
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12026-022-09278-9

ORIGINAL ARTICLE

Lower frequency of T stem cell memory (TSCM) cells in hepatitis B 
vaccine nonresponders

Mahsa Eshkevar Vakili1 · Zahra Faghih2 · Jamal Sarvari3,4 · Mehrnoosh Doroudchi1 · Seyed Nezamedin Hosseini5 · 
Dieter Kabelitz6 · Kurosh Kalantar1 

Received: 20 December 2021 / Accepted: 1 April 2022 
© The Author(s) 2022

Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. 
Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the 
identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ 
memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory 
T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For 
restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of 
HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce 
IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of 
CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder 
groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results 
identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency 
of CD4+ TSCM cells.
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Introduction

Hepatitis is a term used for a variety of inflammatory liver 
diseases which may eventually lead to liver failure, cirrhosis, 
and hepatocellular carcinoma. This inflammation is divided 
into two main categories: noninfectious and infectious, 
which is induced by hepatitis A, B, C, D, and E viruses as 
well as cytomegalovirus, and Epstein–Barr virus [1]. Hepa-
titis B and C viruses are the major causes of cirrhosis and 
liver cancer [2, 3]. Hepatitis B virus (HBV), a member of 
the Hepadnaviridae family [4], has a small, partially double-
stranded, relaxed-circular DNA genome that encodes seven 
proteins: precore/E antigen (HBeAg), large (L-), medium 
(M-), and small (S-) surface antigen (HBsAg), core protein, 
polymerase, and X protein (HBx) [5, 6]. Nowadays, it is 
well known that hepatocyte infection with the virus is non-
cytopathic and can be transient or chronic depending on the 
ability of the host immune system to clear the infection [7].

Despite the availability of effective vaccines and antivi-
ral treatments, infection with HBV is considered a global 
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health problem [8, 9]. In the past 2 decades, many drugs 
have been developed to treat this disease. Their main prob-
lems are the inability to eradicate HBV, side effects, the 
necessity for regular injections, and the high cost of treat-
ment. In addition to the suggested treatments, hepatitis B 
(HB) vaccination seems to be the most effective strategy 
to prevent and control the infection [10–14]. The first gen-
eration of the HBV vaccine was the serum of people who 
produced large amounts of antibodies against HBsAg (pas-
sive). Subsequently, advances in DNA recombination tech-
nology led to the development of the second generation 
of HBV vaccines (DNA recombinant vaccines) (active) 
[15, 16].

After vaccination, measurement of the humoral immune 
response against HBsAg is an immune marker indicating the 
presence or absence of protective antibodies against HBV 
infection. According to this factor, seroprotection is accepted 
when anti-HBsAb titer reaches more than 10 mIU/ml, there-
fore, people who did not develop corresponding anti-HBsAb 
titers, even after administration of two complete series of the 
HBV vaccine, are considered nonresponders [15, 17, 18].

After HBV exposure, protection induced by the vaccine 
occurs through two mechanisms; the first is the neutrali-
zation of the virus by anti-HB antibodies, and the second 
involves the activation of CD4+ T memory cells, which sub-
sequently activate memory B cells to secrete anti-HBs anti-
body [15]. Several studies have shown that vaccine-induced 
antibody levels are gradually declining, while memory cell 
formation in healthy recipients will remain for more than 
15 years [19–22].

Although, many successful vaccines primarily act by 
generating antibodies, producing vaccines that can provoke 
a population of highly-specific T cells is completely on 
demand. These types of vaccines should have the ability 
to generate large, effective, and long-lived populations of 
memory T cells [23, 24]. Advances in the multi-parameter 
flow cytometry technique have provided the ability to define 
the heterogeneity of T cells [25]. Based on the differential 
expression of CD28, CCR7, CD45RO, and CD95, there are 
six major groups of quiescent T cells, including naïve T cell 
(TN), stem cell memory T cell (TSCM), central memory T cell 
(TCM), transitional memory T cell (TTM), effector memory 
T cell (TEM), and terminal effector T cell (TTE). These cells 
are supposed to be generated from TN during a linear model 
called linear differentiation [23, 26–29]. Despite many 
advances in this field, there are still questions about the for-
mation and maintenance of immunological memory after 
vaccination [23]. Accordingly, the identification of memory 
cell subsets can indicate the effectiveness of vaccines like 
the HB vaccine. In the present study, we, therefore, aimed 
to determine the frequency of CD4+ memory T cell subsets 
and compare these cell quantities between responders and 
nonresponders to the HB vaccine.

Materials and methods

Subjects

All study participants were selected from the health care staff 
of hospitals affiliated with Shiraz University of Medical Sci-
ences (SUMS), Shiraz, Iran. This study was approved by the 
Ethics Committee of the university (ethics code: IR.SUMS.
REC.1397.779).

The participants were divided into two groups of respond-
ers (n = 13) and nonresponders (n = 15) according to their 
anti-HBsAb titers registered at the hospital infection control 
centers. Responders had antibody titers > 100 mIU/ml, and 
nonresponder subjects had antibody titers < 10 mIU/ml after 
administration of at least two complete series of the HB vac-
cine (repeating the whole schedule of vaccine after the first 
schedule). After obtaining written informed consent, the blood 
samples were taken under sterile conditions and transferred 
to the laboratory enclosed in an ice pack. The patients with 
hepatic infections and HIV, cancers, autoimmune diseases, and 
alcohol users were excluded from the study.

Isolation of mononuclear cells from peripheral 
blood

Five milliliters of peripheral blood were overlaid on Ficoll-
Paque (inno-train DIAGNOSTIK GMBH, Germany) in sterile 
conditions to isolate mononuclear cells by density gradient 
centrifugation. The plasma layer was removed, aliquoted, and 
sorted at − 20 °C for identification of anti-HBs Ab level. The 
peripheral blood mononuclear cells (PBMCs) were then care-
fully aspirated from the Ficoll-plasma interface, washed two 
times with 1 × phosphate-buffered saline (PBS), counted with 
Trypan blue dye (Shellmax, China), and prepared in appropri-
ate concentration for further studies.

Determination of HBsAb with enzyme linked 
immunoassay (ELISA) technique

Anti-HBsAb plasma level was checked using an HBsAb 
ELISA kit (DIA.PRO Diagnostic Bioprobes Srl, Italy) accord-
ing to the manufacturer’s instructions. In brief, the sample was 
applied on microwells coated with highly purified HBsAg, 
which specifically captured anti-HBs antibodies and formed 
antibody‐antigen complexes. The amount of conjugate bound 
and, hence, the color in the wells was directly related to the 
concentration of antibodies in the sample.

Activation for restimulation of CD4+ memory T cells

Two million of PBMCs were cultured in a final volume 
of 1000 µl complete culture media (CM10) [RPMI 1640 
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containing 10% heat-inactivated fetal bovine serum (FBS), 
1% penicillin–streptomycin (Pen-Strep), and 1% glutamine 
(all from Shellmax)] per well. The optimal concentrations 
of HBsAg (Razi Institute, Iran) and phytohemagglutinin 
(PHA; Invitrogen, USA) were determined to be 4 and 1 µg/
ml for lymphocyte activation. The cells were then exposed 
to HBsAg and PHA for 48 h at 37 °C in a humidified atmos-
phere supplemented with 5% CO2.

Activation for IFN‑γ production by CD4+ T cells

Two million of PBMCs were cultured in a final volume of 
1000 µl CM10 per well. The cells were stimulated with 
HBsAg (4 µg/ml) (Razi Institute) and PHA (1 µg/ml) (Inv-
itrogen) during a 48 h incubation at 37 °C in a humidified 
atmosphere supplemented with 5% CO2. In the last 5 h, 
25 ng/ml of phorbol myristate acetate, 500 ng/ml of ionomy-
cin (both from Sigma-Aldrich, USA), and 0.7 µl of brefeldin 
A as a Golgi stopper (BD Biosciences, USA) were added to 
this cocktail.

Cell staining for assessment of CD4+ memory T cell 
subsets

As previously described [30], to investigate the frequency of 
CD4+ memory T cell subsets, after stimulation time, PBMCs 
were collected, washed with 1 × PBS, and stained with 
appropriate fluorescent-labeled antibodies (FITC-conjugated 
anti-CCR7 clone: G043H7, PE-conjugated anti-CD95 clone: 
Dx2, PerCP/Cy5.5-conjugated anti-CD4 clone: RPA-T4, and 
APC-conjugated anti-CD45RO clone: UCHL1; all from Bio-
legend, USA) and incubated in the dark for 30 min at room 
temperature. After that, the cells were washed twice using 
2 ml of 1 × PBS to remove unbound antibodies and fixed in 
300 µl of paraformaldehyde (PFA; 10 mg/ml; Merk, Ger-
many) for 15 min at 4 °C. Following washing with 3 ml of 
1 × PBS, in the last step, the cells were suspended in 500 µl 
of 1 × PBS and acquired on a 4-color BD FACSCalibur™ 
flow cytometer (BD Biosciences) (~ 200 × 103 events). 
FlowJo software (version X.0.7; Tree Star, Inc., Ashland, 
OR, USA) was used for data analysis.

The mean fluorescent intensity (MFI) of CD95 was also 
evaluated on CD95+ and CD95Hi TSCM. To normalize the 
MFI of CD95 in different subsets, the MFI of CD95 in posi-
tive cells (CD95+ TSCM or CD95Hi TSCM) was divided by the 
MFI of CD95 in the negative population (TN).

Cell staining for assessment of CD4+ IFN‑γ+ memory 
T cells

At the end of stimulation time, PBMCs were collected, 
washed with 1 × PBS, and stained with fluorescent-labeled 
antibodies for both surface and intracellular markers. At 

first, an APC-conjugated anti-CD45RO antibody (clone: 
UCHL1; Biolegend) was added, and the cells were incubated 
in the dark for 30 min at room temperature. Then, they were 
washed twice with 2 ml of 1 × PBS and fixed with 300 µl of 
PFA (10 mg/ml; Merk) for 15 min at 4 °C. After washing 
with 3 ml of 1 × PBS, in the next step, the cells were permea-
bilized using 1 ml of 1 × Perm/Wash buffer (Biolegend) and 
were incubated in the dark for 15 min at room temperature. 
The fluorescent-labeled antibodies (FITC-conjugated anti-
IFN-γ clone: B27 and PerCP/Cy5.5-conjugated anti-CD4 
clone: RPA-T4; Biolegend) were then added, and incuba-
tion was done in the dark for 30 min at room temperature. 
The cells were washed twice with 1 × Perm/Wash buffer and 
then fixed with 300 µl of PFA for 15 min at 4 °C. Finally, 
the cells were washed with 3 ml of 1 × PBS, suspended in 
500 µl of 1 × PBS, and were acquired on a 4-color BD FAC-
SCalibur™ flow cytometer (BD Biosciences) (~ 200 × 103 
events). FlowJo software (version X.0.7; Tree Star, Inc.) was 
used for data analysis.

As the mean expression of IFN-γ, the MFI of this 
cytokine was also determined. To report the MFI of IFN-γ, 
the MFI of each IFN-γ expressing T cell was normalized by 
the corresponding IFN-γ negative population.

Statistical analysis

SPSS software (version 22.0; IBM Corp., Armonk, NY, 
USA) was used for statistical analysis. Before comparing, 
the normal distribution of variables was first evaluated 
using the Kolmogorov–Smirnov test. As the data could not 
pass the normality test, the nonparametric Mann–Whitney 
U test was used. Moreover, a nonparametric Spearman’s 
rank correlation test was done to assess the relationship 
between two quantitative variables. All data were presented 
as mean ± SEM, and p-values < 0.05 were considered 
significant.

Results

The characteristics of the study subjects

In this study, 15 people with anti-HBs antibody titer less 
than 10 mIU/ml were recruited as the nonresponder group. 
These individuals had no increase in their anti-HBsAb titer 
after administration of at least 2 complete series of the HBV 
vaccine. Besides, 13 subjects with an antibody titer of more 
than 100 mIU/ml were included in the responder group 
(Table 1). The individuals with inflammatory diseases (i.e., 
autoimmune disorders and cancers), alcohol users, and those 
infected by HIV, HBV, and HCV were excluded from the 
investigation.
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The frequency of different CD4+ memory T cell 
subsets in the peripheral blood of HB vaccine 
responders and nonresponders after stimulation 
with HBsAg

Our data analysis in flow cytometry relied on the follow-
ing gating strategy: lymphocytes were gated based on their 
relative size (forward scatter) and granularity (side scatter) 
(Fig. 1A). Then, lymphocytes with high expression of CD4 
marker (CD4+) were separated (Fig. 1B), and the frequency 
of different memory T cell subsets was determined based on 

the expression of CCR7, CD45RO, and CD95 markers. All 
frequencies were reported in the CD4+ T cell population. 
Among CCR7+CD45RO− population (Fig. 1C), CD95− cells 
were considered TN cells, and those with CD95 expression 
were introduced as TSCM. TN and TSCM cells were deter-
mined in red and black squares, respectively, in Fig. 1H. 
CCR7+CD45RO+ cells (Fig. 1E) expressing CD95 were 
considered TCM cells (Fig. 1J). Besides, according to the 
expression level of CD45RO (Fig. 1F and G), two groups of 
TCM were further introduced: CD45ROHi TCM (Fig. 1K) and 
CD45ROlow/med TCM (Fig. 1L). The CCR7−CD45RO+ cells 

Table 1   The characteristics of 
the studied subjects

F, frequency; SEM, standard error of mean; mIU/ml, milli international unit/milliliter.

Characteristic Nonresponders (n = 15) Responders (n = 13)

Age (year)
(Mean ± SEM)

45.13 ± 2.24 41.15 ± 2.62

Sex
F (%)

Male 2 (13.34%) 2 (15.38%)
Female 13 (86.66%) 11 (84.62%)

Anti-HBs Ab titer (mIU/ml)
(mean ± SEM)

4.19 ± 1.22 240.02 ± 7.46

Fig. 1   Gating strategy to 
identify the frequency of CD4+ 
memory T cell subsets in 
peripheral blood of HB vaccine 
responders and nonresponders 
after stimulation. Lymphocytes 
were gated based on their rela-
tive size (forward scatter) and 
granularity (side scatter) (A). 
Then, lymphocytes with high 
expression of CD4 (CD4+) were 
determined (B). The frequen-
cies of different memory T cell 
subsets were then defined based 
on the expression of CCR7, 
CD45RO, and CD95 markers 
in the CD4+ population (C–Q). 
Regarding different levels of 
CD95 expression on memory T 
cell subsets, two groups of cells, 
CD95+ and CD95Hi cells, were 
evaluated (H–Q). TN: T naïve; 
TSCM: T stem cell memory; 
TCM: T central memory; TEM: T 
effector memory
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(Fig. 1D) expressing CD95 were considered TEM (Fig. 1I). 
Regarding the high expression of CD95 on memory T cell 
subsets after activation, CD95Hi memory T cells were also 
evaluated (Fig. 1M-Q). The frequency of CD95low/med mem-
ory T cells was also calculated by subtracting the frequency 
of CD95Hi memory T cell from the frequency of CD95+ 
memory T cell.

Frequency of CD4+ memory T cell subsets 
in responders and nonresponders to HB vaccine

The purpose of this part of the experiment was to determine 
the differences in the frequency of the CD4+ memory T cell 
subsets between the responder and nonresponder groups. 
Median (IQ25–75) and mean ± SEM of the frequency of cell 
subsets in each group and p-values of their differences were 
detailed in Table 2. As shown, there were no statistically 
significant differences in the frequencies of various memory 
T cell subsets except for CD4+CD95+ (P-value = 0.023), 
CD4+CD95Hi (P-value = 0.001), and CD4+CD95low/med 
(P-value = 0.032) TSCM cells between responder and non-
responder groups. The CD95 expression (based on MFI) 
on CD4+ TSCM was also compared, however, there were no 
statistical significant differences between the two groups 
(Table 2). The results obtained from responder and non-
responder groups were shown in Supplementary Tables S1 
and S2, respectively.

Correlation of anti‑HBsAb level and age 
of participants with the frequencies of different cell 
subsets

Our results showed no correlation between the anti-HBsAb 
titer and the frequencies of various CD4+ memory T cell 
subsets in both responder and nonresponder groups. More-
over, there was no correlation between the age of nonre-
sponders and the percentages of different cell subsets, while 
a negative correlation was observed between the age of 
responders and the frequency of CD4+ TN (P-value = 0.029, 
rs =  − 0.6). On the other hand, the positive correlations were 
found between the responders’ age and the frequencies of 
CD4+ TCM subsets (CD45RO+ TCM: P-value = 0.043, rs: 
0.57; and CD45ROlow/med TCM: P-value = 0.014, rs = 0.66) 
(Fig. 2, Table S3).

Production of IFN‑γ by CD4+and CD4− memory 
T cells of responders and nonresponders to HB 
vaccine after stimulation

To determine the frequency of IFN-γ+ memory lymphocytes 
(CD4+CD45RO+IFN-γ+ and CD4−CD45RO+IFN-γ+) after 
gating the lymphocyte population-based on their relative 
size (forward scatter) and granularity (side scatter) (Fig. 3A), 

CD4+ and CD4− lymphocytes were defined (Fig. 3B and C). 
Then, the frequency of IFN-γ producing cells was deter-
mined in each population (Fig. 3D-G).

Frequency of IFN‑γ+ memory lymphocytes 
in responders and nonresponders to HB vaccine

In the second section of the study, the PBMCs were stim-
ulated and the frequencies of different IFN-γ+ cells were 
compared between responders and nonresponders to the 
HB vaccine. The median (IQ25–75) and mean ± SEM of 
the frequencies in each group and the p-values of their dif-
ferences were summarized in Table 3. As shown, there were 
no statistical differences in the frequencies of various IFN-γ 
producing subsets between responder and nonresponder 
participants.

Discussion

HBV is one of the main reasons for cirrhosis and liver cancer 
worldwide [2, 8]. Different medications are in clinical use 
to treat this disease. Because of the challenges during the 
treatment of hepatitis, vaccination is more efficient as a pro-
phylactic approach [10–13]. The vaccine provides protection 
via neutralization of the virus by anti-HBsAb and activation 
of CD4+ T memory cells [15]. Although vaccine-induced 
antibody levels are gradually declining, it has been shown 
that memory cells are maintained in healthy vaccine recipi-
ents for more than 15 years [19–21].

The goal of vaccination is to induce long-lasting protec-
tive immune memory [24]. The identification of memory 
cell subsets may indicate the effectiveness of vaccines. 
Therefore, we designed the present study to analyze the 
frequency of CD4+ memory T cell subsets (TSCM, TCM, 
and TEM cells) and compare these cell quantities between 
responders and nonresponders to the HB vaccine. These 
cells were determined based on the differential expression 
of CCR7, CD45RO, and CD95 markers [23, 26].

Pieces of evidence showed that specific TSCM cells were 
produced during normal immune responses against patho-
gens [31–33]. Furthermore, a negative correlation between 
the severity of disease and the frequency of circulating TSCM 
cells in chronic viral and parasitic infections was observed 
[34]. Accordingly, the protective role of TSCM cells makes 
them an attractive candidate in vaccination and adoptive T 
cell therapy [34–39]. Our results showed that the nonre-
sponder participants had a lower frequency of CD4+CD95+, 
CD4+CD95Hi, and CD4+CD95low/med TSCM than responders 
to the HB vaccine. However, other subsets, including naïve, 
central memory, and effector memory CD4+ T cells, were 
not statistically different between the studied groups.
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There are some possible mechanisms underlying impaired 
antibody response to HB vaccination. For instance, several 
studies revealed a negative correlation between the fre-
quency of regulatory T (Treg) cells and the seroconversion 
rate after HB vaccination [40, 41]. In addition, decreased 
frequency and function of monocyte-derived dendritic 
cells (moDCs) and subsequently attenuated memory T cell 
induction had been considered a probable reason for being 
nonresponder to HB vaccine [42]. However, the long-term 
memory T cell response has not been fully elucidated in this 
regard [43]. To the best of our knowledge, no similar studies 

could be found regarding the frequency of various memory 
T cell subsets, particularly TSCM cells after vaccination, and 
their comparison between responders and nonresponders of 
healthy recipients. In the case of vaccination, few studies 
existed about the induction of TSCM cells following vaccina-
tion against yellow fever (YF) and the application of CpG-B 
based cancer vaccines [44, 45]. In a study by Scriba et al., 
it was suggested that vaccine-induced TSCM contributed to 
long-term memory formation and proliferative capacity of 
the vaccine-induced T cell response to mycobacteria [46]. 
Moreover, Schlom et al. made a vaccine directed against a 

Table 2   Frequencies of CD4+ memory T cell subsets between responders and nonresponders to HB vaccine

IQ, interquartile; SEM, standard error of mean; TN, T naïve; TSCM, T stem cell memory; TCM, T central memory; TEM, T effector memory.

Subset Phenotype Nonresponder Responder P-value

Median
(IQ25–75)

Mean ± SEM Median
(IQ25–75)

Mean ± SEM

TN CD4+CCR7+CD45RO−CD95− 5.23
(3.09–7.36)

5.79 ± 0.92 3.92
(3.08–7.18)

5.46 ± 0.92 0.836

TSCM CD4+CCR7+CD45RO−CD95+ 12.92
(8–17.84)

13.37 ± 1.45 19.01
(13.78–23.07)

19.59 ± 1.78 0.023

CD4+CCR7+CD45RO−CD95Hi 1.05
(0.67–1.39)

1.08 ± 0.14 1.87
(1.46–2.47)

2.02 ± 0.19 0.001

CD4+CCR7+CD45RO−CD95low/med 12.07
(7.37v16.63)

12.28 ± 1.34 17.13
(12.17–20.36)

17.57 ± 1.63 0.032

TCM CD4+CCR7+CD45RO+CD95+ 68.25
(59.44–76.44)

67.93 ± 2.37 66.28
(56.19–71.92)

65.73 ± 2.47 0.596

CD4+CCR7+CD45RO+CD95Hi 38.25
(31.26–47.75)

40.38 ± 2.48 36.58
(31.37–39.72)

37.09 ± 2.19 0.345

CD4+CCR7+CD45RO+CD95low/med 23.98
(19.84–36.63)

27.55 ± 2.58 26.23
(21.74–36.32)

28.64 ± 2.39 0.662

TCM CD4+CCR7+CD45ROHiCD95+ 30.9
(22.68–42.78)

32.75 ± 2.61 27.8
(21.34–33.58)

27.61 ± 2.52 0.189

CD4+CCR7+CD45ROHiCD95Hi 26.75
(19.98–39.32)

28.26 ± 2.34 26.33
(17.35–27.73)

24.63 ± 2.45 0.369

CD4+CCR7+CD45ROHiCD95low/med 2.7
(1.14–5.45)

4.49 ± 1.3 2.11
(1.12–4.42)

2.98 ± 0.071 0.596

TCM CD4+CCR7+CD45ROlow/medCD95+ 36.04
(29.52–41.77)

35.64 ± 1.83 36.05
(30.73–46.1)

38.05 ± 2.36 0.475

CD4+CCR7+CD45ROlow/medCD95Hi 12.38
(9.1–14.95)

12.25 ± 0.92 12.66
(10.39–15.55)

12.64 ± 0.93 0.695

CD4+CCR7+CD45ROlow/medCD95low/med 22.99
(19.28–27.94)

23.39 ± 1.89 24.41
(19.68–32.6)

25.41 ± 2.09 0.475

TEM CD4+CCR7−CD45RO+CD95+ 5.38
(3.3–8.9)

6.8 ± 1.4 2.96
(2.33–5.91)

3.9 ± 0.59 0.069

CD4+CCR7−CD45RO+CD95Hi 3.62
(1.95–5.97)

5.43 ± 1.4 2.8
(1.47–4.31)

2.96 ± 0.5 0.222

CD4+CCR7−CD45RO+CD95low/med 0.8
(0.36–2.18)

1.37 ± 0.38 0.68
(0.16–1.13)

0.94 ± 0.34 0.323

Mean expression of CD95 on CD4+ TSCM cell subsets (based on MFI)
TSCM CD4+CCR7+CD45RO−CD95+ 3.41

(3.1–5.29)
4.4 ± 0.65 4.48

(3.5–5.7)
4.47 ± 0.34 0.222

CD4+CCR7+CD45RO−CD95Hi 11.31
(8.43–21.28)

16.06 ± 3.72 11.96
(9.56–19.68)

14.05 ± 1.56 0.629
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transcription factor named Twist that has a role in the meta-
static process. They showed an increase in CD4+ TSCM cells 
in vaccinated mice in comparison with PBS-treated mice. 
This revealed that the TSCM population could generate an 
antitumor activity [47, 48]. Based on the findings of these 
studies and our results which showed a lower frequency of 
TSCM in nonresponders, it can be concluded that the TSCM 
cells play a crucial role in long-lasting immunological mem-
ory response preservation [34]. Also, we assumed that the 
memory response in nonresponders to the HB vaccine prob-
ably had an immunological defect in the memory CD4+ T 
cell formation. Consequently, a lower frequency of TSCM 
cells might play a principal role in the absence of protection 
even after several HB vaccine injections in the nonresponder 
group.

In this study, we also compared the frequency of TCM 
and TEM between studied groups and observed no statisti-
cally significant differences. Previous studies had shown 
that the frequency of these subsets was correlated with the 
efficacy of several vaccines like ZOSTAVAX, Influenza, 
Malaria, and human papillomavirus type 16 (HPV-16) vac-
cines [49–53]. No study reported the comparison of the 
frequency of these subsets between responders and nonre-
sponders in the normal population against the HB vaccine. 
However, some studies investigated these cells after HB 
vaccination in subjects with a different conditions. For 

example, Litjens et al. conducted a study on end-stage 
renal disease (ESRD) patients. They showed that the pro-
duction of specific CD4+ TEM cells was impaired in the 
patients after administration of the HB vaccine in com-
parison with healthy controls [54]. Another investigation 
that was done in a normal population showed a positive 
association between the frequency and absolute numbers 
of HBsAg-specific IL-2 producing CD4+ TEM cells and 
HBsAb titer [55]. Moreover, Marchant et al. performed a 
study on the subjects who received the Engerix-B vaccine. 
They observed that the HBsAg-specific memory CD4+ T 
cells included both TCM and TEM cells [56]. Two separate 
studies about HIV-infected individuals who were vac-
cinated against HBV had shown that the seroconversion 
stimulated by the vaccine positively correlated with the 
development of T cell immunological memory [57, 58].

No significant differences observed in our study could be 
related to stimulation conditions as it was not completely 
specific because we used HBsAg for stimulation and did 
not check the specific memory T cells using tetramer stain-
ing. In addition, due to the restriction in inclusion criteria 
of our samples, particularly the nonresponder subjects, the 
sample size was relatively small. Also, we did not have pre-
cise information on the time point of the last vaccination of 
the subjects of our study, which might have effects on the 
frequency of memory T cell populations [23].

Fig. 2   Correlations between 
age and the frequency of CD4+ 
TN (A) and TCM cell subsets 
(B and C) in responders to HB 
vaccine. The frequencies were 
reported in CD4+ lymphocyte 
population. TN: T naïve; TCM: T 
central memory
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In this study, we also investigated the correlation between 
the responders’ age and memory T cell subsets. There was 
a negative correlation between the age of responders and 
the frequency of TN. Besides, a positive correlation was 
found between the age of responders and the frequency of 
CD45RO+CD95+ TCM and CD45ROlow/medCD95+ TCM. 
There were similar studies that examined the correlation 
between the age of healthy individuals and the frequency 
of different memory T cell subsets [59–62]. Based on our 
findings and other studies, it can be implied that the turnover 
and long lifespan of TN cells are decreasing during aging, 
probably due to a decline in thymic output and/or depletion 
of naïve repertoire by activation. Accordingly, the thymus 
becomes unable to substitute the lost TN cells in the periph-
ery. In contrast to TN, cumulative exposure to foreign patho-
gens and environmental antigens induces the accumulation 
of memory T cells with aging, which is in line with our 
study [63].

Several studies focus on IFN-γ production as an indica-
tor of cellular immunity, and some of them have identified 
a clear dominance of the T helper (Th)1 phenotype after 
HB vaccination. Moreover, a strong correlation has been 

shown between the HBsAg-specific IFN-γ+ T cell response 
and HBsAb level. In the last part of our study, we evalu-
ated the frequency of memory T cells secreting IFN-γ in 
studied groups. In agreement with Makhlouf et al. study, 
memory CD4+ T cells secreting IFN-γ were detectable 
after in vitro activation by HBsAg in both responder and 
nonresponder individuals. Although, Makhlouf’s study 
showed that the percentage of CD4+CD45RO+IFN-γ+ 
memory T cells was significantly higher in the responder 
participants than in nonresponders, we did not find any 
statistical differences neither in the frequency nor in the 
mean expression of IFN-γ in the CD4+CD45RO+IFN-γ+ 
memory T cells.

The limitations mentioned earlier, including nonspecific 
detection of memory T cells, small sample size, and the 
uncertain time interval between sampling and vaccination, 
are likely to affect our results regarding memory T cells 
secreting IFN-γ. Most likely, using more specific methods 
for detection of memory T cells against HBsAg producing 
IFN-γ should be taken into consideration in future studies. 
Also, the interval of the last vaccine administration and the 
time of investigations must be kept in mind.

Fig. 3   IFN-γ production by 
CD4+ and CD4− memory 
lymphocytes. After gat-
ing total lymphocytes (A), 
CD4+ and CD4− lymphocytes 
were defined (B, C), and the 
frequency of different IFN-γ+ 
cells were determined based on 
the expression of CD45RO and 
IFN-γ in each population (D–G)
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In conclusion, based on our observations, it is likely 
that nonresponders to the HB vaccine have a defect in 
their immunological memory CD4+ T cell formation due 
to their lower frequency of TSCM cells compared to the 
responders. It may play an important role in lower anti-
HBsAb production after HB vaccination in nonrespond-
ers. For further research, using recombinant HB vaccine 
containing safe adjuvants, administration of a vaccine with 
different intervals and doses of injections in nonrespond-
ers may increase the frequency of memory T cell subsets, 
especially TSCM cells.
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Table 3   Frequencies of 
various IFN-γ+ lymphocytes in 
responders and nonresponders 
to HB vaccine

IQ, interquartile; SEM, standard error of mean.

Cell subset Nonresponder Responder P-value

Median
(IQ25–75)

Mean ± SEM Median
(IQ25–75)

Mean ± SEM

CD4+IFNγ+ 8.82
(4.71–16.6)

11.3 ± 2.11 6.65
(4.65–10.72)

7.38 ± 0.96 0.345

CD4+CD45RO+IFNγ+ 7.82
(4.63–16.4)

11.04 ± 2.09 6.55
(4.46–10.04)

7.05 ± 0.92 0.279

CD4+CD45RO−IFNγ+ 0.14
(0.08–0.39)

0.25 ± 0.065 0.23
(0.12–0.52)

0.32 ± 0.067 0.311

CD4−IFNγ+ 26.6
(16.46–41.9)

31.01 ± 4.47 26.9
(21.6–29.92)

25.21 ± 2.1 0.945

CD4−CD45RO+IFNγ+ 14
(11–26.1)

19.6 ± 3.2 12.2
(11.15–19.5)

13.78 ± 1.42 0.381

CD4−CD45RO−IFNγ+ 7.78
(5.6–15.4)

11.36 ± 1.94 10.3
(7.74–15.45)

11.44 ± 1.52 0.534

Mean expression of IFN-γ in cell subsets (based on MFI)
CD4+IFNγ+ 22.42

(16.89–38.87)
26.2 ± 3.5 17.65

(15.62–20.23)
18.68 ± 1.09 0.147

CD4+CD45RO+IFNγ+ 24.35
(17.4–38.07)

26.5 ± 3.41 18.22
(16.54–21.48)

19.45 ± 1.23 0.147

CD4+CD45RO−IFNγ+ 5.59
(4.06–9.67)

8.76 ± 1.78 4.27
(4.06–5.61)

4.88 ± 0.4 0.134

CD4−IFNγ+ 15.13
(13.9–24.1)

18.6 ± 1.96 15.14
(11.71–17.84)

15.41 ± 1.21 0.369

CD4−CD45RO+IFNγ+ 22.24
(15.3–35.8)

26.42 ± 3.94 19.42
(16.21–24.3)

20.66 ± 1.36 0.596

CD4−CD45RO−IFNγ+ 10.2
(8.28–13.2)

10.34 ± 0.77 8.33
(7.53–12.02)

9.99 ± 0.88 0.565
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otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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