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Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents.
Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation
of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention.
Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability
to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing
antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma
technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities.
“Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the
potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-
CoV, and SARS-CoV2), are being actively pursued in human clinical trials.”
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Abbreviations
NAbs Neutralizing antibodies
bNAbs Broadly neutralizing antibodies
mAb Monoclonal antibodies
CDC Complement-dependent cellular cytotoxicity
ADCP Antibody-dependent cellular phagocytosis
ADCC Antibody-dependent cellular cytotoxicity
NHPs Non-human primates
GP Glycoprotein
RBD Receptor-binding domain
DPP4 Receptor dipeptidyl peptidase4
ART Anti-retroviral therapy
Fc Fragment crystallizable domain
Fab Fragment of antigen-binding

CDRs Complementarity determining regions
ACE2 receptor—angiotensin-converting enzyme II

Introduction

An antibody is a protective protein produced by the immune
system in response to the detection of foreign material known
as antigen [1]. In 1890 Emil von Behring and Shibasaburo
Kitasato discovered antibodies as protective antitoxins in the
blood of animals exposed to diphtheria or tetanus toxin [2]. To
date, antitoxins are still in use as a preventive and treatment
option for some infections [3]. Antibodies have been a signif-
icant research subject due to their crucial role in adaptive
immunity and their wide range of specificities [4]. Although
vaccines aim to induce immune response in host cells to pro-
duce antibodies, the high rate of genetic mutation in viral
strains increases the virus’ possibility of reactivation(due to
loss of antibody specificity), which can lead to ineffective
vaccination as in the case of HIV-1 [5, 6].

Antibodies have been used for the development of vaccines
with little use as biological therapy to combat viral infections
[7, 8]. A new generation of broadly cross-reactive and highly
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potent antibodies has led to a unique chance for intervention
[9]. Antibodies are desirable for pharmaceutical products be-
cause of their ability to target specific epitopes with their var-
iable domains.

An antiviral antibody is a unique research discovery used
by virologists to better understand the exact mechanisms of
binding and entering of viruses into hosts and their antiviral
immunity. Based on the mechanisms of action, antiviral anti-
bodies can be categorized into neutralizing and non-
neutralizing antibodies. Neutralizing antibodies act by binding
to a specific epitope on the viral envelope and lead to neutral-
ization of the virus infection by several mechanisms which
have been mentioned in details in this review, notably neutral-
izing antibodies have shown great advances in clinical trials
targeting many viruses. In non-neutralizing antibodies, the
antibody bind to an area on the surface of the virus without
neutralizing the infection or total removal of viral titer. As the
antibody does not block infection, the whole virus-antibody
complex enters the cell via endocytosis. Then other non-
neutralizing humoral effector functions perform as antibody-
dependent cell-mediated cytotoxicity (ADCC) or antibody-
mediated phagocytosis, aggregation, and even immune acti-
vation [10–13].

The versatility of therapeutic antibodies to combat cancer,
autoimmune diseases and passive antibody therapies for in-
fectious diseases have been reviewed in the past [8, 14, 15];
however, this review article mainly focuses on recent ad-
vancements in the use of neutralizing antibodies as an
established therapeutic antiviral treatment in humans includ-
ing how antibodies neutralize viruses, their clinical applica-
tions, isolation of potent and broadly neutralizing antiviral
antibodies, and the limitations of neutralizing antiviral
antibodies.

Neutralizing antibodies (NAbs)

A neutralizing antibody (NAb) is an antibody that protects the
host cell from pathogens by neutralizing or inhibiting its bio-
logical effect. It blocks interactions of the viral envelope with
the host cell receptor or inhibits the release of the viral ge-
nome. NAbs that emerge under different constraints are sen-
tinels that provide a better understanding of the humoral im-
mune responses, as well as great insight for the future devel-
opment of immunotherapeutics [16].

NAbs are the foundation for successful disease prevention;
nevertheless, for critical chronic infections such as HCV and
HIV, the use of potent and broad NAbs from recombinant
vaccines is incomplete [17, 18]. NAbs can inhibit multiple
strains of a particular virus; next to vaccination, neutralizing
antibodies gives the best protection against viral infections
rather than anti-retroviral therapy ART [19, 20].

Monoclonal antibodies(mAbs)

Monoclonal antibody (mAb) has one type of immunoglobulin
with defined specificity and a single isotype [21]. These types
of antibodies are used clinically against particular antigens
and exhibit therapeutic effects via the antigen-binding frag-
ment (Fab).

Recently, in the Europe and the USA, about 80monoclonal
antibodies have been approved and several hundred of them in
clinical trials. In the last decade and a large number of antibodies
have been engineered, including novel antibody-like scaffolds,
antibody-drug conjugates, and bispecific antibodies [22].
Recently, developed isolation technology produces humanized
mAbs from immune and non-immune sources, and that has
made distinctive progress in using antibodies for treatment [23].

Antiviral mAb has been considered as a new immunother-
apy treatment to eradicate the outbreak of chronic infections
[9]. Antiviral mAbs have characteristic features which
include:

a) Ability to target specific epitopes
b) Highly specific
c) High potency
d) Minimal side effect in clinical applications, which enables

and encourages large scale production

Polyclonal antibodies

Polyclonal antibodies are a diverse group of antibodies that
target numerous epitopes on the viral envelope during the
infection and provide vigorous neutralizing activity [24].
The ability of polyclonal antibodies to target multiple epitopes
enables them to trigger a range of effector functions such as
steric hindrance (prevent antibody- virus complex from
attaching the host surface), aggregation (binding of antibodies
to many viruses lead to clearance them from circulation),
opsonization (activation of phagocytes cells), and activation
of the complement system [25]. There are several advantages
of polyclonal antibodies over monoclonal antibodies; low cost
and a short production period, they are highly stable and with
high affinity; besides, polyclonal antibodies are less sensitive
to antigen changes than monoclonal antibodies. In contrast,
due to their lack of specificity and a high degree of cross-
reactivity of polyclonal antibodies, it has limited their use in
the clinic [26].

Techniques for isolation of neutralizing
antiviral antibodies

During viral infection in humans, there is a natural immune
response toward the virus, which activates innate and humoral
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immune cells to produce B cells. These B cells then produce
antibodies to attack the virus.

Various approved strategies have been used to isolate and
purify antibodies with specific characteristics and proper
function.

Phage displayed antibody libraries

Phage display is a modern technique of using bacteriophage
(viruses that infect bacteria) to express a unique protein variant
(such as antibody fragments).

In phage display, a gene encoding a protein of interest is
inserted into a phage, causing the phage to display the protein
on the outside while containing the gene with the protein on
the inside, resulting in a connection between genotype and
phenotype [27].

Phage display begins with the amplification of the heavy
and light chain gene of the target antibody and the construc-
tion of a recombinant phage display plasmid called phagemid.
Once bacteria are co-infected with phagemids and helper
phages, the phagemid will be replicated, translated, and as-
sembled into infective phages with the target monoclonal an-
tibody fragment displayed on the surface.

Phage display is further used to screen and select the anti-
body with unique properties, that is, phage-antibody library
technology [28]. This process begins with antibody library
preparations, followed by ligation of the variable heavy and
variable light PCR products into phagemids. Analysis of the
clone’s monoclonal antibodies is then performed (Fig. 1a).

A vast antibody library and efficient selection are needed to
isolate specific monoclonal antibody from the cloned immu-
noglobulin repertoire. The library is screened for phage bind-
ing to an antigen through a surface monoclonal antibody bio-
technique, called biopanning. Multiple rounds of phage bind-
ing to antigen, washing, elution, and propagation of the phage
binders are to be done. During each round, specific binders are
selected out from the pool by washing away non-binders and
selectively eluting the binding phage clones. After 3 or 4
rounds, the highly particular binding of phage clones through
the surface map is characteristic for directed selection on the
immobilized antigen (Fig. 1a). This technique has been ap-
plied for isolating neutralizing antibodies that have the poten-
tial for a range of viruses(severe acute respiratory syndrome
(SARS), Ebola virus, yellow fever virus, hepatitis C virus,
measles virus, rabies virus, and influenza virus [24, 27].
Moreover, using yeast phage display technology has led to
producing novel mAb against HIV-1 [29].

Transgenic mice technique

This technique requires the cloning of human mAb-
expressing B cells. A human mini-immunoglobulin gene lo-
cus is knocked-in into a transgenic mouse (Fig. 1b). The

human mAb-expressing B cells are then isolated from the
immunized transgenic mouse and cloned [30]. The process
begins with injecting the desired antigen into mice; until the
mice develop an immune response, then, the isolated B-
lymphocytes from mice’s spleen are fused with a myeloma
cell line, which leads to producing immortalized B cell-
myeloma hybridomas. The antibodies that are produced are
then screened for the desired mAb [31].

Antiviral antibodies against rabies and acute respiratory
syndrome coronavirus (SARS-CoV) have been successfully
isolated by using this technology [32, 33]. Furthermore, the
isolation of (5F10 and 8B10) mAbs showed broad neutraliza-
tion against CHIKV infection in vitro [34], and the 20
heterosubtypic mAbs showed promising results in neutraliz-
ing influenza virus [35].

Single B cell technique

This isolation technique can be performed either in an antigen-
selective manner from peripheral blood or in a random way
[36]. Depending on the transformation method, Memory B
cells collected from the blood of patients recuperating from
viral infection are transformed with Epstein-Barr virus (EBV)
and polyclonal memory B cell-activating elements, such as
irradiated mononuclear cells and CpG oligonucleotides
(Fig. 1c) These activating elements are TLR4 (Toll-like
receptor 4) ligands with immense transformation efficiency
[37]. Production of NAbs can be from B memory cells and
plasma of non-human primate (NHP) [38–40]. For example,
NAbs that have been produced from memory B cells are iso-
lated from persons recovering from dengue and H1N1 influ-
enza infections [41–43].

Hybridoma technology and humanization

The hybridoma is the most conventional technique for pro-
ducing therapeutic antibodies from non-human sources.
However, a further process called humanization is required.

In the mid-1970s, the discovery of hybridoma technology
by César-Milstein’s group led to the isolation of monoclonal
antibodies from mice that had distinct properties and neutral-
ization capacity [44].

Humanization occurred by grafting complementarity deter-
mining regions (CDRs) that determine the binding site of the
antibody. The appropriate framework region of the variable
domains of a rodent donor mAb is grafted onto acceptor hu-
man antibody frameworks (Fig. 1d). It can reserve the speci-
ficity and binding affinity of the mAb with a low risk of
immunogenicity.

Smart antibody-screening methods and proper selection of
human donors lead to advanced isolation of rare, broadly
(NAbs) for several viruses.
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Mode of viral neutralization

Viral neutralization is a process by which antibodies prevent
viral infection [45, 46].

Enveloped viruses enter the host cell by attachment
to the host cell surface receptor. In contrast, non-

enveloped viruses enter via lysis of the host cell mem-
brane or making pore-like structures in the membrane.
The fusion of virus (enveloped/non-enveloped) with host
cell membrane needs particular conformational changes
in the viral protein that can be triggered by low pH in
endosomes [47].

Fig. 1 Techniques for isolation of antiviral antibodies. (a) Phage
display library: isolation of antibody from B cells followed by PCR
amplification of heavy and light chain genes of antibody. Phagemid is
constructed, replicated, translated, and assembled into infective phages.
They are then screened to select the desired antibody to clone for more
antibodies production and washed undesired antibody. (b) Transgenic
mice: A human gene locus knocked-in into an immunized transgenic
mouse. B cell is harvested from mice and fused with a myeloma cell line

to produce the humanized antibodies. (c) Single B cell technique: isolated
B cell from infected patients transformed with Epstein-Barr virus (EBV)
and polyclonal memory B cell–activating elements (irradiated mononu-
clear cells and CpG oligonucleotides), then screened to select the desired
antibodies. (d) Humanization: complementarity determining regions
(CDRs) graft with the appropriate framework region of the variable do-
mains, then transferred into acceptor human antibody frameworks to pro-
duce the desired antibody
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Antibodies selectively bind to specific epitopes on the tar-
get antigen either by their variable or constant regions [48, 49]
(Table 1). There are various mechanisms by which therapeutic
antiviral antibodies function to neutralize viruses [24, 27].
Antibodies neutralize viruses either at the virus entry point
or the post binding stage.

Inhibition of virus entry into host cells

Viruses are neutralized in two ways at the stage. The antibody
variable domain binds to epitopes on the viral glycoprotein
envelope (Fig. 2a), or antibody through the interaction of fab
region binds to FcγRs receptor or coreceptor on the host

Table 1 Targets for antibodies on enveloped viruses

Glycoprotein HIV Ebola Influenza CHIKV MERS-
CoV

Viral spike Envelope (env) Glycoprotein Hemagglutinin (HA) Glycoprotein spike

Receptor binding domain Gp120 GP1 HA1 Fcγr RBD

Fusion domain Gp41 GP2 HA2 C1q, Fcγr DPP4

This table shows the epitopes on glycoprotein envelope viral spike, the binding domain region required for entering the host cell, and the fusion binding
domain that required in the fusion of the virus into the host cell. All of these can be a good target for antibodies to neutralize a group of viruses.

Fig. 2 Modes of viral neutralization. Antibodies neutralize viruses by
several mechanisms, either inhibition of virus entry into host cells as (a)
Antibodies bind to an epitope in the viral glycoprotein envelope, lead to
inhibit attachment to host cells. (b) Antibodies through the fab region can
bind to host cell receptors or coreceptors (have Fcγr)) lead to inhibit viral
entry. Or post binding inhibition of antibody-virus complex as (c)

antibodies can bind to a non-binding region in the virus envelope lead
to inhibit the conformational change to allow membrane fusion. (d) for
certain viruses that need low endosomal PH for conformational change,
antibodies bind to viral inside the endosome lead to inhibit the change in
PH to achieve the membrane fusion, and antibodies can inhibit the release
of the viral virion
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surface membrane (Fig. 2b). Recently the development of
multi-antigen region binding to therapeutic antibodies en-
hances their neutralization potency [41].

Post binding inhibition of antibody-virus complex

The post binding inhibition of viruses occurs in three
forms. In some viruses, binding of the antibody to the
non-binding region on the virus envelope inhibits con-
formational changes required for membrane fusion [50],
as illustrated in Fig. 2c. In the case of viruses that
require low pH in endosomes for conformational chang-
es to trigger viral membrane fusion, the binding of the
antibody to the virus inhibits the conformational chang-
es necessary for membrane fusion (Fig. 2d). Also, the
antibodies can inhibit viral production by detecting the
virion in order not to assemble its genetic material with
that of the host cell. All of these mechanisms may not

happen with a single virus type. It varies from virus to
virus, depending on the viral glycoprotein structure.
Perhaps significant neutralization effects of antiviral an-
tibodies are mostly attained by blocking viral entry into
the host. In some instances, viruses tend to escape neu-
tralizing antibody responses. However, the Fc fragments
of monoclonal antibodies can bind to the immune cells
to perform further neutralization activities, such as clear-
ing of circulatory viruses, activate cytotoxic killing or
phagocytosis of the infected cell, and even induce acti-
vation of host immune responses in vivo (Fig. 3) These
further activities happen via antibody-dependent cellular
phagocytosis (ADCP) and antibody-dependent cellular
cytotoxicity (ADCC). It includes the interaction of the
Fc (fragment crystallizable domain) of an antibody with
its Fcγ receptors (FcγRs) present on immune cell sur-
faces [6] [14, 51].Studies on the functional and molec-
ular properties of monoclonal antiviral antibodies give

Fig. 3 The antiviral mechanism through antibody FC fragment.The
Fc fragments of antibodies bind to the immune cells to perform
neutralization activities. (a) Binding of complement to antibody
activates complement-mediated virolysis and activation of phagocytosis.

(b) Binding of antibodies to a phagocyte (Fcγr) via antibody-dependent
cellular phagocytosis (ADCP) opsonizes the infected cell. (c) Antibodies
bind to natural killer (NK) cells via antibody-dependent cellular cytotox-
icity (ADCC) to lyse the infected cells
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excellent prospects to recognize epitopes and target an-
tigens as a fundamental strategy for the development of
human vaccines and novel immunotherapy [52].

Synergistic effects of neutralizing antiviral
antibodies

Presently, there are no approved combinational antiviral anti-
bodies for the prevention or control of many viral infections in
humans. On the contrary, there are several prospective com-
binational therapies for various kinds of viral infections un-
dergoing trials (Table2). The potency of therapeutic antibod-
ies can be enhanced by multiple antibody engineering tech-
nologies. Some of these technologies include the combination
of two or moremAbs, the synergy between antiviral drugs and
mAbs, and the vector-based delivery of antibodies.

A combination of mAbs shows high neutralizing activity more
than that of individual mAbs. Research on Hepatitis B virus and
Respiratory syncytial virus shows the neutralization potential of
mAb cocktails (a combination of two or more mAbs) [53]. The
synergistic ability of antiviral drugs with mAbs has allowed re-
searchers to explore modes of treatment and routes for adminis-
tration in certain viruses such as influenza [54]. As in the case of
CHIKV virus, using a combination of CTLA4-Ig and antiviral
antibody therapy can control severe CHIKV disease and arthritis
and might be a great candidate for testing in humans [55]. The
vector-based delivery of genes encoding antibody molecules is
another synergy that increases neutralization activity. Transgenic
mice gained full protection against HCV viral infection when
treated with Adeno-associated viral vectors in combination with
three bNAbs (AR4A, AR3A, and AR3B) [56].

Drugs can be coupled to antibodies via chemically stable
linkers or by direct chemical bonding. Immunological and
pharmacological principles determine the effective delivery
of antibody-conjugated antiviral drugs. The antibody should
be highly specific for a target site, and an adequate number of
drug molecules should reach the target to exert their pharma-
cological effects. Regardless of the mode of coupling, drug-
antibody complexes are internalized either by passive diffu-
sion or by some active transport mechanism. Complexes in-
ternalized in pinocytic vesicles, ultimately, are digested by
lysosomal enzymes that cleave the pharmacologically active
drug from the antibody. The second mechanism of cell deliv-
ery is by the extracellular release of the drug on the surface of
specific target cells.

Clinical applications of neutralizing antiviral
antibodies

Anti-retroviral therapies (ARTs) are mostly used for the treat-
ment and prevention of viral infections. Nevertheless,

discontinuous administration of ARTs can lead to rebound
viremia in patients, consequently making the use of ARTs a
lifelong treatment. Currently, research suggests that the use of
antiviral antibodies is the best alternative to substitute ART
because they have the ability to clear circulatory viruses and
boost the immune system to prevent viral infections [57, 58].

Unlike the use of antibodies in the treatment of cancer and
autoimmune diseases, palivizumab is the only approved anti-
viral antibody for treating RSV [59].

NAbs show great response toward acute viral infections such
as chikungunya virus, Measles virus, and poliovirus due to no
evidence of viral escape from the antibody response. While in
the chronic infections such as infleunza, Ebola, HIV and Lassa
virus; The expression of conserved epitopes wherein the neu-
tralization of viruses occurs [15, 60, 61], remains insignificant,
due to high mutation in some viral strains [62, 63].

Here, the recent updates on the development of some anti-
viral antibodies and their successful applications to fight viral
infections are going to be discussed.

NAbs against HIV1

In 1989, CD4-Fc-fusion was the first antibody used to target
HIV. The effectiveness of CD4-Fc-fusion proteins has been
widely investigated since its use. Currently, a couple of suc-
cessful treatments have emerged, and it is on the verge of
commercialization [64] with enhanced efficacy and safety.
These promising results have broadened and encouraged re-
search into the development of vaccines and immunotherapy
[65].

Since a competent and safe HIV-1 vaccine is presently not
forthcoming, new advances are required to avoid HIV infec-
tion [66]. Isolation of bNAbs with high levels of HIV-1 neu-
tralizing activity from HIV-infected individuals is a further
advancement to prevent HIV transfection [67–69]. The HIV-
1 glycoprotein envelope (ENV) is the main target for NAbs.
The ENV can be present on the viral surface in two forms,
open or closed conformations with multiple epitopes such as
V2 region, V3 region, CD4 binding site, MPER, and CD20
[70]. Certain groups of HIV-1-infected patients produce a vast
and potent HIV-1 neutralizing antibodies (bNAbs) that, when
administered in other hosts like mice or macaques, produce
excellent results regarding treatment or prevention of infec-
tion. Moreover, many bNAbs typically fail to neutralize
coexisting autologous viruses due to antibody-mediated selec-
tion against sensitive viral strains [71–73].

For instance, PGDM1400 and CAP256-VRC26.25, which
are V2-specific antibodies, have exhibited impeccable neutral-
ization against HIV-1 [74]. Moreover, a high neutralization
effect is shown against nonoverlapping sites on the HIV-1 en-
velope as a CD4-binding site (56) [75, 76], and (V3)
region is targeted by BG18 antibody (61) [77]. Besides,
there have been promising outcomes of neutralizing
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antibodies targeting the CD4 binding site and V3 region
in preclinical studies, and they showed excellent results
protecting rhesus macaques against simian-human im-
munodeficiency virus (SHIV) [78, 79].

The activation of bNAbs toward the membrane-proximal
external region (MPER) has exhibited excellent neutralization
breadth. The MPER is a highly conserved region within the
type-1 HIV-1 glycoprotein envelope (ENV), which is natural-
ly targeted by bNAbs and aids in membrane fusion [80].

Furthermore, the neutralization breadth of bNAbs
happens when Fc domain of the antibody that binds to
FcγRs of host cell contributes substantially to block
viral entry, suppress viremia, and enhance the protection
of host cell in vivo. These results expose the crucial
role of Fc effector in the activity of HIV-1 bNAbs
in vivo and provide strategies for developing bNAbs
with improved efficacy [81, 82]. Most of the newly
discovered HIV mAbs is tenfold more potent than the
previous ones. PG9, PG16, and VRC01 bNAbs are 100-
fold more potent than previous HIV bNAbs [70, 71].

Among many studies that have been reported, promising
clinical outcomes using antibodies with broad and potent ac-
tivity in neutralizing HIV [83, 84] such as the anti-CD20
mAb, Rituximab that induces killing of the infected cell,
which leads to reduce the pool of HIV-expressing cells when
combined with latency reversal agents [85].

NAbs against Ebola virus (EBOV)

Ebola virus is a Filoviridae that causes severe hemorrhag-
ic fever in humans with enormous public health concerns
due to its high transmission and virulence [86]. Since its
discovery, it has infected people from various parts of the
world, with recent outbreaks in parts of West Africa.
Ebola virus is currently one of the most deadly infectious
agents in both non-human primates (NHPs) and humans
[87]. The main target for the NAbs is EBOV is their
glycoprotein (GP), and the need to eradicate this deadly
virus in West Africa led to the development of the Ebola
vaccine, which is currently under clinical trials. Two ap-
proaches were adopted to generate a vaccine:

(i) A combination of modified vaccinia virus Ankara
(MVA-BN-Filo) and recombinant chimpanzee adenovirus
(rChAd/EBOV) vaccine induce the immune system toward
viruses, and 100% of macaques were protected against the
Ebola infection following vaccination [88].

(ii) The expression of EBOV GP using a vesicular stoma-
titis virus also activates the production of antibodies. Here,
non-human primates were protected against the virus after
vaccination [89].

Among antiviral therapies in use presently to target
filoviruses, NAbs seem to demonstrate the highest efficacy
as a protective agent [90]. Study shows that the combination

of three NAbs (1H3, 2G4, and 4G7) directly targeting the GP
of the Ebola virus in cynomolgus macaques leads to complete
survival with no visible side effects or perhaps full recovery
[91, 92].

Unfortunately, until now, there is no licensed vaccine or
any biological treatments available for EBOV in human use.
However, in ongoing trials, mAbs targeting EBOV show great
supportive care [93–95]. Recombinant vesicular stomatitis
virus–Zaire Ebola virus (rVSV-ZEBOV) is an advanced
Ebola virus vaccine candidate that was used as supportive care
to fight the outbreak of Ebola virus disease in the Democratic
Republic of the Congo [96].

ZMapp has been given to participants in a randomized
control trial during the 2014 west Africa EBOV outbreak
[97], while mAb114 is a monoclonal antibody that has been
isolated from human survivor and successful targets (conserve
epitopes in receptor-binding domain region of Ebola virus
glycoprotein, which has shown promising results in the treat-
ment of an Ebola outbreak). In the first human phase 1 study,
mAb114 found to be safe and well-tolerated, which has been
approved to use for an expanded access protocol of patients
infected with the Ebola virus by the Democratic Republic of
the Congo [98].

NAbs against Chikungunya virus (CHIKV)

Chikungunya virus is a type of mosquito-transmitted
alphavirus that can cause acute or chronic polyarthritis and
foot swelling [99]. CHIKV has genetically conserved enve-
lope GPs (E1, E2, and E3). In acidified endosomes, low PH
triggers conformational change, which allows the envelope
GPs to engage in membrane fusion [100].

Antibodies block the entry of CHIKV to host cells
by binding to Fcγ receptors of the host cell or binding
to desired epitopes in CHIKV GPs. Previous trials in
mice strain lacking Fcγ receptors with engineered anti-
body confirmed the therapeutic effects of antibodies on
the expression of Fcγ receptors [101]. Using anti-
CHIKV mAbs showed that the Fc region is critical for
CHIKV infection during the acute phase of the disease
and required for optimal protection against foot swell-
ing. Combination therapy of two anti-CHIKV neutraliz-
ing mAbs [CHK-166 (anti-E1) and CHK-152 (anti-E2)]
improved survival compared with single therapy of
mAbs [102]. MAbs (5 M16, CHK-152) prevent the ac-
tivation of membrane fusion of CHIKV through inhibi-
tion of conformational changes [103, 104]. Ultrapotent
neutralizing human monoclonal antibodies (mAbs) have
been isolated from the B cells of a survivor of natural
CHIKV infection and encoded into mRNA vector. It has
shown biologically significant levels in vivo after infu-
sion of mRNAs in lipid nanoparticles [105].
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NAbs against Middle East respiratory syndrome
coronavirus (MERS-CoV)

>Middle east respiratory syndrome coronavirus is a type of
zoonotic viral pathogen that can cause fatal acute respiratory
infections [106].

receptor-binding domain (RBD) of envelope glycoprotein
binds to the cell surface receptor dipeptidyl peptidase 4
(DPP4), which enables it to target host cells [107]. Using a
combination of neutralizing antibodies like MERS-27 and
MERS-4 synergistically increases the efficacy of neutralization
against pseudotyped MERS-CoV [108]. This process reduces
the viral infection in the lungs (90) [109]. Up to date, there is
no licensed and approved treatment forMERS-CoV infections in
humans. On the contrary, NAbs such as M336, LCA60,
REGN3051, 311B-N1, and REGN3048 target MERS-CoV in
transgenic mice and have exhibited tremendous preventive and
therapeutic efficacy [110–112].

NAbs against severe acute respiratory syndrome
(SARS)

Severe acute respiratory syndrome (SARS) belongs to the
Coronavirus genus in the Coronaviridae family with positive-
sense RNA genomes. It is a type of zoonotic viral pathogen that
causes acute respiratory infections [107, 113, 114].

Spike (S) protein of (SARS) is the main target for antibod-
ies’ neutralization [115, 116], which has two subunits N-
terminal domain (NTD) and C-terminal domain (C-domain).
Depends on the virus subtype, either NTD or C domain can
serve as the receptor-binding domain (RBD) [117]. Recent
studies confirmed that human angiotensin-converting enzyme
2 (hACE2) is the main target receptor for the treatment of
SARS infection [118].

80R immunoglobulin G1 (IgG1), a human mAb acts against
(SARS-CoV) spike (S) protein, has led to inhibition of viral entry
in vitro and was investigated in vivo in a mouse model which
showed promising results as immunoprophylaxis agent [119].
Moreover, a combination of human mAbs (CR3014 and
CR3022) have potentially neutralized SARS-CoV by targeting
different epitopes on the receptor-binding domain of (S)protein
[120].

To date, there is no licensed and approved treatment for
SARS-CoV infections in humans. While recent studies con-
firmed (LCA60mAb) inhibits binding to (hACE2) receptor, it
has the potential to be active against SARS-CoV [121].

NAbs against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a type of zoonotic pathogen belong Coronaviridae family
(non-segmented positive-sense RNA viruses) has led to cause

a newly emerged Coronavirus disease 2019 (COVID-19) with
mild to moderate symptoms of respiratory disease [122–124].

The spike glycoprotein (S) of coronavirus (CoVs) is the main
target for antibody neutralization, which has two subunits N-
terminal domain (NTD) and C-terminal domain (C-domain).
Depends on the virus subtype, eitherNTDor C domain can serve
as the receptor-binding domain (RBD) [117] [125].In the case of
MERS-CoV and SARS-CoV subtype viruses, the receptors are
human dipeptidyl peptidase 4 (hDPP4) [126] and human
angiotensin-converting enzyme 2 (hACE2) [118], respectively.
Recent studies confirmed SARS-CoV2 uses the same cell entry
receptor—angiotensin-converting enzyme II (ACE2)—as
SARS-CoV [127, 128]; therefore, RBD in the S1 subunit of S
protein contains the dominant neutralizing epitopes for inducing
neutralizing antibodies [117, 129]. Moreover, the neutralizing
mAbs against SARS-CoV RBD can be evaluated for significant
efficacy against SARS-CoV-2 [130]. Neutralizing antibodies
have potential activity against the receptor-binding domain
(RBD) in spike protein, or that can bind to the ACE2 receptor
could show great results toward SARS-Cov-2 [131, 132].

Neutralizing mAbs against pro-inflammatory cytokines (IL-
1, IL-17, IL-6) may show significant effect against SARS-
CoV2 [133], as one clinical trial (ChiCTR2000029765), using
tocilizumab (mAb), reported quick control of COVID-19
symptoms in 21 patients in Anhui, China [134].

COVID-19 infection has led to a global outbreak with mor-
bidity and mortality. Although new investment in biomedical
and pharmaceutical researches under ongoing development,
using antiviral drug repurposing and other supportive thera-
pies have shown promising results [135]. Up to date, either
effective vaccines or neutralizing antibodies have been ap-
proved to target SARS-CoV-2. Currently, polyclonal antibod-
ies isolated from recovered SARS-CoV-2-infected patients
have been used to treat SARS-CoV-2 infection, but no specif-
ic neutralizing mAbs for SARS-CoV-2 have been reported
[136]. Markedly, studies confirm RBD-specific human neu-
tralizing mAb for SARS-CoV, CR3022 could bind to SARS-
CoV-2 RBD with high affinity [137, 138].

Furthermore, cocktails of RBD-specific antibodies and other
regions in the S proteinmay further improve the potency of nAbs
against SARS-CoV-2 and its escape-mutant strains. As well,
scientists have tried human sera from convalescent patients to
treat COVID-19 [136]. Recent research shows that the N termi-
nal domain (NTD) of the S protein could also be a promising
target for therapeutic mAbs against COVID-19 [139].

Limitation of neutralizing antiviral antibodies

Although mAbs might have remarkable therapeutic effects,
their strong influence on public health would be attained by
the complete eradication of viruses, which can be achieved by
the development of vaccines that can produce antibodies to
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target specific epitopes on viruses [140–142]. Neutralizing an-
tibodies (NAbs) are the foundation for controlling many infec-
tions and prevention as the most established vaccines.
However, in the case of some viruses that can cause chronic
infections such as HIV or HCV, the production of broad NAbs
from recombinant antibody vaccines has still been elusive [17].

The development of mAbs as anti-infectious agents has been
delayed due to scientific challenges, clinical trials, and market
challenges. These challenges include viral variability and antigen-
ic escape, shortage of treatable viral infections, high cost for pro-
duction of recombinant antibodies, and competitionwith effective
antiviral vaccines entering the market that could rapidly replace
the need for passively infusedmAbs.Another potential obstacle is
the relatively short duration of viral illnesses, which makes them
less attractive commercial targets than diseases such as cancer or
chronic inflammatory or autoimmune diseases that require longer
mAb treatment cycles. Also, it is expected that antiviral mAbs
will not only be used but in combination with other drugs that
inhibit post-entry steps of the virus life cycle [24, 30].

Conclusion

For successful infection control, virus-mediated antibody re-
sponses can promote long life surveillance and better protec-
tion from life-threatening infections.

The outstanding ability to separate and purify antigen and
quickly determine the structural and functional effect of anti-
bodies to target specific epitopes on viral envelope GP has
dramatically increased our knowledge of the site of action of
viruses.

Through many mechanisms, antibodies can protect host
cells from viral infections and, moreover, alleviate the clinical
symptoms and attenuate viral progression.

Antiviral antibodies mentioned in this review confirm
their great potential as preventive and therapeutic agents
against many viruses. Using various antibodies character-
ization approaches discussed here might lead to the more
efficient production of neutralizing antibodies to continue
providing crucial insights into how we can finally develop
immunotherapeutic against pathogens that have thus far
evaded our efforts. More precisely, the combination ther-
apy of antiviral antibodies would expect to have broad
and potent neutralizing activity against wild-type viruses.
(Tables 1 and 2).
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Table 2 Some neutralizing antiviral antibodies in clinical trials

Antibody Target Indication Company Clinical
phase

ClinicalTrials.gov
Identifier

Ibalizumab CD4 HIV infection TaiMed Biologics USA Corp Approved NCT02707861
NCT02716675
NCT02568215

VRC01,
NIAID

CD4- of HIV gp120 HIV infection NIAID Vaccine Research Centre (VRC) 2 NCT02664415
NCT02588586
NCT02850016

3BNC117 CD4- HIV-1 Env protein. HIV infection Rockefeller University 2 NCT02446847
NCT02511990
NCT02825797

10–1074 V3-glycan supersite of HIV
gp120

HIV infection Rockefeller University 1 NCT02825797

4E10,2F5,
2G12

gp41 HIV infection Rockefeller University 1/2 NCT00219986

PRO 140 CCR5 receptors HIV infection CytoDyn, Inc 2b/3 NCT01272258

ZMapp Ebla infection Public Health Agency of Canada, Defyrus 2/3 NCT02389192

MHAA4549A
(39.29)

Hemagglutinin influenza A influenza A
infection

Genentech, Inc 2 NCT02623322

VIS410 Hemagglutinin (HA) influenza A
infection

Visterra, Inc 2 NCT02989194

CR6261 HA1/HA2 from 1918 H1N1
influenza and H5N1

influenza
infection

National Institute of Allergy and Infectious
Diseases (NIAID

2 NCT02371668

CR8020 Hemagglutinin (HA) influenza A
infection

Crucell Holland B. V 2 NCT01938352

TCN-032 the ectodomain of influenza A influenza A
infection

Theraclone Sciences 2 NCT01719874
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