receptors, present in 
neurons, results in demyelination processes [99, 107].

Bell’s Palsy appears to be a rare adverse event of mRNA 
vaccines. A potential mechanism is the activation of type I 
interferons, by the vaccine’s mRNA and/or lipids, leading 
to lymphocyte activation and inflammation. Furthermore, 
IFNα seems to have the ability to breakdown myelin anti-
gens, thus leading to neuropathy [108, 110]. The autoim-
mune responses may also result from molecular mimicry or 
bystander activtion of T cells [108, 111]. Another underlying 
mechanism refers to anaphylaxis reactions, caused by the 
vaccine components and thus facilitating the appearance of 
Bells’s Palsy [112].

Some other reports discuss the possibility of a link 
between the vaccines and epilepsy and/or encephalopathy 
[8, 104, 113]. More specifically, a case of new-onset refrac-
tory status epilepticus (NORSE) has been described, after 
ChAdOx1 nCoV-19 vaccination. The vaccine induced high 
fever which provoked seizures. An alternative hypothesis 
focuses on the ACE2-mediated accessibility of the viral 
vector into the brain, which can trigger a pro inflammatory 
cytokine cascade, neuronal hyper excitation, and seizures 
[8, 104]. As far as encephalopathy is concerned, a cytokine 
storm associated encephalopathy syndrome, following 
mRNA vaccination, has been proposed. Spike protein is 
considered the trigger of the syndrome [77, 113].

Fig. 3   Proposed mechanism 
for Guillain–Barre syndrome, 
following COVID-19 vaccina-
tion. The immune cells produce 
antibodies against S protein. In 
terms of molecular mimicry, 
as S protein cross-reacts with 
gangliosides, the antibodies also 
damage the neurons, thus lead-
ing to their demyelination
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Other adverse events

Autoimmunity may be triggered by COVID-19 vaccines. 
Although these cases are all considered extremely rare, an 
infection-induced autoreactive mechanism can occasion-
ally lead to autoimmune disease pathogenesis, especially 
in patients with predisposition (such as subjects carrying 
gene polymorphisms that affect IL-4 expression) [101, 105, 
114]. The mRNA vaccines, as well as the viral vector ones, 
can potentially induce autoimmune disease flares or new 
onset disease, through the activation of TLR7/8 and TLR9 
receptors respectively, thus resulting in type I interferon 
production and nuclear factor NF-kB expression [11, 105, 
115, 116] (Fig. 4). The triggering of autoimmune phenom-
ena, following COVID-19 vaccination, may occur due to 
the expansion of potentially pathogenic B cells, such as the 
transcription factor T-bet expressing B cells, which rely on 
TLR7 and TLR9 for their differentiation. The characteriza-
tion of these cells, especially in people with autoimmune 
history, could enable a better management of patients with 
minimized adverse events and maximized therapeutic ben-
efits of immunization against SARS-CoV-2 [117, 118]. 
Additionally, mRNA can stimulate dendritic cells’ matura-
tion and activate T cells, B cells, and bystander autoreactive 
lymphocytes, thus reactivating autoimmune responses. It 
is important to mention though that mRNA can potentially 
inhibit antigen expression [105, 119]. Autoimmunity may 
also be stimulated by molecular mimicry between the spike 
protein and self-epitopes, resulting in a robust activation 

of autoreactive T cells and B cells [105]. The cytokines 
secreted by macrophages should be taken into account as 
well, as they recruit additional T cells aggravating the situa-
tion [120]. Despite all these mechanisms that trigger disease 
flares or even new onsets, the majority of people can be 
vaccinated without any risk of autoimmunity, as these phe-
nomena are considered rare and mild to moderate in severity 
[11, 105].

Antibody dependent enhancement (ADE) has been sug-
gested as a probable phenomenon that exacerbates COVID-
19, through anti SARS-CoV-2 antibodies produced by the 
vaccine [121]. The two main mechanisms, leading to ADE, 
are an enhanced antibody-mediated virus uptake into FcγIIa 
receptor and/or a formation of immune complexes that have 
inflammatory properties and lead to increased inflammation. 
ADE occurs when non neutralizing antibodies bind to viral 
antigens, without eliminating them [121]. To date, there is 
no evidence confirming ADE’s association with COVID-19 
vaccination.

Tachycardia following COVID-19 vaccination is another 
well documented adverse event [10, 122]. In more detail, 
cross reacting antibodies are proposed to target the nerv-
ous system, leading to postural orthostatic tachycardia 
(POTS). POTS may, alternatively, result from an autoanti-
body mediated mechanism, in which autoantibodies target 
α1 adrenergic receptors [123]. The targeting of α1 receptors 
provokes impaired vasoconstriction, increased sympathetic 
nervous system activity, and also activation of baroreceptors 
[10, 123]. Other mechanisms leading to POTS pertain to 

Fig. 4   Potential mechanisms 
leading to autoimmunity flares 
and/or new-onsets of disease. a 
Following COVID-19 vaccina-
tion, the mRNA or the viral vec-
tor DNA enters a cell via endo-
cytosis. b In endosomes, the 
ssRNA or the double-stranded 
DNAs (dsDNA) are sensed by 
TLR7/8 or TLR9 respectively. 
TLRs engagement triggers a 
series of signal transduction 
pathways, resulting in the for-
mation of interferon regulatory 
factor 7 (IRF7) and NF-kB. c 
After being formed, both IRF7 
and NF-kB translocate to the 
nucleus. In the nucleus, genes 
transcription leads to interferon 
type I activation and proinflam-
matory cytokines generation
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autoantibodies targeting vascular and/or cardiac adrenergic 
receptors, anti SARS-CoV-2 antibodies that display cross-
reactivity with receptors in the ganglia, and ACE2 receptor’s 
dysfunction [10, 124]. The spike protein produced by mRNA 
vaccines can stimulate autoimmune responses, leading to 
POTS, as well [10].

Recurrences of herpes zoster is another reported adverse 
event of COVID-19 vaccines [7, 14, 125]. In general, its 
incidence increases with age and factors such as stress, 
trauma, and immunosuppression, can lead to viral reactiva-
tion and inflammation of ganglia, associated with vesicular 
eruptions of the skin [14, 125].

To conclude, we provide a table summarizing all the 
issues discussed above. More specifically, all the poten-
tial mechanisms described, regarding COVID-19 vaccine 
adverse events, are presented in Table 1.

Discussion

COVID-19 vaccines offer an opportunity to end the cur-
rent global pandemic, with the approved vaccines eliciting 
sufficient immune response while being safe. Despite the 
different platforms used, all vaccines encode SARS-CoV-2 
spike protein that is being recognized by the immune system 
forming anti-SARS-CoV- 2 IgG antibodies [18].

The rapid research and manufacturing process, in order 
to immediately confront the pandemic, raised concerns, 
especially regarding the safety profiles of the mRNA and 
viral vector vaccines. The literature so far suggests that the 
mRNA vaccines might be more likely to cause an adverse 
event in comparison to the viral vector ones [126, 127]. Pain 
in the injection site is considered the most common local 
reaction, while fatigue and headache as the most common 
systemic [126, 127]. The pool rates of the aforementioned 
reactions were 89.4% and 83.3% respectively, for the mRNA 
vaccines, and 55.9% and 66.3% respectively, for the viral 
vector vaccines [126, 127]. Moreover, serious gastrointesti-
nal complications and infections were more common among 
viral vector vaccines, while the occurrences of serious vessel 
disorders and medically attended events were more frequent 
in mRNA vaccines [126, 127]. That said, it is imperative 
to stress out that all approved COVID-19 vaccines have an 
acceptable safety profile [126, 127].

mRNAs technology, despite being new, has some advan-
tages over other platforms. Some of the advantages of 
mRNA-based vaccines include the fast-track manufactur-
ing process, the inability of mRNA to integrate to the host 
cell’s genome, reduced contamination issues, biodegrada-
bility, and elicitation of robust humoral and cellular immu-
nity, thus acting concomitantly as both an immunogen and 
an adjuvant [18, 20, 128–130]. However, mRNA products 
present stability issues which might be considered a major 

obstacle for worldwide distribution [129, 130]. Furthermore, 
data for the extent of the trapped mRNA inside the LNPs are 
not currently available [130].

In terms of the adenoviral vaccines, viral vectors have the 
potential of targeted gene delivery to the cells that results in 
efficient immune responses [18, 131]. These vaccines can 
also induce a high level of antibody production and T cell 
activation [130]. On the other hand, they contain a double 
stranded gene, encoding for spike protein and thus neither 
the integration of the viral DNA in the host’s genome, nor 
the production of various spike protein fragments can be 
excluded as factors implicated in some of the reported side 
effects [18, 131].

In this review, the potential molecular mechanisms lead-
ing to the rare adverse events, following COVID-19 vac-
cination, have been discussed. It must be noted that most 
of these mechanisms are hypothetical and thus must be 
interpreted with caution. More specifically, mRNA vac-
cines can cause anaphylactic and allergic reactions with the 
main culprit being an LNP component called PEG. Previ-
ous PEG allergies reported reinforce such a hypothesis [29, 
30]. Adenoviral vector vaccines have been associated with 
thrombosis and thrombocytopenia, through a newly charac-
terized syndrome called VITT, in which anti PF4-antigen 
antibodies lead to a proinflammatory cascade and platelet 
activation [47–49]. Several factors play a role in the initia-
tion of these phenomena, with the adenovirus itself, or other 
vaccine components, such as spike protein and DNA, being 
associated with thrombosis [55, 56, 59, 60, 79]. Myocarditis 
has also been linked to mRNA vaccines, with both RNA 
reactogenicity and spike protein binding to ACE2 recep-
tors in the cardiovascular system being the possible culprits 
[92, 101]. Other important adverse events are of neurologi-
cal nature. There, a mechanism of molecular mimicry and 
bystander activation of T cells facilitating an autoimmune 
response can lead to neuronal dysfunction [9]. Autoimmune 
responses from the vaccine may also lead to flares of pre-
existing autoimmunity diseases or even initiate new onsets 
in predisposed patients [11].

Moreover, biological sex is a factor that seems to correlate 
with all these responses [32]. PEG allergies, autoimmune 
phenomena, and thrombosis are more frequent in females. 
The mRNA vaccines utilize a TLR7 recognition receptor, 
while viral vector vaccines recruit a TLR9, which activates 
interferon I responses, a molecule acting as mediator in 
many autoimmune diseases [32, 33]. Additionally, PEG is a 
component widely used in cosmetic industry; thus, female 
individuals are more likely to exhibit past exposure and sen-
sitization to this component [31]. The danger is increased 
for women receiving oral contraceptives since they already 
display an increased thrombosis risk [132]. Myocarditis is 
more frequently reported in young adults, as testosterone 
enhances Th1 responses and leads to inflammation, while 
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estrogen inhibits them [92, 102]. It is important to note that 
many females diagnosed with myocarditis are post-meno-
pausal [133].

All biological products have adverse effects, calling for 
heightened pharmacovigilance reflexes [134]. The phar-
maceutical industry should focus on improving the current 
COVID-19 vaccines, as well as future versions, in order to 
bring about maximization of the therapeutic benefits, while 
keeping side-effects at bay. The fact that SARS-CoV-2 dis-
plays a high mutation rate, thus leading to the emergence of 
new variants of concern (such as delta and omicron) [135, 
136], highlights the necessity of constantly developing new 
vaccines, in order to successfully confront the new dominant 
variant. To this end, a third “booster” shot is now required 
for being protected against the omicron variant, which is 
currently considered the dominant one [136, 137]. Fortu-
nately, the fast-tracking development of COVID-19 vaccines 
has led to the in time immunization of people around the 
world [138]. However, despite the fast and massive vaccine 
production, poorer countries — up to now — do not seem 
to easily have access to the vaccines [138]. Moreover, it is 
important to mention that such an immediate worldwide vac-
cination approach (that refers to new vaccine technologies) 
has given rise to concerns regarding the effectiveness and the 
safety of the vaccines; thus, several individuals have been 
hesitant to be vaccinated against SARS-CoV-2 [138]. As it 
stands, the landscape has changed considerably since the 
first COVID-19 wave, where the virus had taken the world 
by storm causing a pandemic [135]. Considerable portions 
of the worldwide population have nowadays either been vac-
cinated and/or infected with the virus. This has led to accu-
mulation of the relevant clinical knowledge on the course 
of the disease, as well as the development of appropriate 
therapeutic protocols [136, 137]. Furthermore, world-wide 
mobilization has led to the development of an array of dif-
ferent vaccines to choose from [1]. Given the above, it would 
be prudent to suggest that fast-tracking vaccine products can 
now be approached in less urgent terms, in order to allow 
adequate time for proper evaluation of the efficacy and safety 
of the emerging vaccines [138].

Pharmaceutical industries should also take into consid-
eration a wide variety of confounding factors such as genetic 
predisposition, sex differences, and environmental triggers 
of the different populations, when designing and developing 
a vaccine. Novel components can be evaluated for the com-
position of future vaccines. Theoretically, proven ingredients 
which are absent from COVID-19 vaccines, but present in 
other non COVID-19 vaccines (such as latex, egg, or yeast 
proteins and antibiotics) could be considered for the com-
position of the final product, at least in non-allergic sub-
jects [139]. The genetic background of the patient population 
should be taken into account, paying attention to polymor-
phisms leading to susceptibility to different diseases [72, 83, 

84]. LNPs, including those utilizing PEG with lower MW, 
are a future consideration, since these molecules are less 
immunogenic [27]. The recombinant adenoviruses as vectors 
are well used platforms and can be rendered safer by modify-
ing their ability to bind to platelets, or even by using other 
recombinant viruses as vectors, against which no pre-exist-
ing immunity exist in humans, minimizing the likelihood for 
off-site effects [139]. Moreover, alternative splicing requires 
to be taken into consideration, as the introduction of an RNA 
virus component into a DNA virus may lead to the transla-
tion of a different product with unknown effects on the cell 
[79, 80]. Bioinformatics tools could probably contribute to 
the prediction of harmful splicing variants [79, 80]. Last 
but not least, TLRs are efficient immune response mediators 
used in COVID-19 vaccines; thus, their link with autoim-
munity should be well considered, especially for the female 
population, as TLR7 gene is located on X chromosome [32]. 
In order to avoid TLR binding, which is indissolubly linked 
to autoimmunity [140], emphasis should probably be put on 
protein vaccines (at least in females, which are more vulner-
able to autoimmune diseases [32]). Fortunately, advances 
in the fields of precision medicine, genomics, immunology, 
and bioinformatics will extend our knowledge and resolve 
the issues mentioned above.
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