Skip to main content

Advertisement

Log in

Cytokine response following perturbation of the cervicovaginal milieu during HPV genital infection

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human papillomaviruses (HPVs) are oncogenic viruses causing most cervical cancers. Highly prevalent in young, sexually active women, only a minority of HPV infections persist. To better characterize the immuno-modulatory impact of early HPV infections, we measured changes in a panel of 20 cytokines in cervicovaginal samples collected from young women who were tested for HPV and self-reported for genital inflammation and infection symptoms. Multi-factor statistical analyses revealed that increased IL-1Alpha and IL-12/IL-23p40 concentrations were associated with HPV infection and that macrophage inflammatory proteins were associated in particular with high-risk HPV infections. ClinicalTrials.gov identifier NCT02946346

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data will be deposited at the Zenodo repository. https://zenodo.org/record/4701172.

Code availability

The R code for the statistical analysis will be deposited at the Zenodo repository.

References

  1. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141:664–70. https://doi.org/10.1002/ijc.30716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370:890–907. https://doi.org/10.1016/S0140-6736(07)61416-0.

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, Solomon D, Burk R. Proyecto Epidemiológico Guanacaste Group, Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100:513–7. https://doi.org/10.1093/jnci/djn044.

    Article  PubMed  Google Scholar 

  4. IARC working group on the evaluation of carcinogenic risks to humans: occupational exposures of hairdressers and barbers and personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines. Proceedings. Lyon, France, 6-13 October 1992. IARC Monogr Eval Carcinog Risks Hum. 1993; 57:7–398.

  5. Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer. 2018;142:224–9. https://doi.org/10.1002/ijc.31027.

    Article  CAS  PubMed  Google Scholar 

  6. Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm. 2010; (2010). https://doi.org/10.1155/2010/976024.

  7. Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses. 2013;5:2624–42. https://doi.org/10.3390/v5112624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo). 2018;73:e549s. https://doi.org/10.6061/clinics/2018/e549s.

    Article  Google Scholar 

  9. Stanley M. Immunology of HPV Infection. Curr Obstet Gynecol Rep. 2015;4:195–200. https://doi.org/10.1007/s13669-015-0134-y.

    Article  Google Scholar 

  10. Leone P, Shin E-C, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105:1172–87. https://doi.org/10.1093/jnci/djt184.

    Article  CAS  PubMed  Google Scholar 

  11. Alizon S, Murall CL, Bravo IG. Why Human Papillomavirus Acute Infections Matter. Viruses. 2017;9:293. https://doi.org/10.3390/v9100293.

    Article  PubMed Central  Google Scholar 

  12. Murall CL, Rahmoun M, Selinger C, Baldellou M, Bernat C, Bonneau M, Boué V, Buisson M, Christophe G, D’Auria G, Taroni FD, Foulongne V, Froissart R, Graf C, Grasset S, Groc S, Hirtz C, Jaussent A, Lajoie J, Lorcy F, Picot E, Picot M-C, Ravel J, Reynes J, Rousset T, Seddiki A, Teirlinck M, Tribout V, Tuaillon É, Waterboer T, Jacobs N, Bravo IG, Segondy M, Boulle N, Alizon S. Natural history, dynamics, and ecology of human papillomaviruses in genital infections of young women: protocol of the PAPCLEAR cohort study. BMJ Open. 2019;9:e025129. https://doi.org/10.1136/bmjopen-2018-025129.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murall CL, Reyné B, Selinger C, Bernat C, Boué V, Grasset S, Groc S, Rahmoun M, Bender N, Bonneau M, Foulongne V, Graf C, Picot E, Picot M-C, Tribout V, Waterboer T, Bravo IG, Reynes J, Segondy M, Boulle N, Alizon S. HPV cervical infections and serological status in vaccinated and unvaccinated women. Vaccine. 2020;38:8167–74. https://doi.org/10.1016/j.vaccine.2020.10.078.

    Article  CAS  PubMed  Google Scholar 

  14. Dunn J, Wild D. Chapter 3.6 - Calibration Curve Fitting. In: Wild D, editors. The Immunoassay Handbook, 4th ed. Oxford: Elsevier; 2013.p. 323–336. https://doi.org/10.1016/B978-0-08-097037-0.00022-1.

  15. O’Connell MA, Belanger BA, Haaland PD. Calibration and assay development using the four-parameter logistic model. Chemom Intell Lab Syst. 1993;20:97–114. https://doi.org/10.1016/0169-7439(93)80008-6.

    Article  Google Scholar 

  16. Moscicki AB, Shiboski S, Broering J, Powell K, Clayton L, Jay N, Darragh TM, Brescia R, Kanowitz S, Miller SB, Stone J, Hanson E, Palefsky J. The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J Pediatr. 1998;132:277–84. https://doi.org/10.1016/s0022-3476(98)70445-7.

    Article  CAS  PubMed  Google Scholar 

  17. Zanotta N, Tornesello ML, Annunziata C, Stellato G, Buonaguro FM, Comar M. Candidate soluble immune mediators in young women with high-risk human papillomavirus infection: high expression of chemokines promoting angiogenesis and cell proliferation. PLoS One. 2016;11:e0151851. https://doi.org/10.1371/journal.pone.0151851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tummers B, Van Der Burg SH. High-risk human papillomavirus targets crossroads in immune signaling. Viruses. 2015;7:2485–506. https://doi.org/10.3390/v7052485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandes APM, Gonçalves MAG, Duarte G, Cunha FQ, Simões RT, Donadi EA. HPV16, HPV18, and HIV infection may influence cervical cytokine intralesional levels. Virology. 2005;334:294–8. https://doi.org/10.1016/j.virol.2005.01.029.

    Article  CAS  PubMed  Google Scholar 

  20. Liebenberg LJP, McKinnon LR, Yende-Zuma N, Garrett N, Baxter C, Kharsany ABM, Archary D, Rositch A, Samsunder N, Mansoor LE, Passmore J-AS, AbdoolKarim SS, AbdoolKarim Q. HPV infection and the genital cytokine milieu in women at high risk of HIV acquisition. Nat Commun. 2019;10:5227. https://doi.org/10.1038/s41467-019-13089-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, Tharao W, Huibner S, Shahabi K, Ravel J, Rebbapragada A, Kaul R. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017;10:1310–9. https://doi.org/10.1038/mi.2016.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moscicki A-B, Shi B, Huang H, Barnard E, Li H. Cervical-vaginal microbiome and associated cytokine profiles in a prospective study of HPV 16 acquisition, persistence, and clearance. Front Cell Infect Microbiol. (2020); 10. https://doi.org/10.3389/fcimb.2020.569022.

  23. Jespers V, Hardy L, Buyze J, Loos J, Buvé A, Crucitti T. Association of sexual debut in adolescents with microbiota and inflammatory markers. Obstet Gynecol. 2016;128:22–31. https://doi.org/10.1097/AOG.0000000000001468.

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh M, Jais M, Biswas R, Jarin J, Daniels J, Joy C, Juzumaite M, Emmanuel V, Gomez-Lobo V. Immune biomarkers and anti-HIV activity in the reproductive tract of sexually active and sexually inactive adolescent girls. Am J Reprod Immunol. 2018;79:e12846. https://doi.org/10.1111/aji.12846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boily-Larouche G, Lajoie J, Dufault B, Omollo K, Cheruiyot J, Njoki J, Kowatsch M, Kimani M, Kimani J, Oyugi J, Fowke KR. Characterization of the genital mucosa immune profile to distinguish phases of the menstrual cycle: implications for HIV susceptibility. J Infect Dis. 2019;219:856–66. https://doi.org/10.1093/infdis/jiy585.

    Article  CAS  PubMed  Google Scholar 

  26. Kanai T, Fukuda-Miki M, Shimoya K, Azuma C, Hashimoto K, Nobunaga T, Tokugawa Y, Tsujimoto M, Saji F, Murata Y. Increased interleukin-1 and interleukin-1 receptor antagonist levels in cervical mucus in the ovulatory phase in comparison with the follicular phase. Gynecol Obstet Invest. 1997;43:166–70. https://doi.org/10.1159/000291847.

    Article  CAS  PubMed  Google Scholar 

  27. Gosmann C, Mattarollo SR, Bridge JA, Frazer IH, Blumenthal A. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol. 2014;193:2248–57. https://doi.org/10.4049/jimmunol.1400216.

    Article  CAS  PubMed  Google Scholar 

  28. Hede DV, Polese B, Humblet C, Wilharm A, Renoux V, Dortu E, de Leval L, Delvenne P, Desmet CJ, Bureau F, Vermijlen D, Jacobs N. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. PNAS. 2017;114:E9056–65. https://doi.org/10.1073/pnas.1712883114.

    Article  CAS  PubMed  Google Scholar 

  29. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J Leukoc Biol. 2003;74:448–55. https://doi.org/10.1189/jlb.0103024.

    Article  CAS  PubMed  Google Scholar 

  30. Belay T, Eko FO, Ananaba GA, Bowers S, Moore T, Lyn D, Igietseme JU. Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect Immun. 2002;70:844–50. https://doi.org/10.1128/IAI.70.2.844-850.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poston TB, Lee DE, Darville T, Zhong W, Dong L, O’Connell CM, Wiesenfeld HC, Hillier SL, Sempowski GD, Zheng X. Cervical cytokines associated with chlamydia trachomatis susceptibility and protection. J Infect Dis. 2019;220:330–9. https://doi.org/10.1093/infdis/jiz087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Radomski N, Karger A, Franzke K, Liebler-Tenorio E, Jahnke R, Matthiesen S, Knittler MR. Chlamydia psittaci-infected dendritic cells communicate with NK cells via exosomes to activate antibacterial immunity. Infect Immun. 2019; 88. https://doi.org/10.1128/IAI.00541-19.

  33. Gillet E, Meys JF, Verstraelen H, Bosire C, De Sutter P, Temmerman M, Broeck DV. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect Dis. 2011;11:10. https://doi.org/10.1186/1471-2334-11-10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Seta F, Campisciano G, Zanotta N, Ricci G, Comar M. The vaginal community state types microbiome-immune network as key factor for bacterial vaginosis and aerobic vaginitis. Front Microbiol. 2019;10:2451. https://doi.org/10.3389/fmicb.2019.02451.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Masson L, Mlisana K, Little F, Werner L, Mkhize NN, Ronacher K, Gamieldien H, Williamson C, Mckinnon LR, Walzl G, AbdoolKarim Q, AbdoolKarim SS, Passmore J-AS. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect. 2014;90:580–7. https://doi.org/10.1136/sextrans-2014-051601.

    Article  PubMed  Google Scholar 

  36. Selinger C, Tisoncik-Go J, Menachery VD, Agnihothram S, Law GL, Chang J, Kelly SM, Sova P, Baric RS, Katze MG. Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genomics. 2014;15:1161. https://doi.org/10.1186/1471-2164-15-1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elovitz MA, Gajer P, Riis V, Brown AG, Humphrys MS, Holm JB, Ravel J. Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nat Commun. 2019;10:1305. https://doi.org/10.1038/s41467-019-09285-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD Montpellier for providing HPC resources that have contributed to the research results reported within this paper (URL: http://www.southgreen.fr).

We also acknowledge productive feedback on the manuscript by Nicolas Tessandier.

Funding

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [grant agreement No 648963 to SA]. The sponsor had no role in study design, in the collection, analysis, and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conceived or designed the study: SA, CLM, CH, NJ, and JR.

Wrote the paper: SA, CS, MR, CLM, and NJ.

Performed research: MR, CB, VB, Soraya G, SG, CG, and MB.

Contributed new methods or models: CS and MR.

Analyzed data: CS.

Corresponding author

Correspondence to Christian Selinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selinger, C., Rahmoun, M., Murall, C.L. et al. Cytokine response following perturbation of the cervicovaginal milieu during HPV genital infection. Immunol Res 69, 255–263 (2021). https://doi.org/10.1007/s12026-021-09196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09196-2

Keywords

Navigation