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Abstract Myeloid derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors, are recognized

as a key element in tumor escape and progression. The importance of MDSCs in human malignancies has been demon-

strated in recent years, and new approaches targeting their suppressive/tolerogenic action are currently being tested in both

preclinical model and clinical trials. However, emerging evidence suggests that MDSCs may play a prominent role as

regulator of the physiologic, the chronic, and the pathologic immune responses. This review will focus on the biology of

MDSC in light of these new findings and the possible role of this myeloid population not only in the progression of the

tumor but also in its initiation.
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Introduction

Myeloid derived suppressor cells (MDSCs) were initially

described in the late 1970s by numerous groups [1] and

described as natural suppressor cells (NS) able to inhibit

the proliferative responses of T-helper lymphocytes to

mitogens or alloantigens. These cells were suspected to

play a key role in the induction of tolerance and in the

immunosuppression induced by the tumor. Despite the

importance of these early findings, many experimental

limitations (i.e., a restricted antibody panel to identify their

phenotype, the widespread use of culture supernatants with

unknown cytokines and growth factors composition, and

the absence of high purity techniques to isolate cell sub-

sets) made confirming their very existence difficult and

postponed for many years real progress in understanding

their biology.

In the late 1990s, these cells were rediscovered inde-

pendently by two groups [2–4]. Since then, the extraordi-

nary importance that this cell population plays in regulating

the immune system has become evident.

MDSCs phenotype

MDSCs encompass a heterogeneous population of immature

and mature myeloid cells with immunoregulatory activity.

This cell subset is often present in situations of immunolog-

ical stress such as tumor growth [5], infections [6], or vac-

cination with superantigen [7], as a result of the expansion of

hematopoietic precursors followed by their mobilization.

In mice, these cells can be identified by the expression

of CD11b and Gr1. Co-expression of these markers, toge-

ther with the immature marker CD31, and the ability to

form colonies in agar is consistent with the phenotype of

myeloid progenitors [2, 8, 9]. Indeed, CD11b?/Gr1? cells

in tumor-bearing hosts comprise myeloid precursors that

can generate mature granulocytes, macrophages, and DCs

when cultured in vitro with the appropriate cytokines

cocktail [2, 10, 11].
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More recently, MDSCs have been classified in two main

subsets with different phenotypic and biological properties:

the monocytic (mMDSC) and polymorphonuclear/granulo-

cytic-like (gMDSC) [12–15]. In tumor-bearing mice,

CD11b?Ly6ChiLy6G- mMDSCs are highly immunosup-

pressive and exert their effect largely in a no antigen-specific

manner. By comparison, murine CD11b?Ly6CloLy6G?

gMDSC are moderately immunosuppressive and promote T

cell tolerance via antigen-specific mechanisms [12–15]. The

same phenotypes in tumor-free, naı̈ve mice define, respec-

tively, inflammatory monocytes and polymorphonuclear

neutrophils both lacking the immunosuppressive activity

[16]. In the vast majority of tumor models, as well as in

cancer patients, gMDSC are the predominant subset [12, 17–

21], representing 70–80 % of the tumor-induced MDSCs

compared to 20–30 % of the cells reflecting the monocytic

lineage [12, 18, 22]. However, recent evidence [23] indicates

that these subsets are not two completely distinct, fully dif-

ferentiated myeloid populations but rather they may repre-

sent two different differentiation states of the same

population. Nevertheless, gMDSC and mMDSC have been

shown to employ different mechanisms of immunosup-

pression (as described below), and it is important to

emphasize that gMDSC and mMDSC are not inclusive of all

the existing subsets.

In contrast to murine MDSCs, human MDSCs are still

being phenotypically characterized because of the lack of a

Gr1-like associated marker and the phenotypic variability

dependent on the disease, the anatomic site, or the phys-

iological condition of the patient. Nevertheless, a con-

sensus is growing in defining human MDSCs as

CD33?CD11b?HLA-DRlow/-. Within this population, the

CD14?CD15low/- MDSCs share characteristic similar to

the murine monocytic MDSCs, whereas the CD14-CD15?

MDSCs resemble the murine granulocytic subtype [24].

MDSC’s mechanisms of immunosuppression

MDSCs can restrain the immune response through different

mechanisms that operate singularly or in combination.

Such mechanisms can be direct (influencing directly

effector T cells) or indirect. Indirect mechanisms involve

the generation and/or the expansion of other regulatory

populations, such as regulatory T cells.

Direct mechanisms of immunosuppression

Arginase 1 (Arg1) or liver arginase converts the semi-

essential amino acid L-arginine (L-Arg) into urea and

L-ornithine [25, 26]. In many different models, MDSCs can

express, upon activation, high levels of this enzyme and the

L-Arg transporter CAT2B. In these conditions, MDSCs

readily consumed L-Arg and inhibited re-expression of the

f-chain of CD3 complex in T lymphocytes thereby

impairing their function. The CD3 f-chain is the main

signal-transduction component of the TCR complex and is

required for the correct assembly of the receptor. Inter-

estingly, altered expression of this component has been

described in peripheral blood T cells of patients with

cancer, chronic infections, and autoimmune diseases [27],

conditions that as described below have been associated

with MDSC accumulation. In vivo, this mechanism of T

cell inactivation by ARG-induced deregulation of CD3

f-chain seems to be relevant for tumor escape. For exam-

ple, injection of the ARG inhibitor N-hydroxy-nor-L-argi-

nine (nor-NOHA) delayed the growth of transplantable

lung carcinoma in a dose-dependent manner [28]. Simi-

larly, transgenic mice expressing high levels of Arg-1 in

the enterocytes of the small intestine were shown to have

serious defects in the formation of lymphoid organs and in

particular of the Peyer’s patches [29]. Beside the CD3

f-chain down-regulation, other mechanisms seem to be

involved, since T cells cultured in the absence of L-Arg had

an increased production of IL-2 and expressed early acti-

vation markers [30]. Indeed, L-Arg starvation arrested T

cells in the G0–G1 phase of the cell cycle, by failing to up-

regulate cyclin D3 and cdk4 and increasing cdk6 expres-

sion [31]. The decreased expression of cyclin D3 and cdk4

in T cells seems to be mediated by a HUR-dependent

decreased mRNA stability and diminished translational

rate [32]. Moreover, under L-Arg starvation, T cells accu-

mulate empty aminoacyl tRNAs. This accumulation acti-

vates GCN2 kinase which phosphorylates the translation

initiation factor eIF2a. The phosphorylated form of eIF2a
binds with high affinity to eIF2B, blocking its ability to

exchange GDP for GTP, which inhibits the binding of the

eIF2 complex to methionine aminoacyl tRNA resulting in a

decreased initiation of global protein synthesis [30].

Nitric Oxide Synthase 2 (NOS2) oxidizes L-Arg in two

steps to generate nitric oxide (NO) and citrulline [25, 26].

NOS2 is generally induced by type 1 cytokines, and it is

normally associated with macrophages differentiated

toward a ‘‘M1’’ phenotype [33]. Although NO is funda-

mental for its anti-microbial action and, in tumor, has been

reported to have a tumoricidal action [34], its immuno-

suppressive role and its pro-tumoral activity are also

extremely important [34]. For example, NOS inhibitors

were shown to reverse MDSC-induced immunosuppression

both in vivo and in vitro [26, 35]. NO seems to prevent T

cell activation by interfering with the signaling cascade

downstream of the IL-2 receptor (i.e., AK1, JAK3, STAT5,

ERK and AKT) rather than inhibiting the early events

triggered by TCR recognition [36]. NO can negatively

regulate intracellular-signaling proteins either directly by

S-nitrosylation of crucial cysteine residues or indirectly by
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activation of soluble guanylate cyclase and cyclic-GMP-

dependent protein kinases [37–39]. Additionally, high

concentrations of NO can exert a direct pro-apoptotic effect

in T cells by mediating the accumulation of p53, by

inducing FAS, or caspase-independent signaling [40, 41].

NOS2 and ARG1 have long been considered antithetic

enzymes that rarely can be co-expressed in the same cells

or the same microenvironment. While NOS2 is a marker of

M1 macrophage, Arg1 is normally associated with a M2

phenotype [34]. However, a growing number of reports

contradict this early assumption and show that these two

enzymes can be co-expressed [42–50]. In these situations,

ARG1, by lowering the L-Arg concentration in the local

environment, operates to switch NOS2 activity, shifting its

function from the production of NO to O2
- [51–53]. O2

-

spontaneously reacts with other molecules (i.e., NO or

H2O) and generates other reactive nitrogen intermediates

(RNI), such as peroxynitrite (ONOO-), or reactive oxygen

species (ROS), such as hydrogen peroxide (H2O2). These

species have multiple inhibitory effects on T cells. In

addition, low levels of NO induce nitrosylation of cysteine

residues of ARG1, which increases the biological activity

of the enzyme, further reducing L-Arg concentration in the

environment [54].

Cysteine starvation Cysteine is another essential amino

acid for T cell activation. Indeed, T cells lack cystathion-

ase, the enzyme that converts methionine to cysteine and

do not have an intact xc
- cysteine transporter [55, 56].

Therefore, they cannot produce cysteine nor import cystine

and reduce it intracellularly to cysteine. Thus, T cells

depend on APCs, such as macrophages and DCs, to export

cysteine, which is then imported by T cells via their ASC

neutral amino acid transporter [57, 58]. MDSC play a

critical role in this T cells/APCs communication, since they

can drastically reduce the extracellular cysteine availability

preventing T cells activation. MDSCs, in fact, do express

the xc
- transporter and import cystine, but they do not

express the ASC transporter and, thus, cannot export it

[59]. It was thus suggested that MDSCs compete with

APCs for extracellular cysteine, limiting the extracellular

pool of cysteine and thus depriving T cells of the cysteine

they require for activation and function [59].

ROS In addition to amino acid starvation, MDSCs can

block T cell function through the production of highly

oxidative ROS. ROS can induce the loss of CD3 f chain in

naive T cells [60–62]. This mechanism has been suggested

in patients with pancreatic cancer in which CD11b?

CD15?gMDSC were shown to reduce CD3 f-chain

expression and decreased cytokine production in T cells

through a H2O2-mediated mechanism [21]. It appears that

gMDSCs have substantially higher levels of ROS and

myeloperoxidase and reduced phagocytosis compared with

mMDSC [63, 64]. Although the formation of ROS in

myeloid cells can be mediated by the NOS2 reductase

domain, NADPH oxidase (NOX) is the primary producer of

ROS by catalyzing the one-electron reduction in oxygen to

superoxide anion using electrons supplied by NADPH [65].

As mentioned above, one of the most common molecules

that react with O2
- is NO, a key biological messenger in

mammals. This leads to the formation of the free radical

peroxynitrite ONOO- that can nitrate/nitrosylate tyrosine,

cysteine, methionine, and tryptophan in different proteins

and enzymes, thus changing their biological functions [66].

For example, peroxynitrite can nitrate/nitrosylate the TCRs

and CD8 molecules on the surface of T cells. Upon this

modification, the TCR loses the ability to recognize specific

peptide/MHC (pMHC) complexes and CTLs are therefore

rendered incompetent in performing their anti-tumor

activity [67]. Alternatively, peroxynitrite can nitrate/nitro-

sylate chemokines within the tumor microenvironment [68].

Nitrosylated chemokines (i.e., CCL2) failed to attract T

cells to the tumor, while it was still able to promote the

MDSC trafficking to the tumor [68]. Finally, peroxynitrite

can inhibit the binding of processed peptides to tumor cell

MHC rendering the tumor invisible and resistant to antigen-

specific CTLs [69].

Indirect mechanism of immunosuppression: MDSCs as

tolerogenic APC

MDSCs share many features with tolerogenic DCs (e.g.,

antigen uptake capacity, common surface markers, cyto-

kine profile, etc.) that have often been proposed to be

associated with either T cell tolerization or Treg cell

expansion. We recently performed a transcriptome and

positioning analysis using RNA from in vitro differentiated

human MDSCs and publically available genechip dat-

abases to define plasmacytoid and myeloid dendritic cells,

monocyte-derived immature DCs, monocytes, M1 and M2

macrophage, and MDSCs from patients affected by sar-

coma (Zoso et al. submitted). This analysis reveals, as

expected, that, in vitro, differentiated MDSCs cluster with

the tumor-derived counterpart. Although MDSCs share

many clusters of genes with M1 and M2 macrophages, they

are closer to the DC macro-group than to the one that

includes monocytes, immature DC, and macrophages

(Zoso et al. submitted). This result is not completely sur-

prising considering our earlier report showing that MDSCs

are the tolerogenic APC in lymphoma bearing mice [70].

Using the A20 B cell lymphoma model, we showed that

MDSCs are capable of antigen uptake and presentation to

tumor-specific Treg by a mechanism that requires ARG but

is TGF-b-independent [70]. In vitro and in vivo inhibition

of MDSC function, with either NOHA or Sildenafil,

abrogates Treg proliferation and tumor-induced tolerance
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in antigen-specific T cells [70]. More recently, the

expression of the immune stimulatory receptor CD40 on

MDSCs was shown to be required to induce T cell toler-

ance and Treg accumulation [71]. While the adoptive

transfer of wild-type Gr1?CD115?MDSC-induced Treg

differentiation, CD40-/-MDSCs failed to induce tolerance

and Treg accumulation in vivo [71]. Other reports seem to

confirm the tolerogenic role of MDSCs. For example, in an

allogeneic BM transplantation setting [72], CD11b?/Gr1?

MDSCs, expanded in vivo by Progenipoietin-1 (a synthetic

G-CSF/Flt-3 ligand molecule) administration, were found

to suppress the initiation of graft-versus-host disease

(GVHD). The treatment was found to induce in the reci-

pient a population of MHC class II-restricted, IL-10 pro-

ducing Treg [72]. Similarly, we showed that induction of

MDSCs via G-CSF administration is sufficient to signifi-

cantly delay skin allograft rejection by a mechanism that

involved the generation of regulatory T cells [73].

The importance of CD11b?cells in controlling Treg

homeostasis was also shown in a melanoma mouse model

and a colon carcinoma rat model [74]. In these models,

Treg accumulate in the growing tumors and secondary

lymphoid organs through a mechanism that mainly

required the proliferation of preexisting natural Treg and

the presence of CD11b?MDSC-like cells in the draining

lymph nodes and in the tumor bed [74, 75]. The ability of

MDSCs to induce proliferation/conversion of Tregs was

recently confirmed in human setting: CD14?HLADR-/low

mMDSCs isolated from PBMCs of patients with hepato-

cellular carcinoma were shown to induce IL-10 producing

CD4?CD25?Foxp3? Tregs when co-cultured with autol-

ogous CD3/CD28-stimulated T cells [76]. These mMDSCs

expressed high levels of ARG1 that is required for their

suppressive activity [76]. Interestingly, while CD14?HLA-

DR-/low mMDSCs induce Foxp3?Treg, CD14?HLA-

DRhigh monocytes promote the generation of Th17 cells

[77]. Furthermore, MDSCs seem to modulate not only the

de novo induction of Tregs from CD4? T cells, but, also, to

catalyze the trans-differentiation of Foxp3?Treg from

Th17 cells through a mechanism that is dependent on

MDSC-derived TGF-b and retinoic acid [77].

The putative physiological role of MDSC

Although most of the work to describe and understand

MDSCs has been performed in cancer settings, more and

more data indicate that expansion of this immature myeloid

cell population occurs not only in cancer, but rather their

temporally defined generation, recruitment, and activation

represent a normal physiological response that happens

during each inflammatory response (Fig. 1a). Indeed,

MDSCs may be an integral part of any immune response

evolutionarily designed to prevent the excessive

inflammation and the bystander damages to the tissues

caused by activated T cells once the foreign antigens have

been cleared. In fact, the consequences of massive T

lymphocyte activation can be disastrous and can be illus-

trated by the severe complications seen with graft-versus-

host disease in allogeneic bone marrow transplantation or

in septic shock induced by bacterial toxins acting as

superantigens.

For example, superantigen-induced activation can

involve up to 20 % of the CD4? T cells in the peripheral

repertoire and cause a deadly toxic shock syndrome [78].

These immune responses are normally tightly controlled

through the deletion or tolerance induction of reactive

lymphocytes by a mechanism requiring an accumulation of

Gr-1? MDSC and their NO production [78]. Blocking this

pathway in vivo by L-NMMA administration was shown to

be sufficient to exacerbate the septic shock causing the

death of most treated animals [78]. In accordance with this

MDSC putative role as controller of the immune activation,

we previously described the important role that GM-CSF

plays in MDSCs biology. GM-CSF is a cytokine that is

produced, upon activation, by virtually all the immune

effector cells (i.e., T and B cells, NK cells, B cells, and

DC) [79]. At low doses, it is responsible for the recruitment

and stimulation of APC and to enhance the immune

response. Indeed, for a long time, GM-CSF has been

thought to be an extremely important immune adjuvant.

However, we demonstrated that MDSCs are recruited at the

vaccination site and can inhibit the immune response when

GM-CSF concentration reached a determinate threshold

[80]. In particular, utilizing a bystander vaccine strategy in

which the antigen dose and steric hindrance could be

maintained constant while altering the GM-CSF dose, we

assessed the impact of high versus low concentrations of

GM-CSF administered in a vaccine formulation on priming

of anti-tumor immunity. We confirmed the efficacy of low

doses GM-CSF secreting vaccine and defined a threshold

above which the vaccine not only lost its efficacy but also

resulted in significant in vivo immunosuppression mediated

by MDSC recruitment [80]. A systematic analysis of dif-

ferent clinical trials performed with this cytokine suggests

that the same phenomenon can take place in humans [81].

It is important to underline that the appearance of

MDSCs following vaccination is not a sole property of

GM-CSF-based vaccines but seems to be related to all

immunological insults. For example, inoculation of a

recombinant vaccinia virus (rVV) expressing the mouse IL-

2 gene caused enhanced activation and expansion of

cytotoxic T cells (CTL), as assessed by the marked

increase in the ex vivo cytotoxic responses to vaccinia

determinants and to the heterologous antigen carried by the

rVV, the b-galactosidase (b-gal) from Escherichia coli

[82]. Although present in the spleen in large numbers,
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CD8? T cells specific for b-gal could not be re-stimulated

in vitro or in vivo. Instead, stimulation with a b-gal epitope

triggered their activation-induced cell death. The induction

of such immune unresponsiveness was found to depend on

MDSC activity [83] and to correlate with GM-CSF over-

production upon rVV vaccination. The addition of anti-

GM-CSF antibodies during the vaccination phase or the

depletion of MDSC prior to re-stimulation restored the

CTL responses [2]. Beside vaccine settings, MDSCs are

found expanded in nearly all inflammatory conditions

suggesting that MDSCs may be more of a normal com-

ponent of the inflammatory response [84]. For example,

polymicrobial sepsis causes myeloid cell expansion in the

bone marrow, spleen, and lymph nodes [85], and the same

MDSC expansion was seen after burn [86] or traumatic

injury [87]. Indeed, as mentioned above for the vaccination

with superantigen, septic conditions can lead to an exag-

gerated and potentially lethal inflammatory response,

blocking the MDSC expansion may also worsen outcome

by promoting the inflammatory component. Indeed, it was

shown that mice lacking gp130 and unable to signal

through IL-6 failed to expand their MDSC population and

had markedly higher mortalities to sepsis associated with

increased inflammatory cytokine production [88].

In summary, MDSCs can be a normal component of an

inflammatory response that upon sensing GM-CSF or other

Fig. 1 Schematic representation of the role of MDSCs during a

physiological immune response, a chronic inflammation, or during

carcinogenesis. a Physiological immune response. Pro-inflammatory

signals are released by cells infected by a pathogen or bystander cells

to recruit effector T cells, immature DC, and macrophage. The

immune response evolves by activating and expanding effector T

cells through DC cross-presentation in the draining lymph nodes.

Upon activation T cells kill the infected cells and secrete GM-CSF

and other pro-inflammatory cytokines. When the pro-inflammatory

cytokines reached a determinate concentration, MDSCs are recruited

to turn off the immune response and promote tissue remodeling and

repair. b Chronic inflammation. Upon initiation of the infection,

effector cells are unable to clear the antigenic source. The high

concentration of pro-inflammatory factors induced an early recruit-

ment of MDSCs that inhibit the T cell response reaching equilibrium

between pathogen, effector T cells, and MDSCs. In these situations,

MDSCs actively secrete ROS and RNI that can induce mutations in

the bystander cells. c Carcinogenesis. Persistent production of RNI

and ROS by MDSCs in the tissue can promote mutation in oncogenes

and tumor suppressor genes, thus promoting cancer initiation. Once

the tumor is established, neoplastic cells produced factors able to

recruit additional MDSCs that assist them in escaping from the

immune recognition, in invading the surrounding tissues, and in

seeding to distal site
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cytokines produced by activated T cells are recruited to the

inflammation site to reduce the risks of collateral damages

to the tissue or a lethal cytokine-induced shock.

MDSC and chronic inflammation

Chronic inflammations are an ongoing battle between a

non-ending antigenic source or stimuli and the immune

response and are characterized by the sustained recruitment

of immune cells. Chronic inflammation can be maintained

either by a chronic infection from a viral or bacterial

pathogen, by the instauration of an autoimmune disease, or

by the repetitive insults to the same immunogenic sub-

stance to the same site (i.e., smoking habits or pollution in

the airways). In these situations, the antigenic source is not

eliminated by the immune system.

Based on the putative physiological role of MDSCs, an

expansion of this regulatory population is expected in all

these conditions (Fig. 1b). Recent evidences suggest that

this is the case and that virus and other pathogens indeed

evolve to maximize the recruitment of MDSCs. Chronic

infections usually promote high levels of the pro-inflam-

matory cytokine TNF-a and IL-1b that have been involved

in MDSCs recruitment and survival [18, 89–91]. Addi-

tionally, viral products seem to have evolved to promote

MDSCs recruitment and activation. For example, the core

protein of hepatitis C virus (HCV), a pathogen that estab-

lish a chronic infection in 80 % of infected individuals, was

shown to promote MDSCs accumulation through STAT3-

dependent mechanism [92]. These MDSCs were found to

be elevated in infected patients and were able to suppress T

cells response by a ROS secretion [92]. Interestingly,

during anti-viral therapy, MDSCs were shown to decrease

in HCV patients [93]. Similar results were reported in

patients infected by the human immunodeficiency virus

(HIV) [6, 94]. Also in this case, anti-viral therapy was

shown to drastically reduce MDSCs concentration in

patients’ blood [94]. Besides producing pro-inflammatory

cytokines, HIV seems to promote directly MDSC differ-

entiation through TAT. Indeed, TAT added to healthy

donors PBMCs induces the differentiation of

CD33?CD11b?HLA-DR-/lowMDSCs [94].

It is important to underline that in addition to the fact

that virus can express MDSCs facilitator genes, the

immune response can also induce and can promote MDSCs

accumulation. For example, the anti-viral immune

response, rather than the virus, seems to mediate MDSC

expansion in mice infected with vesicular stomatitis virus

(VSV). MDSCs expansion was detected only during a

prolonged infection of 5 days, while they were decreased

when the infection was limited to 1 day, suggesting that

MDSCs are recruited only during temporally sustained

immune responses [95] or strong immunogenic reaction

such as in the case of infection with vaccinia virus [96].

The link between chronic inflammation and MDSC

recruitment is not limited to viral infections, but it might

represent the unsuccessful attempt of the organism to halt a

persistent inflammation as is suggested by the accumula-

tion of MDSCs in a growing number of inflammatory

conditions including uveoretinitis [97], Lichen Planus [98],

autoimmune hepatitis [99], multiple sclerosis [100], and

inflammatory bowel disease [101], as well as other chronic

inflammation such rheumatoid arthritis [102] or smoking

habits [103].

MDSCs and cancer

It is now generally accepted that chronic inflammation

plays a key role in tumorigenesis [104]. An inflammatory

microenvironment seems to be an essential component of

all tumors, including some in which a direct causal rela-

tionship with inflammation is not yet proven [105].

Considering the new data mentioned above implicating an

MDSC expansion and activation during chronic inflamma-

tion and considering the high production of ROS and RNI

that characterized activated MDSCs, this suppressive pop-

ulation might be the link between inflammation and cancer

(Fig. 1c). Studies using models of chronic inflammation

seem to support this hypothesis demonstrating that pro-

longed exposure to ROS and RNI in the gastrointestinal-

tract-induced DNA mutations and colon cancer in mice fed

with dextran sulfate [106]. This possibility seems to be fur-

ther suggested by human studies. For example, periodontal

disease is significantly associated with an increased risk of

lung, kidney, pancreatic, and haematological cancers [107].

Lichen Planus, that is associated with an increase MDSC

concentration [98], also plays an important role in the eti-

ology of oral squamous cell carcinoma [108]. Additionally, it

is generally acknowledged that chronic inflammation plays a

central role in chronic obstructive pulmonary disease

(COPD), a condition associated with chronic tobacco

smokers. A marked increase in MDSCs infiltrating the lungs

and in circulation has been reported in smokers and COPD

patients [103, 109–111]. The fact that numerous epidemio-

logical studies have consistently linked the presence of

COPD to the development of lung cancer, independently of

cigarette smoking dosage [112], might support the hypoth-

esis that chronic inflammation of the lung (caused by tobacco

smoke or other agents) might increase the local concentra-

tion and number of activated MDSCs, their production of

ROS and RNI (found in COPD patients [113, 114]), DNA

mutation and eventually cancer. However, despite this cir-

cumstantial data, the role of MDSCs as initiator of tumori-

genesis still needs to be proven.
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Although the role of MDSCs in cancer initiation remains

to be to be confirmed, a large number of reports demon-

strate that MDSCs play a key role in tumor progression and

metastasis. Indeed, virtually all transplantable murine

models induce MDSCs whose presence has been linked to

both tumor-induced immunosuppression and metastases

(reviewed in [79, 115–119]). MDSCs have been linked to

tumor progression also in chemically induced cancers [120,

121] and in transgenic mice that spontaneously develop

tumors [122–124]. Inhibition or depletion of MDSCs is

generally associated with a reversal of tumor-induced

immunosuppression, a synergy with active immunotherapy

and a decrease in the metastatic disease [79, 115–119].

Recent data clearly indicate that the pro-tumoral role of

MDSCs is not limited to generating a suppressive niche

around the tumor, but, rather, these cells also play an

important role in tumor progression and metastases even

through immune-independent mechanisms. Indeed,

MDSCs and tumor-associated macrophages (TAMs) seem

to be the main players in the metastatic process: not only

they are the most abundant innate immune cells present in

several types of mouse and human cancer [125–127], but

also their presence correlates with increased vascular

density and worse clinical outcomes in several types of

human cancer [128, 129]. For example, MDSCs and

TAMs, activated through alpha chain of the IL4 receptor

(IL4Ra, CD124) and CSF-1R (CD115), have been identi-

fied as essential regulators of pulmonary metastasis in

mouse models of mammary carcinogenesis [130, 131]. In

accordance with these results, IL4Ra inactivation by

pharmacologic or genetic means is sufficient to promote

tumor immunity and restore the efficacy of immunotherapy

[43]. Furthermore, CD124 signaling is essential for

MDSCs and TAM survival as we demonstrated by the

in vitro and in vivo use of an IL4Ra-specific blocking

aptamer [132]. Chronic administration of anti-IL4Ra apt-

amer induces apoptosis in MDSCs and TAMs and reduces

primary tumor growth and the number of metastatic cells in

the lung of mice bearing a mammary carcinoma [132].

The pro-metastatic activity of MDSCs and TAMs is also

linked to their tissue-remodeling properties. Upon activa-

tion, these leukocytes secrete matrix remodeling proteases

and serine proteases that are associated with more

advanced tumor grades and metastasis [133–135]. Addi-

tionally, following IL4Ra engagement, TAMs and MDSCs

express elevated levels of the cysteine protease cathepsin B

and expression of this protease is found within macro-

phages at the invasive edge of pancreatic cancers [133–

135]. Metalloproteinase (MMP) and cathepsin B secretion

by TAMs and MDSCs are partially regulated by IL-6

[136]. It is important to note that this cytokine, in concert

with GM-CSF, is one of the key elements that regulate

MDSC differentiation [137]. In particular, GM-CSF,

G-CSF, and IL-6 allowed a rapid generation of MDSCs

from precursors present in mouse and human bone marrow

(BM) [137].

Several other studies also suggest a role of myeloid cell

subsets in either promoting the formation of a pre-meta-

static niche before the neoplastic cells seed at the distal site

or in favoring tumor growth once the metastatic cells have

been seeded [117]. According to these studies, the primary

tumor appears to ‘‘prepare’’ the distal site for the growth of

the metastasis. For example, CD11b?Gr1?MDSCs have

been shown to activate the pre-metastatic lung into a per-

missive haven by diminishing immune-protective programs

[138]. In agreement with this hypothesis, data from our

laboratory indicate that MDSCs (CD11b?Gr1?IL4Ra?)

represent up to 40 % of stromal cell in the lung of mice

bearing the 4T1 mammary carcinoma, although only 0.1–

0.5 % of neoplastic cells are present (data not shown). The

recruitment of MDSCs in the pre-metastatic condition is

dependent on CCL2 at least in a mammary carcinoma

model [139]. Inhibition of the CCR-2/CCL2 signaling in

fact drastically reduced the recruitment of Gr1? myeloid

cells to the lung and, more importantly, the number and

size of metastasis [139].

MDSCs and macrophages, not only may prepare the

secondary site for the seeding of the metastatic cells but

also can promote the survival and the growth of seeded

neoplastic cells by different mechanisms: (1) provide a

localized immune-suppression that protects the secondary

disease from immune clearance; (2) promote secondary

tumor angiogenesis by regulating VEGF bioavailability

through the secretion of MMP9 and by being incorporated

in the tumor vessels (although this remains a controversial

issue); (3) facilitate the invasion in the surrounding tissue

promoting its remodeling [117]. Finally, (4) specific

genetic ablation in a mouse model of mammary carcinoma

demonstrated that a peculiar population of CD11b? mac-

rophages also inhibits the spontaneous apoptosis of meta-

static cells in the lung [140]. These data seem to be

confirmed by previous studies in which IL-1b secreted by

‘‘tumor educated’’ macrophages [141] has an anti-apoptotic

effect on the neoplastic cells by promoting Wnt signaling

in colon carcinoma.

Despite the plasticity of MDSCs and the variation in

their phenotype in different human malignancies, in the

recent years much progress has been made in understand-

ing their role in human cancer. For example, in a seminal

work in head and neck cancer patients, the release GM-

CSF and the tumor infiltration with CD34?MDSC were

determined to be negative prognostic factors because both

events were associated with an increased rate of tumor and

metastasis recurrence [142]. A more extensive study

identified human MDSCs in the peripheral blood of

patients with squamous cell carcinoma, head and neck
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cancer, breast cancer, and non-small-cell lung cancer [4].

Analysis of PBMCs, from patients affected by metastatic

adenocarcinomas of the pancreas, colon, and breast,

revealed an increase in the oxidative activity of

CD15?granulocytes that resulted in an elevated ROS pro-

duction. Granulocyte activation correlated with the inhi-

bition of CD3 f-chain expression and cytokine production

[21].

The evaluation of MDSCs in patients with different

solid tumors (mostly breast and gastrointestinal tumors, but

also including melanomas and other cancers), clinical

stages I–IV [20], demonstrates that MDSC levels were

significantly higher in cancer patients relative to healthy

controls (p \ 0.0001) and that their concentration was

proportional to clinical cancer stage. Similar data were

reported in glioblastoma, breast, colon, lung, and kidney

cancer (reviewed in [5]). In breast and colorectal cancer

patients, MDSC levels are indicative of the overall tumor

burden and their increased circulating levels correlates with

worse prognosis and radiographic progression [143, 144].

In a large study performed in metastatic renal cell carci-

noma, Zea et al. [145] evaluated PBMCs from 123 patients

and detected an increase in ARG activity that was associ-

ated with the down-regulation of the CD3 f-chain expres-

sion and reduction in IL-2 and IFN-c production by anti-

CD3/anti-CD28 stimulated PBMCs [145]. Cell fraction-

ation studies revealed that ARG activity was limited to

CD11b?CD15?CD14- gMDSCs and depletion of

CD11b?cell from PBMCs was sufficient to restore f-chain

expression, cytokine production and proliferation of

otherwise anergic T cells present among PBMCs [145]. In

a large study on hepatocellular carcinoma patients,

increased levels were found of ARG-expressing m-MDSCs

(CD14?HLADR-/low), capable of suppressing T cell pro-

liferation [146]. In multiple myeloma and HNSCC,

depletion or pharmacological inhibition of mMDSC was

sufficient to restore the otherwise anergic phenotype of

PBMCs [49]. Similar findings were shown in a clinical trial

in which stage IV melanoma patients were vaccinated with

the heat-shock protein gp96, with or without GM-CSF as

adjuvant to better prime the immune response [81].

Recently, phase I/II clinical trials showed that vaccines

based on tumor-associated peptides could prolong survival

in patients with renal cell cancer and colorectal cancer that

showed signs of a multipeptide-specific immunization

[147, 148]. Moreover, positive and negative predictors of

clinical responses could be found in the blood among

leukocyte subsets (Treg and MDSCs) and serum proteins

(chemokines and apolipoproteins) [147, 148]. In this study,

a panel of antibodies was developed to identify six MDSC

phenotypes in a single multicolor staining. Levels of all

MDSC subsets, except one, were significantly increased in

the blood of patients with renal cell cancer, suggesting a

global modification of myelopoiesis in these patients.

However, in a retrospective analysis, only two MDSC

phenotypes were significantly negatively associated with

survival: CD14?HLA-DR-/low and CD11b?CD14-CD15?

[147]. Taken together, the existing data on human MDSCs

indicate that these cells share many of the functional

properties found in mice. However, it is still very prob-

lematic to associate a unique panel of markers to human

MDSCs. This difficulty can depend on the great plasticity

and accepted heterogeneity that characterize MDSCs.

Conclusions and current directions

MDSCs are being recognized as important players in the fine

mechanisms that regulate the immune response in physio-

logical situations as well as in different pathologies. Indeed,

it is now clear that blocking and inactivating an ongoing

immune response is as complex as its initiation. Multiple

cellular players, cytokines and chemokines, and intra- and

inter-cellular signaling are involved. MDSCs seem to play a

key role in this network and incredible progresses in under-

standing their biology has been made in the last 15 years.

Nevertheless, the intrinsic plasticity of MDSC might be a

blessing for the therapist but a curse for the experimentalist

that wants to understand their biology, since a few modifi-

cations in the microenvironment can dramatically change

their phenotype and function and even promote their matu-

ration toward inflammatory anti-tumoral APCs (i.e., DC and

macrophage) [149]. Because of this plasticity caution is still

needed in the interpretation of in vitro data since the cytokine

and chemical composition of the FCS used in the media is

often unknown. Even the interaction of these cells with their

plastic containers can change their phenotype. In vivo data

are still needed to confirm any in vitro generated hypothesis,

and cell-specific expression or knockdown of the desired

genes in vivo is highly desirable to better understand MDSC

biology in physiological or pathological settings. Since

genetic knockout or transgenic mice require significant

economic and time resources, and since this technology

cannot be easily translated into the clinic, in recent years we

developed different nano-tools that allow us to target spe-

cifically MDSCs in vivo. In particular, based on our expe-

rience with functionalized PAMAM dendrimers [150], we

have developed a new nanoparticle that allows the specific

targeting of MDSCs in vivo to either silence or up-regulate a

determinant gene (Vella et al. in preparation). Additionally,

we have selected aptamers that recognize specifically either

the tumor-associated MDSC or both splenic and tumor-

infiltrating MDSCs (Delafuente et al. in preparation). The

MDSC-specific or the tumor-infiltrating MDSC-specific

aptamers are currently being tested as carriers for shRNA or

drugs.
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Based on our preliminary data and work performed in

other laboratories, we are confident that in the near future

MDSC biology will be further elucidated. We foresee that

powerful new therapies based on MDSC modulation might

become available to resolve different pathologies including

autoimmunity, chronic inflammation, and cancer.
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