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The epipharynx-kidney axis triggers glomerular vasculitis
in immunoglobulin A nephropathy

Osamu Hotta1,2 & Takashi Oda3

# The Author(s) 2019

Abstract
Macroscopic hematuria concomitant with acute pharyngitis is a characteristic feature of immunoglobulin A nephropathy (IgAN).
Although the underlying mechanism of worsening hematuria has not been fully elucidated, activation of the innate immune
system of nasopharynx-associated lymphoid tissue is thought to play an important role. The epipharynx is an immunologically
activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne
infection. As latent but significant epipharyngitis presents in most IgAN patients, it is plausible that acute pharyngitis due to
airway infection may contribute as a trigger of the epipharyngeal innate immune system, which is already upregulated in the
chronically inflamed environment. The aim of this review was to discuss the mechanism of epipharynx-kidney axis involvement
in glomerular vasculitis responsible for the worsening of hematuria in IgAN.
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Introduction

Immunoglobulin A (IgA) deposition in the glomerular
mesangium is the histological hallmark of IgA nephropathy
(IgAN) and has led to extensive research on mucosa-
associated lymphoid tissue (MALT) since the initial recogni-
tion of this disease approximately 50 years ago. MALT gov-
erns mucosal immunity and, in particular, the palatine tonsils
(organized MALT) [1–10] and the gut-associated lymphatic
tissue [11–19] have drawn significant interest.

Hematuria is a clinical hallmark of IgAN. Although the
clinical significance of hematuria in IgAN has not been con-
sidered as convincing as that of proteinuria, recent research
has demonstrated that remission of hematuria, either sponta-
neously or after receiving immunosuppressive treatments, im-
proves long-term renal survival in IgAN [20].

Although the etiology of hematuria in IgAN has not been
fully elucidated, it is thought that the rupture of glomerular
basement membranes caused by intra-capillary leukocyte in-
flux, so-called glomerular vasculitis, is the pathological event
responsible for gross hematuria [21, 22]. Therefore, the exis-
tence of a close relationship between the remission of hema-
turia and long-term renal prognosis [20] seems reasonable if
the former represents the termination of glomerular vasculitis.
Moreover, it has been shown that the severity of hematuria
tends to improve in response to immunosuppressive therapy
[23], especially steroid pulse therapy [24], whereas it does not
significantly improve with renin-angiotensin system inhibi-
tors, which are often effective in reducing proteinuria [23].

The triggering factor of gross hematuria in IgAN, presum-
ably related to aggravating of glomerular vasculitis, has not
been fully understood. Macroscopic bouts, typically associat-
ed with pharyngeal infection, namely “synpharyngitic gross
hematuria,” are a frequent presentation in patients with IgAN.
Therefore, it is important to determine the factors that might
promote macroscopic hematuria concurrent with pharyngitis.
Some patients exhibit synpharyngitic gross hematuria even in
the post-tonsillectomy state, without any gastrointestinal
symptoms. Moreover, residual hyperactivation of innate im-
munity even in patients who have undergone tonsillectomy
has been demonstrated [25]. Thus, it is conceivable that an
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area other than the palatine tonsil or gut may be involved as a
trigger of gross hematuria, i.e., glomerular vasculitis.

Located at the back of the nasal cavities, the epipharynx
is a unique tissue that is vulnerable to the effects of air-
borne infections and air pollution. In addition, as a compo-
nent of the nasopharynx-associated lymphoid tissue
(NALT), the epipharynx plays a role in the production of
memory/effector T lymphocytes in response to exogenous
antigens in inspired air, which contributes to host defense
mucosal immunity as a source of antigen-specific IgA-pro-
ducing B cells [26].

In this review, we discuss the possible role of
epipharyngitis in the development of gross hematuria associ-
ated with glomerular vasculitis in IgAN.

Characteristics of the epipharynx

As the epipharynx is the primary site of airway infections, it
has a highly developed immunocompetent function against
inhaled foreign proteins such as those from bacteria and virus-
es. Indeed, the epipharynx is a physiological inflammatory
site, and about two-thirds of healthy people have mild chronic
epipharyngitis without any symptoms [27, 28].

Unlike the middle and lower pharynx, which are covered
by stratified squamous epithelium, the surface of the
epipharynx is lined with ciliated columnar epithelial cells,
and secreted IgA covers the surface of the epipharyngeal ep-
ithelium. Concurrently, as a component of the NALT, the
epipharynx plays a role in both innate and acquired immunity.

During childhood, the pharyngeal tonsil (adenoid), which
is part ofWaldeyer’s tonsillar ring, is situated in the roof of the
epipharynx posterior to the nasal cavity. The adenoids start to
shrink before adolescence and usually disappear by
adulthood.

Abundant lymphocytes exist mainly in the submucosal ar-
ea, and it should be emphasized that many lymphocytes co-
locate with epipharyngeal epithelial cells [29]. Moreover, the
epipharynx is rich in dendritic cells, and some of them pene-
trate epithelial tight junctions, which facilitate access to the
antigen [30]. Additionally, membranous cells are present in
the epipharyngeal epithelium, which play a role as portals of
entry for antigens in the NALT [31], similar to those in pala-
tine tonsils and Peyer’s patches.

Epipharyngeal mononuclear cells contain predominantly B
cells (about 65%), approximately 5% macrophages, and 30%
CD3+ T cells. T cells are primarily of the CD4+ subset (about
80%) [32]. Importantly, both T and B lymphocytes are highly
activated, even in normal individuals [29]. Of note, these char-
acteristics of epipharyngeal lymphocytes are similar to those
of palatine tonsillar lymphocytes [29, 32]. In contrast, well-
developed lymphoid follicles, similar to those in the palatine
tonsil, are restricted to the adenoid tissue, in addition to which

the lymphoid organ of the epipharynx is mainly composed of
elements similar to those in the interfollicular region of the
palatine tonsil.

Epipharyngeal response in airborne infection

Upper respiratory tract infection is the most frequent infection
that people experience in their lifetime. The epipharyngeal
tissue fights against the inhaled pathogen via multiple mech-
anisms: (1) removal of large particles and microorganisms via
mucociliary clearance; (2) recognition of pathogens through
pattern recognition receptors, mainly signaling Toll-like re-
ceptors (TLRs); (3) secretion of pro-inflammatory cytokines
and antimicrobial peptides; and (4) activation of adaptive im-
munity, including proliferation and differentiation of specific
clones in the epipharyngeal lympho-epithelial tissue.

In response to the invasion of pathogens into the
epipharynx, neutrophils and macrophages emerge at inflam-
matory sites as the first line of immunocompetence via CXC
chemokines and pro-inflammatory cytokines. Concurrently,
activation of helper T lymphocytes is induced, whereas acti-
vation of B lymphocytes occurs during the recovery phase.

Epipharyngeal innate immunity in IgAN

We have recently reported the extremely high incidence of
latent but significant epipharyngitis in patients with IgAN
with microscopic hematuria suggesting that chronic inflam-
mation of the epipharynx may be an extremely common back-
ground condition of IgAN [28].

In the secondary lymphoid organs, such as the tonsils and
Peyer’s patches, B cells in the lymphoid follicles play an im-
portant role in acquired immunity, whereas dendritic cells,
macrophages, and T cells located in the interfollicular area
have a crucial function in innate immunity. It is believed that
the epipharyngeal adapted immunity induced by follicular
lymphocytes is reduced after the regeneration of adenoids.
On the contrary, high innate immunity function at the
epipharynx continues throughout the lifetime.

Takechi et al. [7] demonstrated that the number of
monocyte-derived dendritic cells (CD208+ cell) in the
interfollicular area of the palatine tonsils was related to cres-
cent formation in IgAN, suggesting the involvement of
interfollicular dendritic cells in the development of glomerular
vasculitis.We speculate that immune cells in the interfollicular
area of the epipharynx, as a component of NALT, may partic-
ipate in glomerular vasculitis in IgAN, similar to palatine
tonsils.

The epipharyngeal innate immune system plays a key role
in protecting the mucous membranes against various patho-
gens through pattern recognition receptors, including TLRs,
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which detect pathogens and function as signaling molecules
[33]. Recognition of pathogens and endogenous TLR ligands
promotes the activation of genes that encode pro-
inflammatory cytokines, antimicrobial peptides, and other de-
fense molecules [34].

Upregulation of TLRs has been observed in upper respira-
tory tract infections [35]. Additionally, abnormal expression
levels of TLRs were demonstrated in an animal model of
IgAN and in patients with IgAN and IgA vasculitis [36–41].
It is conceivable that chronic inflammation of the epipharynx,
which is extremely common in patients with IgAN, is the
underlying condition responsible for the upregulation of
TLRs in a considerable percentage of patients with IgAN.

Role of fractalkine/CX3CR1 interaction
in IgAN

The mechanism by which hyperactivation of innate immunity
causes glomerular vasculitis is an important area of research.
CX3C chemokine receptor 1 (CX3CR1), the only CX3 che-
mokine ligand 1 (fractalkine) receptor, is expressed in human
NK cells, NKTcells, monocytes, CD8+ Tcells, and γδ Tcells
[42]. Fractalkine, which is the single ligand of CX3CR1, is a
unique molecule that acts as both an adhesion molecule and
chemokine [43]. Fractalkine is localized on the vascular en-
dothelial surface and strongly attracts CX3CR1+ cells without
the help of other adhesion molecules, while the soluble form
acts as a chemokine, inducing the migration of CX3CR1+
cells. Thus, both the membrane-bound and soluble forms of
fractalkine act as a strong chemoattractant of CX3CR1+ cells.

As the epipharyngeal epithelium is the primary site of air-
way infection in humans, understanding the role of the
fractalkine/CX3CR1 interaction during epipharyngitis may
provide important clues to the mechanism of synpharyngitic
gross hematuria.

Membrane-bound fractalkine can be induced on vascular
endothelial cells by inflammatory cytokines such as tumor
necrosis factor alpha (TNF-α), interferon-γ (IFNγ), and
interleukin-1 (IL-1) [44]. Moreover, the serum level of soluble
fractalkine increases in patients with vasculitis, especially in
its active stage [45].

The activated lymphoid tissue of the epipharynx, in re-
sponse to foreign invaders, produces various inflammatory
cytokines for the clearance of pathogens and resolution of
pathogen-induced cell damage. Further, pro-inflammatory cy-
tokines including TNF-α, IFNγ, and IL-1 flow into the circu-
lation from the epipharynx and enhance the expression of
membrane-bound fractalkine on distant glomerular endotheli-
al cells, together with other adhesionmolecules such as E- and
P-selectins, resulting in recruitment of CX3CR1+ leukocytes
and neutrophils in the glomeruli.

Cox et al. studied patients with IgAN during episodes of
macroscopic hematuria and identified an upregulated expres-
sion of the chemokine receptor CX3CR1 in their circulating
leukocytes [46]. Moreover, Iwatani et al. reported that adop-
tive transfer of either cells of a NK cell line or CD16(+
)CD56(+) cells derived from patients with IgAN into nude
rats induced hematuria in the recipients; additionally, they
demonstrated that NK cells exert cytotoxic activity toward
human glomerular endothelial cells in a dose-dependent man-
ner [47]. In addition, our preliminary study demonstrated a
significant increase in the proportion of macrophages (mono-
cytes), NK cells, CD8+ Tcells, and γδ Tcells, i.e., CX3CR1+
leukocytes, in the urine of patients with IgAN [48], indicating
an enhanced fractalkine/CX3CR1 interaction in IgAN.

Notably, Otaka et al. demonstrated the upregulation of
CX3CR1 on tonsillar CD8+ T cells in patients with IgAN
and postulated that a hyper-immune response to microbial
DNA enhanced the expression of CX3CR1 on CD8+ T cells
in the interfollicular area of palatine tonsils, followed by mi-
gration of the cells to renal lesions via the blood circulation,
eventually resulting in the development of hematuria [8].
Given that epipharyngeal CD8+ T cells, as a part of NALT,
behave in similar fashion to tonsillar interfollicular CD8+ T
cells, we postulate that the upregulation of fractalkine/
CX3CR1 interactions related to epipharyngitis may play a
crucial role in glomerular vasculitis, resulting in worsening
hematuria.

As the accumulation of neutrophils in active lesions of the
glomeruli is one of the histological hallmarks of IgAN in gross
hematuria (glomerular vasculitis) [22], the mechanism of glo-
merular neutrophil accumulation is another matter of concern.
Although the precise mechanism is still unknown, we suspect
that neutrophil accumulation mainly occurs locally and sec-
ondary to local inflammation induced by infiltrated glomeru-
lar CX3CR1+ cells.

Interleukin-17A (IL-17A), also commonly called IL-17, is
produced by the T helper 17 (Th17) subset of CD4+ T cells
[49]. IL-17A has an important role as a pro-inflammatory
cytokine uniquely positioned at the interface of innate and
adaptive immunity. IL-17A induces the release of secondary
pro-inflammatory cytokines in most epithelial, endothelial,
and mesenchymal cells leading, in turn, to the recruitment
and accumulation of neutrophils [50]. Importantly, in addition
to Th17 T cells, CD8+ T cells, γδ T cells, and NKT cells, i.e.,
CX3CR1+ leukocytes, also produce IL-17A [51, 52]. Of note,
IL-17A can induce the production of pro-inflammatory cyto-
kines such as TNF and IL-1 from endothelial cells and infil-
trating macrophages [53]. The important role of IL-17 and
Th17 cell in renal inflammation is suggested in glomerular
vasculitis including lupus nephritis, ANCA-associated vascu-
litis, and IgAN [54, 55].

The increased concentration of local inflammatory cy-
tokines such as IL-1 and TNF-α, which are produced as a
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consequence of the fractalkine/CX3CR1 interaction,
would induce glomerular endothelial expression of E-
and P-selectins. Neutrophils are the major cells in the
blood and naturally express selectin ligands (P-selectin
glycoprotein ligand-1, E-selectin ligand-1, CD44, and
Sialyl Lewis X) on their cell surface [56, 57]. Therefore,
the interaction of selectins on endothelial cells with
selectin ligands on neutrophils occurs naturally and leads
to local accumulation of neutrophils in the glomeruli.

Furthermore, neutrophils may change their phenotype
(i.e., by increased expression and altered distribution of
selectin ligands) in the inflammatory environment (high
cytokine/chemokine) [58] of renal tissue and thereby
easily adhere to activated endothelial cells in the glo-
meruli. Then, neutrophils accumulate in the glomeruli
and are activated by interaction with activated endothe-
lial cells and by the pro-inflammatory cytokine environ-
ment, resulting in the production and release of reactive
oxygen species with proteolytic enzymes, leading to

local generation of necrotizing lesions, followed by rup-
ture of the glomerular capillary wall (Fig. 1).

Conclusion

Although macroscopic hematuria is a distinctive clinical
symptom accompanying pharyngitis in IgAN, the effect of
epipharyngitis, inevitable inflammation during acute pharyn-
gitis, on hematuria or glomerular vasculitis has not been fully
elucidated. As epipharyngitis is present in most patients with
IgAN, chronic inflammation of the epipharynx may be an
extremely common background condition of IgAN. Thus,
acute pharyngitis due to airway infection may contribute as a
trigger of the epipharyngeal immune system, which is already
upregulated in the chronically inflamed environment,
resulting in a hyperactivated innate immune system and up-
regulation of the fractalkine/CX3CR1 interaction.

Fig. 1 Schematic illustration of the putative mechanisms of
epipharyngitis triggering gross hematuria. In acute epipharyngitis,
following pathogen recognition through TLRs, dendritic cells in the
mucosa immediately produce pro-inflammatory cytokines.
Simultaneously, infected epithelial cells and activated macrophages pro-
duce chemokines that upregulate the expression of CX3CR1 on mono-
cytes, NK cells, CD8+ T cells, and γδ T cells. Circulating pro-

inflammatory cytokines also enhance the expression of fractalkine and
other adhesion molecules such as E- and P-selectins on glomerular endo-
thelial cells. Upregulation of the fractalkine/CX3CR1 interaction and IL-
17 secreted by infiltrated glomerular CX3CR1+ leukocytes, which pro-
motes influx of neutrophils, leads to the development of glomerular vas-
culitis and subsequent rupture of the glomerular capillary wall, which is
clinically associated with gross hematuria
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Localized glomerular CX3CR1+ leukocyte inflammation
with an increased concentration of inflammatory cytokines
induced by fractalkine/CX3CR1 interactions leads to local
accumulation and activation of neutrophils that produce and
release tissue-destructive mediators. As a result, glomerular
vasculitis, the lesion responsible for gross hematuria, may
develop.

Given that epipharyngitis and its effects on IgAN are not
fully understood, we propose that the so-called epipharynx-
kidney axis may be an important focus of future research.
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