Skip to main content

Advertisement

Log in

B7-H3 modulates endothelial cell angiogenesis through the VEGF cytokine

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2020

This article has been updated

Abstract

B7-H3 is a cell surface molecule in the immunoglobulin superfamily that has been shown to perform both immunological and non-immunological functions. It has also been found that vascular endothelial growth factor (VEGF) is an important molecule in the modulation of endothelial cell behavior. In this study, we analyzed the serum expression of B7-H3 in 113 rheumatoid arthritis and systemic lupus erythematous patients using the ELISA and found a positive correlation between B7-H3 and VEGF. Next, we investigated the involvement of B7-H3 in angiogenesis using human umbilical vein endothelial cells (HUVECs) with transient knockdown of B7-H3 and an in vivo Matrigel model. Data from the in vitro experiments showed that B7-H3 increased cell proliferation, migration, and tube formation, and correlated with the expression of VEGF. Furthermore, B7-H3 affected the formation of functional vascular networks in Matrigel plugs, which were dissected from mice injected with different HUVECs. Our data suggest that B7-H3 promotes angiogenesis through the enhancement of VEGF secretion. This is the first study proposing a significant role for B7-H3 in the promotion of angiogenesis and may provide further understanding of this gene’s biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 12 June 2020

    The order of authors��� affiliations in the published version of this article was not consistent with the order in the submitted manuscript due to typesetting

References

  1. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2(3):269–74.

    Article  CAS  Google Scholar 

  2. Suh WK, Wang SX, Jheon AH, Moreno L, Yoshinaga SK, Ganss B, et al. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc Natl Acad Sci U S A. 2004;101(35):12969–73.

    Article  CAS  Google Scholar 

  3. Xu L, Zhang G, Zhou Y, Chen Y, Xu W, Wu S, et al. Stimulation of B7-H3 (CD276) directs the differentiation of human marrow stromal cells to osteoblasts. Immunobiology. 2011;216(12):1311–7.

    Article  CAS  Google Scholar 

  4. Tran CN, Thacker SG, Louie DM, Oliver J, White PT, Endres JL, et al. Interactions of T cells with fibroblast-like synoviocytes: role of the B7 family costimulatory ligand B7-H3. J Immunol. 2008;180(5):2989–98.

    Article  CAS  Google Scholar 

  5. Calabro L, Sigalotti L, Fonsatti E, Bertocci E, Di Giacomo AM, Danielli R, et al. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications. J Cell Physiol. 2011;226(10):2595–600.

    Article  CAS  Google Scholar 

  6. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27(8):1034–45.

    Article  CAS  Google Scholar 

  7. Luo L, Chapoval AI, Flies DB, Zhu G, Hirano F, Wang S, et al. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol. 2004;173(9):5445–50.

    Article  CAS  Google Scholar 

  8. Li Y, Yang X, Wu Y, Zhao K, Ye Z, Zhu J, et al. B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget. 2017;8(42):71725–35.

    Article  Google Scholar 

  9. Li Y, Guo G, Song J, Cai Z, Yang J, Chen Z, et al. B7-H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway. J Cancer. 2017;8(5):816–24.

    Article  CAS  Google Scholar 

  10. Marrelli A, Cipriani P, Liakouli V, Carubbi F, Perricone C, Perricone R, et al. Angiogenesis in rheumatoid arthritis: a disease specific process or a common response to chronic inflammation? Autoimmun Rev. 2011;10(10):595–8.

    Article  CAS  Google Scholar 

  11. Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev. 2017;16(6):594–601.

    Article  Google Scholar 

  12. Nagashima M, Yoshino S, Ishiwata T, Asano G. Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol. 1995;22(9):1624–30.

    CAS  PubMed  Google Scholar 

  13. Zhang J, Li C, Zheng Y, Lin Z, Zhang Y, Zhang Z. Inhibition of angiogenesis by arsenic trioxide via TSP-1-TGF-beta1-CTGF-VEGF functional module in rheumatoid arthritis. Oncotarget. 2017;8(43):73529–46.

    Article  Google Scholar 

  14. Jiang S, Li Y, Lin T, Yuan L, Wu S, Xia L, et al. IL-35 inhibits angiogenesis through VEGF/Ang2/Tie2 pathway in rheumatoid arthritis. Cell Physiol Biochem. 2016;40(5):1105–16.

    Article  CAS  Google Scholar 

  15. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine. 2003;70(5):321–6.

    Article  Google Scholar 

  16. Efremova M, Rieder D, Klepsch V, Charoentong P, Finotello F, Hackl H, et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat Commun. 2018;9(1):32.

    Article  Google Scholar 

  17. Karin N. Chemokines and cancer: new immune checkpoints for cancer therapy. Curr Opin Immunol. 2018;51:140–5.

    Article  CAS  Google Scholar 

  18. Hofmeyer KA, Ray A, Zang X. The contrasting role of B7-H3. Proc Natl Acad Sci U S A. 2008;105(30):10277–8.

    Article  CAS  Google Scholar 

  19. Sun J, Lai H, Shen D, Wu P, Yang J, Sun Z, et al. Reduced sB7-H3 expression in the peripheral blood of systemic lupus erythematosus patients. J Immunol Res. 2017;2017:5728512.

    PubMed  PubMed Central  Google Scholar 

  20. Sun J, Liu C, Gao L, Guo Y, Zhang Y, Wu P, et al. Correlation between B7-H3 expression and rheumatoid arthritis: a new polymorphism haplotype is associated with increased disease risk. Clin Immunol. 2015;159(1):23–32.

    Article  CAS  Google Scholar 

  21. Jiang J, Liu C, Zhang G, Gao L, Chen Y, Zhu R, et al. Enhancement of membrane B7-H3 costimulatory molecule but reduction of its soluble form in multiple sclerosis. J Clin Immunol. 2013;33(1):118–26.

    Article  CAS  Google Scholar 

  22. Zhao JL, Chen FL, Zhou Q, Pan W, Wang XH, Xu J, et al. B7-H3 protein expression in a murine model of osteosarcoma. Oncol Lett. 2016;12(1):383–6.

    Article  CAS  Google Scholar 

  23. Yan R, Yang S, Sun J, Chen X, Zhang G, Feng P, et al. A novel monoclonal antibody against mouse B7-H3 developed in rats. Hybridoma (Larchmt). 2012;31(4):267–71.

    Article  CAS  Google Scholar 

  24. Feng P, Zhang H, Zhang Z, Dai X, Mao T, Fan Y, et al. The interaction of MMP-2/B7-H3 in human osteoporosis. Clin Immunol. 2016;162:118–24.

    Article  CAS  Google Scholar 

  25. Li D, Wang J, Zhou J, Zhan S, Huang Y, Wang F, et al. B7-H3 combats apoptosis induced by chemotherapy by delivering signals to pancreatic cancer cells. Oncotarget. 2017;8(43):74856–68.

    Article  Google Scholar 

  26. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell. 2017;31(4):501–15.

    Article  CAS  Google Scholar 

  27. Qin X, Zhang H, Ye D, Dai B, Zhu Y, Shi G. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. Onco Targets Ther. 2013;6:1667–73.

    Article  CAS  Google Scholar 

  28. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21(3):425–532.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the Jiangsu Province University Outstanding Science and Technology Innovation Team (Grant no. 2015023), Qinglan Project (Sunjing, Sunzhongwen), and Jiangsu Provincial Medical Talent (Sunjing). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Sun.

Ethics declarations

All experiments were approved by the Ethics Review Board of Suzhou Vocational Health College, and written informed consent was obtained from each blood donor.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Sun, Z., Yang, J. et al. B7-H3 modulates endothelial cell angiogenesis through the VEGF cytokine. Immunol Res 67, 202–211 (2019). https://doi.org/10.1007/s12026-019-09084-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09084-w

Keywords

Navigation