Skip to main content

Advertisement

Log in

Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Couvelard A and Scoazec JY (2020) [Inherited tumor syndromes of gastroenteropancreatic and thoracic neuroendocrine neoplasms]. Ann Pathol 40:120-133 https://doi.org/10.1016/j.annpat.2020.01.002

    Article  PubMed  Google Scholar 

  2. Alrezk R, Hannah-Shmouni F and Stratakis CA (2017) MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 24:T195-T208 https://doi.org/10.1530/ERC-17-0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slingerland J and Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183:10-7 https://doi.org/10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.0.CO;2-I

  4. Francis JM, Kiezun A, Ramos AH et al (2013) Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 45:1483-6 https://doi.org/10.1038/ng.2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Georgitsi M (2010) MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab 24:425-37 https://doi.org/10.1016/j.beem.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  6. Taieb D, Jha A, Guerin C et al (2018) 18F-FDOPA PET/CT Imaging of MAX-Related Pheochromocytoma. J Clin Endocrinol Metab 103:1574-1582 https://doi.org/10.1210/jc.2017-02324

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burnichon N, Cascon A, Schiavi F et al (2012) MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 18:2828-37 https://doi.org/10.1158/1078-0432.CCR-12-0160

    Article  CAS  PubMed  Google Scholar 

  8. Bausch B, Schiavi F, Ni Y et al (2017) Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol 3:1204-1212 https://doi.org/10.1001/jamaoncol.2017.0223

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ferrara AM, Lombardi G, Pambuku A et al (2018) Temozolomide treatment of a malignant pheochromocytoma and an unresectable MAX-related paraganglioma. Anticancer Drugs 29:102-105 https://doi.org/10.1097/CAD.0000000000000570

    Article  CAS  PubMed  Google Scholar 

  10. Shibata M, Inaishi T, Miyajima N et al (2017) Synchronous bilateral pheochromocytomas and paraganglioma with novel germline mutation in MAX: a case report. Surg Case Rep 3:131 https://doi.org/10.1186/s40792-017-0408-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Korpershoek E, Koffy D, Eussen BH et al (2016) Complex MAX Rearrangement in a Family With Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis. J Clin Endocrinol Metab 101:453-60 https://doi.org/10.1210/jc.2015-2592

    Article  CAS  PubMed  Google Scholar 

  12. Pozza C, Sesti F, Di Dato C et al (2020) A Novel MAX Gene Mutation Variant in a Patient With Multiple and "Composite" Neuroendocrine-Neuroblastic Tumors. Front Endocrinol (Lausanne) 11:234 https://doi.org/10.3389/fendo.2020.00234

    Article  Google Scholar 

  13. Daly AF, Castermans E, Oudijk L et al (2018) Pheochromocytomas and pituitary adenomas in three patients with MAX exon deletions. Endocr Relat Cancer 25:L37-L42 https://doi.org/10.1530/ERC-18-0065

    Article  CAS  PubMed  Google Scholar 

  14. Roszko KL, Blouch E, Blake M et al (2017) Case Report of a Prolactinoma in a Patient With a Novel MAX Mutation and Bilateral Pheochromocytomas. J Endocr Soc 1:1401-1407 https://doi.org/10.1210/js.2017-00135

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seabrook AJ, Harris JE, Velosa SB et al (2021) Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5? J Clin Endocrinol Metab 106:1163-1182 https://doi.org/10.1210/clinem/dgaa957

    Article  PubMed  Google Scholar 

  16. Grogan RH, Pacak K, Pasche L, Huynh TT and Greco RS (2011) Bilateral adrenal medullary hyperplasia associated with an SDHB mutation. J Clin Oncol 29:e200-2 https://doi.org/10.1200/JCO.2010.32.2156

    Article  PubMed  Google Scholar 

  17. Yagita M, Itoh K, Tsudo M et al (1989) Involvement of both Tac and non-Tac interleukin 2-binding peptides in the interleukin 2-dependent proliferation of human tumor-infiltrating lymphocytes. Cancer Res 49:1154-9

    CAS  PubMed  Google Scholar 

  18. Anlauf M, Bauersfeld J, Raffel A et al (2009) Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am J Surg Pathol 33:339-46 https://doi.org/10.1097/PAS.0b013e3181874eca

    Article  PubMed  Google Scholar 

  19. Iacovazzo D, Flanagan SE, Walker E et al (2018) MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 115:1027-1032 https://doi.org/10.1073/pnas.1712262115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snaith JR, McLeod D, Richardson A, Chipps D (2020) Multifocal insulinoma secondary to insulinomatosis: persistent hypoglycaemia despite total pancreatectomy. Endocrinol Diabetes Metab Case Rep 2020 https://doi.org/10.1530/EDM-20-0091

  21. Gonzalez IA, Stewart DR, Schultz KAP, Field AP, Hill DA and Dehner LP (2021) DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Mod Pathol https://doi.org/10.1038/s41379-021-00905-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. de Kock L, Wu MK and Foulkes WD (2019) Ten years of DICER1 mutations: Provenance, distribution, and associated phenotypes. Hum Mutat 40:1939-1953 https://doi.org/10.1002/humu.23877

    Article  CAS  PubMed  Google Scholar 

  23. Nose V (2020) DICER1 gene alterations in thyroid diseases. Cancer Cytopathol 128:688-689 https://doi.org/10.1002/cncy.22327

    Article  PubMed  Google Scholar 

  24. Wasserman JD, Sabbaghian N, Fahiminiya S et al (2018) DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 103:2009-2015 https://doi.org/10.1210/jc.2017-02698

    Article  PubMed  Google Scholar 

  25. Gullo I, Batista R, Rodrigues-Pereira P et al (2018) Multinodular Goiter Progression Toward Malignancy in a Case of DICER1 Syndrome: Histologic and Molecular Alterations. Am J Clin Pathol 149:379-386 https://doi.org/10.1093/ajcp/aqy004

    Article  PubMed  Google Scholar 

  26. Lee YA, Im SW, Jung KC et al (2020) Predominant DICER1 Pathogenic Variants in Pediatric Follicular Thyroid Carcinomas. Thyroid 30:1120-1131 https://doi.org/10.1089/thy.2019.0233

    Article  PubMed  Google Scholar 

  27. Chernock RD, Rivera B, Borrelli N et al (2020) Poorly differentiated thyroid carcinoma of childhood and adolescence: a distinct entity characterized by DICER1 mutations. Mod Pathol 33:1264-1274 https://doi.org/10.1038/s41379-020-0458-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bongiovanni M, Sykiotis GP, La Rosa S et al (2020) Macrofollicular Variant of Follicular Thyroid Carcinoma: A Rare Underappreciated Pitfall in the Diagnosis of Thyroid Carcinoma. Thyroid 30:72-80 https://doi.org/10.1089/thy.2018.0607

    Article  CAS  PubMed  Google Scholar 

  29. Hellgren LS, Hysek M, Jatta K, Zedenius J and Juhlin CC (2021) Macrofollicular Variant of Follicular Thyroid Carcinoma (MV-FTC) with a Somatic DICER1 Gene Mutation: Case Report and Review of the Literature. Head Neck Pathol 15:668-675 https://doi.org/10.1007/s12105-020-01208-1

    Article  PubMed  Google Scholar 

  30. Scheithauer BW, Horvath E, Abel TW et al (2012) Pituitary blastoma: a unique embryonal tumor. Pituitary 15:365-73 https://doi.org/10.1007/s11102-011-0328-x

    Article  PubMed  Google Scholar 

  31. de Kock L, Sabbaghian N, Plourde F et al (2014) Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128:111-22 https://doi.org/10.1007/s00401-014-1285-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheithauer BW, Kovacs K, Horvath E et al (2008) Pituitary blastoma. Acta Neuropathol 116:657-66 https://doi.org/10.1007/s00401-008-0388-9

    Article  PubMed  Google Scholar 

  33. Rooper LM, Bynum JP, Miller KP et al (2020) Recurrent DICER1 Hotspot Mutations in Malignant Thyroid Gland Teratomas: Molecular Characterization and Proposal for a Separate Classification. Am J Surg Pathol 44:826-833 https://doi.org/10.1097/PAS.0000000000001430

    Article  PubMed  Google Scholar 

  34. Miller DL, Thompson LDR, Bishop JA, Rooper LM and Ali SZ (2020) Malignant teratomas of the thyroid gland: clinico-radiologic and cytomorphologic features of a rare entity. J Am Soc Cytopathol 9:221-231 https://doi.org/10.1016/j.jasc.2020.04.008

    Article  PubMed  Google Scholar 

  35. Agaimy A, Witkowski L, Stoehr R et al (2020) Malignant teratoid tumor of the thyroid gland: an aggressive primitive multiphenotypic malignancy showing organotypical elements and frequent DICER1 alterations-is the term "thyroblastoma" more appropriate? Virchows Arch 477:787-798 https://doi.org/10.1007/s00428-020-02853-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Sarita-Reyes C, Kindelberger D and Zhao Q (2018) A rare malignant thyroid carcinosarcoma with aggressive behavior and DICER1 gene mutation: a case report with literature review. Thyroid Res 11:11 https://doi.org/10.1186/s13044-018-0055-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nose V (2011) Familial thyroid cancer: a review. Mod Pathol 24 Suppl 2:S19-33 https://doi.org/10.1038/modpathol.2010.147

    Article  CAS  PubMed  Google Scholar 

  38. Nose V (2010) Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol 21:219-26 https://doi.org/10.1007/s12022-010-9135-6

    Article  PubMed  Google Scholar 

  39. Guilmette J and Nose V (2018) Hereditary and familial thyroid tumours. Histopathology 72:70-81 https://doi.org/10.1111/his.13373

    Article  PubMed  Google Scholar 

  40. Dotto J and Nose V (2008) Familial thyroid carcinoma: a diagnostic algorithm. Adv Anat Pathol 15:332-49 https://doi.org/10.1097/PAP.0b013e31818a64af

    Article  PubMed  Google Scholar 

  41. Nose V (2010) Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol 17:428-36 https://doi.org/10.1097/PAP.0b013e3181f8b028

    Article  CAS  PubMed  Google Scholar 

  42. Cameselle-Teijeiro JM, Mete O, Asa SL and LiVolsi V (2021) Inherited Follicular Epithelial-Derived Thyroid Carcinomas: From Molecular Biology to Histological Correlates. Endocr Pathol 32:77-101 https://doi.org/10.1007/s12022-020-09661-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laury AR, Bongiovanni M, Tille JC, Kozakewich H and Nose V (2011) Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 21:135-44 https://doi.org/10.1089/thy.2010.0226

    Article  PubMed  Google Scholar 

  44. Yehia L, Ngeow J and Eng C (2019) PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 129:452-464 https://doi.org/10.1172/JCI121277

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dinarvand P, Davaro EP, Doan JV et al (2019) Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch Pathol Lab Med 143:1382-1398 https://doi.org/10.5858/arpa.2018-0570-RA

    Article  CAS  PubMed  Google Scholar 

  46. Bouys L and Bertherat J (2021) MANAGEMENT OF ENDOCRINE DISEASE: Carney complex: clinical and genetic update 20 years after the identification of the CNC1 (PRKAR1A) gene. Eur J Endocrinol 184:R99-R109 https://doi.org/10.1530/EJE-20-1120

    Article  CAS  PubMed  Google Scholar 

  47. Oshima J, Martin GM and Hisama FM (1993) Werner Syndrome. GeneReviews((R))

  48. Yehia L and Eng C (1993) PTEN Hamartoma Tumor Syndrome. GeneReviews((R))

  49. Ni Y, He X, Chen J et al (2012) Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 21:300-10 https://doi.org/10.1093/hmg/ddr459

    Article  CAS  PubMed  Google Scholar 

  50. Yehia L and Eng C (2020) PTEN hamartoma tumour syndrome: what happens when there is no PTEN germline mutation? Hum Mol Genet 29:R150-R157 https://doi.org/10.1093/hmg/ddaa127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Groves C, Lamlum H, Crabtree M et al (2002) Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 160:2055-61 https://doi.org/10.1016/S0002-9440(10)61155-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cameselle-Teijeiro JM, Peteiro-Gonzalez D, Caneiro-Gomez J et al (2018) Cribriform-morular variant of thyroid carcinoma: a neoplasm with distinctive phenotype associated with the activation of the WNT/beta-catenin pathway. Mod Pathol 31:1168-1179 https://doi.org/10.1038/s41379-018-0070-2

    Article  CAS  PubMed  Google Scholar 

  53. Schultz KAP, Williams GM, Kamihara J et al (2018) DICER1 and Associated Conditions: Identification of At-risk Individuals and Recommended Surveillance Strategies. Clin Cancer Res 24:2251-2261 https://doi.org/10.1158/1078-0432.CCR-17-3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Herriges JC, Brown S, Longhurst M et al (2019) Identification of two 14q32 deletions involving DICER1 associated with the development of DICER1-related tumors. Eur J Med Genet 62:9-14 https://doi.org/10.1016/j.ejmg.2018.04.011

    Article  PubMed  Google Scholar 

  55. Canberk S, Ferreira JC, Pereira L et al (2021) Analyzing the Role of DICER1 Germline Variations in Papillary Thyroid Carcinoma. Eur Thyroid J 9:296-303 https://doi.org/10.1159/000509183

    Article  CAS  PubMed  Google Scholar 

  56. Forlino A, Vetro A, Garavelli L et al (2014) PRKACB and Carney complex. N Engl J Med 370:1065-7 https://doi.org/10.1056/NEJMc1309730

    Article  CAS  PubMed  Google Scholar 

  57. Matyakhina L, Pack S, Kirschner LS et al (2003) Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 40:268-77 https://doi.org/10.1136/jmg.40.4.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yokote K, Chanprasert S, Lee L et al (2017) WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects. Hum Mutat 38:7-15 https://doi.org/10.1002/humu.23128

    Article  CAS  PubMed  Google Scholar 

  59. Boyraz B, Sadow PM, Asa SL, Dias-Santagata D, Nose V and Mete O (2021) Cribriform-Morular Thyroid Carcinoma Is a Distinct Thyroid Malignancy of Uncertain Cytogenesis. Endocr Pathol 32:327-335 https://doi.org/10.1007/s12022-021-09683-0

    Article  CAS  PubMed  Google Scholar 

  60. Nose V (2016) Genodermatosis Affecting the Skin and Mucosa of the Head and Neck: Clinicopathologic, Genetic, and Molecular Aspect--PTEN-Hamartoma Tumor Syndrome/Cowden Syndrome. Head Neck Pathol 10:131-8 https://doi.org/10.1007/s12105-016-0708-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barletta JA, Bellizzi AM and Hornick JL (2011) Immunohistochemical staining of thyroidectomy specimens for PTEN can aid in the identification of patients with Cowden syndrome. Am J Surg Pathol 35:1505-11 https://doi.org/10.1097/PAS.0b013e31822fbc7d

    Article  PubMed  Google Scholar 

  62. Srivastava A, Giangiobbe S, Skopelitou D et al (2021) Whole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer. Front Endocrinol (Lausanne) 12:600682 https://doi.org/10.3389/fendo.2021.600682

    Article  Google Scholar 

  63. Khan NE, Bauer AJ, Schultz KAP et al (2017) Quantification of Thyroid Cancer and Multinodular Goiter Risk in the DICER1 Syndrome: A Family-Based Cohort Study. J Clin Endocrinol Metab 102:1614-1622 https://doi.org/10.1210/jc.2016-2954

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ravella L, Lopez J, Descotes F, Lifante JC, David C and Decaussin-Petrucci M (2018) [DICER1 mutated, solid/trabecular thyroid papillary carcinoma in an 11-year-old child]. Ann Pathol 38:316-320 https://doi.org/10.1016/j.annpat.2018.04.003

    Article  PubMed  Google Scholar 

  65. Dahia PL, Ross KN, Wright ME et al (2005) A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1:72-80 https://doi.org/10.1371/journal.pgen.0010008

    Article  CAS  PubMed  Google Scholar 

  66. Gill AJ (2012) Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology 44:285-92 https://doi.org/10.1097/PAT.0b013e3283539932

    Article  CAS  PubMed  Google Scholar 

  67. Gill AJ (2018) Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 72:106-116 https://doi.org/10.1111/his.13277

    Article  PubMed  Google Scholar 

  68. Gill AJ, Chou A, Vilain R et al (2010) Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol 34:636-44 https://doi.org/10.1097/PAS.0b013e3181d6150d

    Article  PubMed  Google Scholar 

  69. Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P and Lasota J (2011) Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 35:1712-21 https://doi.org/10.1097/PAS.0b013e3182260752

    Article  PubMed  PubMed Central  Google Scholar 

  70. Elston MS, Sehgal S, Dray M et al (2017) A Duodenal SDH-Deficient Gastrointestinal Stromal Tumor in a Patient With a Germline SDHB Mutation. J Clin Endocrinol Metab 102:1447-1450 https://doi.org/10.1210/jc.2017-00165

    Article  PubMed  Google Scholar 

  71. Fuchs TL, Maclean F, Turchini J et al (2021) Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol https://doi.org/10.1038/s41379-021-00998-1

    Article  PubMed  Google Scholar 

  72. Trpkov K, Hes O, Williamson SR et al (2021) New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 34:1392-1424 https://doi.org/10.1038/s41379-021-00779-w

    Article  PubMed  Google Scholar 

  73. Korpershoek E, Favier J, Gaal J et al (2011) SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 96:E1472-6 https://doi.org/10.1210/jc.2011-1043

    Article  CAS  PubMed  Google Scholar 

  74. Dwight T, Benn DE, Clarkson A et al (2013) Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors. Am J Surg Pathol 37:226-33 https://doi.org/10.1097/PAS.0b013e3182671155

    Article  PubMed  Google Scholar 

  75. Turchini J and Gill AJ (2020) Morphologic Clues to Succinate Dehydrogenase (SDH) Deficiency in Pheochromocytomas and Paragangliomas. Am J Surg Pathol 44:422-424 https://doi.org/10.1097/PAS.0000000000001415

    Article  PubMed  Google Scholar 

  76. Janeway KA, Kim SY, Lodish M et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 108:314-8 https://doi.org/10.1073/pnas.1009199108

    Article  PubMed  Google Scholar 

  77. Gill AJ, Chou A, Vilain RE and Clifton-Bligh RJ (2011) "Pediatric-type" gastrointestinal stromal tumors are SDHB negative ("type 2") GISTs. Am J Surg Pathol 35:1245–7; author reply 1247–8 https://doi.org/10.1097/PAS.0b013e3182217b93

  78. Gill AJ, Pachter NS, Chou A et al (2011) Renal tumors associated with germline SDHB mutation show distinctive morphology. Am J Surg Pathol 35:1578-85 https://doi.org/10.1097/PAS.0b013e318227e7f4

    Article  PubMed  Google Scholar 

  79. Williamson SR, Eble JN, Amin MB et al (2015) Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod Pathol 28:80-94 https://doi.org/10.1038/modpathol.2014.86

    Article  CAS  PubMed  Google Scholar 

  80. Gill AJ, Hes O, Papathomas T et al (2014) Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol 38:1588-602 https://doi.org/10.1097/PAS.0000000000000292

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xekouki P, Szarek E, Bullova P et al (2015) Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab 100:E710-9 https://doi.org/10.1210/jc.2014-4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gill AJ, Toon CW, Clarkson A et al (2014) Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol 38:560-6 https://doi.org/10.1097/PAS.0000000000000149

    Article  PubMed  PubMed Central  Google Scholar 

  83. Papathomas TG, Gaal J, Corssmit EP et al (2014) Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol 170:1-12 https://doi.org/10.1530/EJE-13-0623

    Article  CAS  PubMed  Google Scholar 

  84. Dwight T, Mann K, Benn DE et al (2013) Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 98:E1103-8 https://doi.org/10.1210/jc.2013-1400

    Article  CAS  PubMed  Google Scholar 

  85. Chatzopoulos K, Fritchie KJ, Aubry MC, Carney JA, Folpe AL and Boland JM (2019) Loss of succinate dehydrogenase B immunohistochemical expression distinguishes pulmonary chondromas from hamartomas. Histopathology 75:825-832 https://doi.org/10.1111/his.13945

    Article  PubMed  Google Scholar 

  86. Benn DE, Zhu Y, Andrews KA et al (2018) Bayesian approach to determining penetrance of pathogenic SDH variants. J Med Genet 55:729-734 https://doi.org/10.1136/jmedgenet-2018-105427

    Article  CAS  PubMed  Google Scholar 

  87. Papathomas TG and Nose V (2019) New and Emerging Biomarkers in Endocrine Pathology. Adv Anat Pathol 26:198-209 https://doi.org/10.1097/PAP.0000000000000227

    Article  CAS  PubMed  Google Scholar 

  88. Williamson SR, Gill AJ, Argani P et al (2020) Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: III: Molecular Pathology of Kidney Cancer. Am J Surg Pathol 44:e47-e65 https://doi.org/10.1097/PAS.0000000000001476

  89. van Nederveen FH, Korpershoek E, Lenders JW, de Krijger RR and Dinjens WN (2007) Somatic SDHB mutation in an extraadrenal pheochromocytoma. N Engl J Med 357:306-8 https://doi.org/10.1056/NEJMc070010

    Article  PubMed  Google Scholar 

  90. van Nederveen FH, Gaal J, Favier J et al (2009) An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10:764-71 https://doi.org/10.1016/S1470-2045(09)70164-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Turchini J and Gill AJ (2020) Hereditary Parathyroid Disease: Sometimes Pathologists Do Not Know What They Are Missing. Endocr Pathol 31:218-230 https://doi.org/10.1007/s12022-020-09631-4

    Article  PubMed  Google Scholar 

  92. Torresan F and Iacobone M (2019) Clinical Features, Treatment, and Surveillance of Hyperparathyroidism-Jaw Tumor Syndrome: An Up-to-Date and Review of the Literature. Int J Endocrinol 2019:1761030 https://doi.org/10.1155/2019/1761030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarquis MS, Silveira LG, Pimenta FJ et al (2008) Familial hyperparathyroidism: surgical outcome after 30 years of follow-up in three families with germline HRPT2 mutations. Surgery 143:630-40 https://doi.org/10.1016/j.surg.2007.12.012

    Article  PubMed  Google Scholar 

  94. Jackson CE, Norum RA, Boyd SB et al (1990) Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery 108:1006–12; discussion 1012–3

  95. Mehta A, Patel D, Rosenberg A et al (2014) Hyperparathyroidism-jaw tumor syndrome: Results of operative management. Surgery 156:1315–24; discussion 1324–5 https://doi.org/10.1016/j.surg.2014.08.004

  96. Iacobone M, Masi G, Barzon L et al (2009) Hyperparathyroidism-jaw tumor syndrome: a report of three large kindred. Langenbecks Arch Surg 394:817-25 https://doi.org/10.1007/s00423-009-0511-y

    Article  PubMed  Google Scholar 

  97. Masi G, Barzon L, Iacobone M et al (2008) Clinical, genetic, and histopathologic investigation of CDC73-related familial hyperparathyroidism. Endocr Relat Cancer 15:1115-26 https://doi.org/10.1677/ERC-08-0066

    Article  CAS  PubMed  Google Scholar 

  98. Bricaire L, Odou MF, Cardot-Bauters C et al (2013) Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J Clin Endocrinol Metab 98:E403-8 https://doi.org/10.1210/jc.2012-2789

    Article  CAS  PubMed  Google Scholar 

  99. Gill AJ, Lim G, Cheung VKY et al (2019) Parafibromin-deficient (HPT-JT Type, CDC73 Mutated) Parathyroid Tumors Demonstrate Distinctive Morphologic Features. Am J Surg Pathol 43:35-46 https://doi.org/10.1097/PAS.0000000000001017

    Article  PubMed  Google Scholar 

  100. Wasserman JD, Tomlinson GE, Druker H et al (2017) Multiple Endocrine Neoplasia and Hyperparathyroid-Jaw Tumor Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin Cancer Res 23:e123-e132 https://doi.org/10.1158/1078-0432.CCR-17-0548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carpten JD, Robbins CM, Villablanca A et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676-80 https://doi.org/10.1038/ng1048

    Article  CAS  PubMed  Google Scholar 

  102. Gill AJ, Clarkson A, Gimm O et al (2006) Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 30:1140-9 https://doi.org/10.1097/01.pas.0000209827.39477.4f

    Article  PubMed  Google Scholar 

  103. Gill AJ (2014) Understanding the genetic basis of parathyroid carcinoma. Endocr Pathol 25:30-4 https://doi.org/10.1007/s12022-013-9294-3

    Article  CAS  PubMed  Google Scholar 

  104. Juhlin CC, Nilsson IL, Lagerstedt-Robinson K et al (2019) Parafibromin immunostainings of parathyroid tumors in clinical routine: a near-decade experience from a tertiary center. Mod Pathol 32:1082-1094 https://doi.org/10.1038/s41379-019-0252-6

    Article  CAS  PubMed  Google Scholar 

  105. Howell VM, Gill A, Clarkson A et al (2009) Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab 94:434-41 https://doi.org/10.1210/jc.2008-1740

    Article  CAS  PubMed  Google Scholar 

  106. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F et al (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43:663-7 https://doi.org/10.1038/ng.861

    Article  CAS  PubMed  Google Scholar 

  107. Turchini J, Cheung VKY, Tischler AS, De Krijger RR and Gill AJ (2018) Pathology and genetics of phaeochromocytoma and paraganglioma. Histopathology 72:97-105 https://doi.org/10.1111/his.13402

    Article  PubMed  Google Scholar 

  108. Cheung VKY, Gill AJ and Chou A (2018) Old, New, and Emerging Immunohistochemical Markers in Pheochromocytoma and Paraganglioma. Endocr Pathol 29:169-175 https://doi.org/10.1007/s12022-018-9534-7

    Article  PubMed  Google Scholar 

  109. Zhou XP, Marsh DJ, Morrison CD et al (2003) Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet 73:1191-8 https://doi.org/10.1086/379382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang SC, Lee JK, Smith EJ et al (2011) Evidence for an hMSH3 defect in familial hamartomatous polyps. Cancer 117:492-500 https://doi.org/10.1002/cncr.25445

    Article  CAS  PubMed  Google Scholar 

  111. Gara SK, Jia L, Merino MJ et al (2015) Germline HABP2 Mutation Causing Familial Nonmedullary Thyroid Cancer. N Engl J Med 373:448-55 https://doi.org/10.1056/NEJMoa1502449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pasquali D, Torella A, Accardo G et al (2021) BROX haploinsufficiency in familial nonmedullary thyroid cancer. J Endocrinol Invest 44:165-171 https://doi.org/10.1007/s40618-020-01286-6

    Article  CAS  PubMed  Google Scholar 

  113. Bakhsh AD, Ladas I, Hamshere ML et al (2018) An InDel in Phospholipase-C-B-1 Is Linked with Euthyroid Multinodular Goiter. Thyroid 28:891-901 https://doi.org/10.1089/thy.2017.0312

    Article  CAS  PubMed  Google Scholar 

  114. Orois A, Gara SK, Mora M et al (2019) NOP53 as A Candidate Modifier Locus for Familial Non-Medullary Thyroid Cancer. Genes (Basel) 10 https://doi.org/10.3390/genes10110899

  115. Doherty GM, Lairmore TC and DeBenedetti MK (2004) Multiple endocrine neoplasia type 1 parathyroid adenoma development over time. World J Surg 28:1139-42 https://doi.org/10.1007/s00268-004-7560-8

    Article  PubMed  Google Scholar 

  116. Thakker RV (2014) Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 386:2-15 https://doi.org/10.1016/j.mce.2013.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schernthaner-Reiter MH, Trivellin G and Stratakis CA (2016) MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 103:18-31 https://doi.org/10.1159/000371819

    Article  CAS  PubMed  Google Scholar 

  118. Friedman E, Sakaguchi K, Bale AE et al (1989) Clonality of parathyroid tumors in familial multiple endocrine neoplasia type 1. N Engl J Med 321:213-8 https://doi.org/10.1056/NEJM198907273210402

    Article  CAS  PubMed  Google Scholar 

  119. Singh Ospina N, Sebo TJ, Thompson GB, Clarke BL and Young WF, Jr. (2016) Prevalence of parathyroid carcinoma in 348 patients with multiple endocrine neoplasia type 1 - case report and review of the literature. Clin Endocrinol (Oxf) 84:244-249 https://doi.org/10.1111/cen.12714

    Article  Google Scholar 

  120. Mathiesen JS, Effraimidis G, Rossing M et al (2021) Multiple endocrine neoplasia type 2: A reveiw. Semin Cancer Biol https://doi.org/10.1016/j.semcancer.2021.03.035

    Article  PubMed  Google Scholar 

  121. Larsen LV, Mirebeau-Prunier D, Imai T et al (2020) Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocr Connect 9:489-497 https://doi.org/10.1530/EC-20-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bradley KJ, Hobbs MR, Buley ID et al (2005) Uterine tumours are a phenotypic manifestation of the hyperparathyroidism-jaw tumour syndrome. J Intern Med 257:18-26 https://doi.org/10.1111/j.1365-2796.2004.01421.x

    Article  CAS  PubMed  Google Scholar 

  123. Vocke CD, Ricketts CJ, Ball MW et al (2019) CDC73 Germline Mutation in a Family With Mixed Epithelial and Stromal Tumors. Urology 124:91-97 https://doi.org/10.1016/j.urology.2018.11.013

    Article  PubMed  Google Scholar 

  124. Ibrahem HM (2020) Ossifying fibroma of the jaw bones in hyperparathyroidism-jaw tumor syndrome: Analysis of 24 cases retrieved from literatures. J Dent Sci 15:426-432 https://doi.org/10.1016/j.jds.2019.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  125. Szabo J, Heath B, Hill VM et al (1995) Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet 56:944-50

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shattuck TM, Valimaki S, Obara T et al (2003) Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 349:1722-9 https://doi.org/10.1056/NEJMoa031237

    Article  CAS  PubMed  Google Scholar 

  127. Cetani F, Pardi E, Borsari S et al (2004) Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab 89:5583-91 https://doi.org/10.1210/jc.2004-0294

    Article  CAS  PubMed  Google Scholar 

  128. Erickson LA and Mete O (2018) Immunohistochemistry in Diagnostic Parathyroid Pathology. Endocr Pathol 29:113-129 https://doi.org/10.1007/s12022-018-9527-6

    Article  CAS  PubMed  Google Scholar 

  129. Williams MD, DeLellis RA, Erickson LA et al (2021) Pathology data set for reporting parathyroid carcinoma and atypical parathyroid neoplasm: recommendations from the International Collaboration on Cancer Reporting. Hum Pathol 110:73-82 https://doi.org/10.1016/j.humpath.2020.07.008

    Article  PubMed  Google Scholar 

  130. Castinetti F, Qi XP, Walz MK et al (2014) Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncol 15:648-55 https://doi.org/10.1016/S1470-2045(14)70154-8

    Article  PubMed  Google Scholar 

  131. Amodru V, Taieb D, Guerin C et al (2020) MEN2-related pheochromocytoma: current state of knowledge, specific characteristics in MEN2B, and perspectives. Endocrine 69:496-503 https://doi.org/10.1007/s12020-020-02332-2

    Article  CAS  PubMed  Google Scholar 

  132. Thosani S, Ayala-Ramirez M, Palmer L et al (2013) The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 98:E1813-9 https://doi.org/10.1210/jc.2013-1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Castinetti F, Waguespack SG, Machens A et al (2019) Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes Endocrinol 7:213-220 https://doi.org/10.1016/S2213-8587(18)30336-X

    Article  PubMed  PubMed Central  Google Scholar 

  134. Imai T, Uchino S, Okamoto T et al (2013) High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. Eur J Endocrinol 168:683-7 https://doi.org/10.1530/EJE-12-1106

    Article  CAS  PubMed  Google Scholar 

  135. Yamasaki M, Sato Y, Nomura T, Sato F, Uchino S and Mimata H (2017) Composite paraganglioma-ganglioneuroma concomitant with adrenal metastasis of medullary thyroid carcinoma in a patient with multiple endocrine neoplasia type 2B: A case report. Asian J Endosc Surg 10:66-69 https://doi.org/10.1111/ases.12332

    Article  PubMed  Google Scholar 

  136. Schreinemakers JM, Pieterman CR, Scholten A, Vriens MR, Valk GD and Rinkes IH (2011) The optimal surgical treatment for primary hyperparathyroidism in MEN1 patients: a systematic review. World J Surg 35:1993-2005 https://doi.org/10.1007/s00268-011-1068-9

    Article  PubMed  Google Scholar 

  137. Pieterman CR, van Hulsteijn LT, den Heijer M et al (2012) Primary hyperparathyroidism in MEN1 patients: a cohort study with longterm follow-up on preferred surgical procedure and the relation with genotype. Ann Surg 255:1171-8 https://doi.org/10.1097/SLA.0b013e31824c5145

    Article  PubMed  Google Scholar 

  138. Brandi ML, Gagel RF, Angeli A et al (2001) Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 86:5658-71 https://doi.org/10.1210/jcem.86.12.8070

    Article  CAS  PubMed  Google Scholar 

  139. Thakker RV, Newey PJ, Walls GV et al (2012) Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 97:2990-3011 https://doi.org/10.1210/jc.2012-1230

    Article  CAS  PubMed  Google Scholar 

  140. Dreijerink KM, Goudet P, Burgess JR, Valk GD and International Breast Cancer in MENSG (2014) Breast-cancer predisposition in multiple endocrine neoplasia type 1. N Engl J Med 371:583-4 https://doi.org/10.1056/NEJMc1406028

    Article  Google Scholar 

  141. Al-Salameh A, Cadiot G, Calender A, Goudet P and Chanson P (2021) Clinical aspects of multiple endocrine neoplasia type 1. Nat Rev Endocrinol 17:207-224 https://doi.org/10.1038/s41574-021-00468-3

    Article  PubMed  Google Scholar 

  142. Griniatsos JE, Dimitriou N, Zilos A et al (2011) Bilateral adrenocortical carcinoma in a patient with multiple endocrine neoplasia type 1 (MEN1) and a novel mutation in the MEN1 gene. World J Surg Oncol 9:6 https://doi.org/10.1186/1477-7819-9-6

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gatta-Cherifi B, Chabre O, Murat A et al (2012) Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d'etude des Tumeurs Endocrines database. Eur J Endocrinol 166:269-79 https://doi.org/10.1530/EJE-11-0679

    Article  CAS  PubMed  Google Scholar 

  144. Wells SA, Jr., Asa SL, Dralle H et al (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25:567-610 https://doi.org/10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hunt JL, Carty SE, Yim JH, Murphy J and Barnes L (2005) Allelic loss in parathyroid neoplasia can help characterize malignancy. Am J Surg Pathol 29:1049-55

    Article  PubMed  Google Scholar 

  146. Silva-Figueroa AM, Bassett R, Jr., Christakis I et al (2019) Using a Novel Diagnostic Nomogram to Differentiate Malignant from Benign Parathyroid Neoplasms. Endocr Pathol 30:285-296 https://doi.org/10.1007/s12022-019-09592-3

    Article  CAS  PubMed  Google Scholar 

  147. Juhlin CC and Erickson LA (2021) Genomics and Epigenomics in Parathyroid Neoplasia: from Bench to Surgical Pathology Practice. Endocr Pathol 32:17-34 https://doi.org/10.1007/s12022-020-09656-9

    Article  PubMed  Google Scholar 

  148. Pimenta FJ, Gontijo Silveira LF, Tavares GC et al (2006) HRPT2 gene alterations in ossifying fibroma of the jaws. Oral Oncol 42:735-9 https://doi.org/10.1016/j.oraloncology.2005.11.019

    Article  CAS  PubMed  Google Scholar 

  149. Haven CJ, Wong FK, van Dam EW et al (2000) A genotypic and histopathological study of a large Dutch kindred with hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 85:1449-54 https://doi.org/10.1210/jcem.85.4.6518

    Article  CAS  PubMed  Google Scholar 

  150. Walls GV, Stevenson M, Lines KE et al (2017) Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome. Oncogene 36:4025-4036 https://doi.org/10.1038/onc.2017.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vortmeyer AO, Falke EA, Glasker S, Li J and Oldfield EH (2013) Nervous system involvement in von Hippel-Lindau disease: pathology and mechanisms. Acta Neuropathol 125:333-50 https://doi.org/10.1007/s00401-013-1091-z

    Article  PubMed  Google Scholar 

  152. Wang JY, Peng SH, Li T et al (2018) Risk factors for survival in patients with von Hippel-Lindau disease. J Med Genet 55:322-328 https://doi.org/10.1136/jmedgenet-2017-104995

    Article  PubMed  Google Scholar 

  153. Binderup MLM, Stendell AS, Galanakis M, Moller HU, Kiilgaard JF and Bisgaard ML (2018) Retinal hemangioblastoma: prevalence, incidence and frequency of underlying von Hippel-Lindau disease. Br J Ophthalmol 102:942-947 https://doi.org/10.1136/bjophthalmol-2017-310884

    Article  PubMed  Google Scholar 

  154. Maddock IR, Moran A, Maher ER et al (1996) A genetic register for von Hippel-Lindau disease. J Med Genet 33:120-7 https://doi.org/10.1136/jmg.33.2.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Adeniran AJ, Shuch B and Humphrey PA (2015) Hereditary Renal Cell Carcinoma Syndromes: Clinical, Pathologic, and Genetic Features. Am J Surg Pathol 39:e1-e18 https://doi.org/10.1097/PAS.0000000000000562

    Article  PubMed  Google Scholar 

  156. Furth PA, Shamay A, Wall RJ and Hennighausen L (1992) Gene transfer into somatic tissues by jet injection. Anal Biochem 205:365-8 https://doi.org/10.1016/0003-2697(92)90449-h

    Article  CAS  PubMed  Google Scholar 

  157. Kennedy JM, Wang X, Plouffe KR et al (2019) Clinical and morphologic review of 60 hereditary renal tumors from 30 hereditary renal cell carcinoma syndrome patients: lessons from a contemporary single institution series. Med Oncol 36:74 https://doi.org/10.1007/s12032-019-1297-6

    Article  CAS  PubMed  Google Scholar 

  158. Manski TJ, Heffner DK, Glenn GM et al (1997) Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. JAMA 277:1461-6 https://doi.org/10.1001/jama.277.18.1461

    Article  CAS  PubMed  Google Scholar 

  159. Bausch B, Wellner U, Peyre M et al (2016) Characterization of endolymphatic sac tumors and von Hippel-Lindau disease in the International Endolymphatic Sac Tumor Registry. Head Neck 38 Suppl 1:E673-9 https://doi.org/10.1002/hed.24067

    Article  PubMed  Google Scholar 

  160. Walther MM, Reiter R, Keiser HR et al (1999) Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol 162:659-64 https://doi.org/10.1097/00005392-199909010-00004

    Article  CAS  PubMed  Google Scholar 

  161. Lubensky IA, Pack S, Ault D et al (1998) Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 153:223-31 https://doi.org/10.1016/S0002-9440(10)65563-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Perigny M, Hammel P, Corcos O et al (2009) Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol 33:739-48 https://doi.org/10.1097/PAS.0b013e3181967992

    Article  PubMed  Google Scholar 

  163. Hammel PR, Vilgrain V, Terris B et al (2000) Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d'Etude de la Maladie de von Hippel-Lindau. Gastroenterology 119:1087-95 https://doi.org/10.1053/gast.2000.18143

    Article  CAS  PubMed  Google Scholar 

  164. Richard S, Gardie B, Couve S and Gad S (2013) Von Hippel-Lindau: how a rare disease illuminates cancer biology. Semin Cancer Biol 23:26-37 https://doi.org/10.1016/j.semcancer.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  165. Gucer H, Szentgyorgyi E, Ezzat S, Asa SL and Mete O (2013) Inhibin-expressing clear cell neuroendocrine tumor of the ampulla: an unusual presentation of von Hippel-Lindau disease. Virchows Arch 463:593-7 https://doi.org/10.1007/s00428-013-1465-6

    Article  CAS  PubMed  Google Scholar 

  166. Sinkre PA, Murakata L, Rabin L, Hoang MP and Albores-Saavedra J (2001) Clear cell carcinoid tumor of the gallbladder: another distinctive manifestation of von Hippel-Lindau disease. Am J Surg Pathol 25:1334-9 https://doi.org/10.1097/00000478-200110000-00017

    Article  CAS  PubMed  Google Scholar 

  167. Odrzywolski KJ and Mukhopadhyay S (2010) Papillary cystadenoma of the epididymis. Arch Pathol Lab Med 134:630-3 https://doi.org/10.1043/1543-2165-134.4.630

    Article  PubMed  Google Scholar 

  168. Brady A, Nayar A, Cross P et al (2012) A detailed immunohistochemical analysis of 2 cases of papillary cystadenoma of the broad ligament: an extremely rare neoplasm characteristic of patients with von hippel-lindau disease. Int J Gynecol Pathol 31:133-40 https://doi.org/10.1097/PGP.0b013e318228f577

    Article  PubMed  Google Scholar 

  169. Zanotelli DB, Bruder E, Wight E and Troeger C (2010) Bilateral papillary cystadenoma of the mesosalpinx: a rare manifestation of Von Hippel-Lindau disease. Arch Gynecol Obstet 282:343-6 https://doi.org/10.1007/s00404-010-1386-4

    Article  PubMed  Google Scholar 

  170. Binderup ML, Bisgaard ML, Harbud V et al (2013) Von Hippel-Lindau disease (vHL). National clinical guideline for diagnosis and surveillance in Denmark. 3rd edition. Dan Med J 60:B4763

  171. Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and Hereditary Pheochromocytoma/Paraganglioma Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin Cancer Res 23:e68-e75 https://doi.org/10.1158/1078-0432.CCR-17-0547

    Article  CAS  PubMed  Google Scholar 

  172. Relles D, Baek J, Witkiewicz A and Yeo CJ (2010) Periampullary and duodenal neoplasms in neurofibromatosis type 1: two cases and an updated 20-year review of the literature yielding 76 cases. J Gastrointest Surg 14:1052-61 https://doi.org/10.1007/s11605-009-1123-0

    Article  PubMed  Google Scholar 

  173. Burke AP, Federspiel BH, Sobin LH, Shekitka KM and Helwig EB (1989) Carcinoids of the duodenum. A histologic and immunohistochemical study of 65 tumors. Am J Surg Pathol 13:828-37 https://doi.org/10.1097/00000478-198910000-00002

    Article  CAS  PubMed  Google Scholar 

  174. Garbrecht N, Anlauf M, Schmitt A et al (2008) Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer 15:229-41 https://doi.org/10.1677/ERC-07-0157

    Article  PubMed  Google Scholar 

  175. Sakorafas GH, Giannopoulos GA, Parasi A et al (2008) Large somatostatin-producing endocrine carcinoma of the ampulla of vater in association with GIST in a patient with von Recklinghausen's disease. Case report and review of the literature. JOP 9:633-9

    PubMed  Google Scholar 

  176. Stephens M, Williams GT, Jasani B and Williams ED (1987) Synchronous duodenal neuroendocrine tumours in von Recklinghausen's disease--a case report of co-existing gangliocytic paraganglioma and somatostatin-rich glandular carcinoid. Histopathology 11:1331-40 https://doi.org/10.1111/j.1365-2559.1987.tb01877.x

    Article  CAS  PubMed  Google Scholar 

  177. Deschamps L, Dokmak S, Guedj N, Ruszniewski P, Sauvanet A and Couvelard A (2010) Mixed endocrine somatostatinoma of the ampulla of vater associated with a neurofibromatosis type 1: a case report and review of the literature. JOP 11:64-8

    PubMed  Google Scholar 

  178. Gregorio C, Rosset C, Alves LDS et al (2020) Synchronous Periampullary Tumors in a Patient With Pancreas Divisum and Neurofibromatosis Type 1. Front Genet 11:395 https://doi.org/10.3389/fgene.2020.00395

    Article  PubMed  PubMed Central  Google Scholar 

  179. Welander J, Soderkvist P and Gimm O (2013) The NF1 gene: a frequent mutational target in sporadic pheochromocytomas and beyond. Endocr Relat Cancer 20:C13-7 https://doi.org/10.1530/ERC-13-0046

    Article  CAS  PubMed  Google Scholar 

  180. Kimura N, Watanabe T, Fukase M, Wakita A, Noshiro T and Kimura I (2002) Neurofibromin and NF1 gene analysis in composite pheochromocytoma and tumors associated with von Recklinghausen's disease. Mod Pathol 15:183-8 https://doi.org/10.1038/modpathol.3880513

    Article  PubMed  Google Scholar 

  181. Tan MH, Mester J, Peterson C et al (2011) A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet 88:42-56 https://doi.org/10.1016/j.ajhg.2010.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Scapineli JO, Ceolin L, Punales MK, Dora JM and Maia AL (2016) MEN 2A-related cutaneous lichen amyloidosis: report of three kindred and systematic literature review of clinical, biochemical and molecular characteristics. Fam Cancer 15:625-33 https://doi.org/10.1007/s10689-016-9892-6

    Article  CAS  PubMed  Google Scholar 

  183. Rothberg AE, Raymond VM, Gruber SB and Sisson J (2009) Familial medullary thyroid carcinoma associated with cutaneous lichen amyloidosis. Thyroid 19:651-5 https://doi.org/10.1089/thy.2009.0021

    Article  CAS  PubMed  Google Scholar 

  184. Qi XP, Zhao JQ, Chen ZG et al (2015) RET mutation p.S891A in a Chinese family with familial medullary thyroid carcinoma and associated cutaneous amyloidosis binding OSMR variant p.G513D. Oncotarget 6:33993-4003 https://doi.org/10.18632/oncotarget.4992

    Article  PubMed  PubMed Central  Google Scholar 

  185. Qi XP, Peng JZ, Yang XW et al (2018) The RET C611Y mutation causes MEN 2A and associated cutaneous. Endocr Connect 7:998-1005 https://doi.org/10.1530/EC-18-0220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Alegria-Landa V, Jo-Velasco M, Robledo M and Requena L (2017) Dermal Hyperneury and Multiple Sclerotic Fibromas in Multiple Endocrine Neoplasia Type 2A Syndrome. JAMA Dermatol 153:1298-1301 https://doi.org/10.1001/jamadermatol.2017.3959

    Article  PubMed  Google Scholar 

  187. Robinson MF, Furst EJ, Nunziata V et al (1992) Characterization of the clinical features of five families with hereditary primary cutaneous lichen amyloidosis and multiple endocrine neoplasia type 2. Henry Ford Hosp Med J 40:249-52

    CAS  PubMed  Google Scholar 

  188. Qi XP, Zhao JQ, Cao ZL et al (2018) The Clinical Spectrum of Multiple Endocrine Neoplasia Type 2A with Cutaneous Lichen Amyloidosis in Ethnic Han Chinese. Cancer Invest 36:141-151 https://doi.org/10.1080/07357907.2018.1430813

    Article  PubMed  Google Scholar 

  189. Karga HJ, Karayianni MK, Linos DA, Tseleni SC, Karaiskos KD and Papapetrou PD (1998) Germ line mutation analysis in families with multiple endocrine neoplasia type 2A or familial medullary thyroid carcinoma. Eur J Endocrinol 139:410-5 https://doi.org/10.1530/eje.0.1390410

    Article  CAS  PubMed  Google Scholar 

  190. Donovan DT, Levy ML, Furst EJ et al (1989) Familial cutaneous lichen amyloidosis in association with multiple endocrine neoplasia type 2A: a new variant. Henry Ford Hosp Med J 37:147-50

    CAS  PubMed  Google Scholar 

  191. Erickson LA, Vrana JA, Theis J et al (2015) Analysis of Amyloid in Medullary Thyroid Carcinoma by Mass Spectrometry-Based Proteomic Analysis. Endocr Pathol 26:291-5 https://doi.org/10.1007/s12022-015-9390-7

    Article  CAS  PubMed  Google Scholar 

  192. Gagel RF, Levy ML, Donovan DT, Alford BR, Wheeler T and Tschen JA (1989) Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis. Ann Intern Med 111:802-6 https://doi.org/10.7326/0003-4819-111-10-802

    Article  CAS  PubMed  Google Scholar 

  193. Ieremia E, Marusic Z, Mudaliar V et al (2019) Expanding the clinical spectrum of dermal hyperneury: report of nine new cases and a review of the literature. Histopathology 75:738-745 https://doi.org/10.1111/his.13941

    Article  PubMed  Google Scholar 

  194. Redlich A, Lessel L, Petrou A, Mier P and Vorwerk P (2020) Multiple endocrine neoplasia type 2B: Frequency of physical stigmata-Results of the GPOH-MET registry. Pediatr Blood Cancer 67:e28056 https://doi.org/10.1002/pbc.28056

    Article  PubMed  Google Scholar 

  195. Winkelmann RK and Carney JA (1982) Cutaneous neuropathology in multiple endocrine neoplasia, type 2b. J Invest Dermatol 79:307-12 https://doi.org/10.1111/1523-1747.ep12500083

    Article  CAS  PubMed  Google Scholar 

  196. Marusic Z, Korsa L and Calonje E (2021) Dermal hyperneury. Clin Dermatol 39:291-294 https://doi.org/10.1016/j.clindermatol.2020.10.008

    Article  PubMed  Google Scholar 

  197. Harach HR, Soubeyran I, Brown A, Bonneau D and Longy M (1999) Thyroid pathologic findings in patients with Cowden disease. Ann Diagn Pathol 3:331-40 https://doi.org/10.1016/s1092-9134(99)80011-2

    Article  CAS  PubMed  Google Scholar 

  198. Smith JR, Marqusee E, Webb S et al (2011) Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab 96:34-7 https://doi.org/10.1210/jc.2010-1315

    Article  CAS  PubMed  Google Scholar 

  199. Milas M, Mester J, Metzger R et al (2012) Should patients with Cowden syndrome undergo prophylactic thyroidectomy? Surgery 152:1201-10 https://doi.org/10.1016/j.surg.2012.08.055

    Article  PubMed  Google Scholar 

  200. Hall JE, Abdollahian DJ and Sinard RJ (2013) Thyroid disease associated with Cowden syndrome: A meta-analysis. Head Neck 35:1189-94 https://doi.org/10.1002/hed.22971

    Article  PubMed  Google Scholar 

  201. Cameselle-Teijeiro J, Fachal C, Cabezas-Agricola JM et al (2015) Thyroid Pathology Findings in Cowden Syndrome: A Clue for the Diagnosis of the PTEN Hamartoma Tumor Syndrome. Am J Clin Pathol 144:322-8 https://doi.org/10.1309/AJCP84INGJUVTBME

    Article  CAS  PubMed  Google Scholar 

  202. Szabo Yamashita T, Baky FJ, McKenzie TJ et al (2020) Occurrence and Natural History of Thyroid Cancer in Patients with Cowden Syndrome. Eur Thyroid J 9:243-246 https://doi.org/10.1159/000506422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Peiretti V, Mussa A, Feyles F et al (2013) Thyroid involvement in two patients with Bannayan-Riley-Ruvalcaba syndrome. J Clin Res Pediatr Endocrinol 5:261-5 https://doi.org/10.4274/Jcrpe.984

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zambrano E, Holm I, Glickman J et al (2004) Abnormal distribution and hyperplasia of thyroid C-cells in PTEN-associated tumor syndromes. Endocr Pathol 15:55-64 https://doi.org/10.1385/ep:15:1:55

    Article  PubMed  Google Scholar 

  205. Uchino S, Ishikawa H, Miyauchi A et al (2016) Age- and Gender-Specific Risk of Thyroid Cancer in Patients With Familial Adenomatous Polyposis. J Clin Endocrinol Metab 101:4611-4617 https://doi.org/10.1210/jc.2016-2043

    Article  CAS  PubMed  Google Scholar 

  206. Harach HR, Williams GT and Williams ED (1994) Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 25:549-61 https://doi.org/10.1111/j.1365-2559.1994.tb01374.x

    Article  CAS  PubMed  Google Scholar 

  207. Cameselle-Teijeiro J and Chan JK (1999) Cribriform-morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma? Mod Pathol 12:400-11

    CAS  PubMed  Google Scholar 

  208. Cameselle-Teijeiro JM and Sobrinho-Simoes M (2019) Cribriform-morular variant of thyroid carcinoma. Pathologica 111:1-3 https://doi.org/10.32074/1591-951X-66-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cameselle-Teijeiro J, Menasce LP, Yap BK et al (2009) Cribriform-morular variant of papillary thyroid carcinoma: molecular characterization of a case with neuroendocrine differentiation and aggressive behavior. Am J Clin Pathol 131:134-42 https://doi.org/10.1309/AJCP7ULS0VSISBEB

    Article  CAS  PubMed  Google Scholar 

  210. Nakazawa T, Celestino R, Machado JC et al (2013) Cribriform-morular variant of papillary thyroid carcinoma displaying poorly differentiated features. Int J Surg Pathol 21:379-89 https://doi.org/10.1177/1066896912473355

    Article  PubMed  Google Scholar 

  211. Corean J, Furtado LV, Kadri S, Segal JP and Emerson LL (2019) Cribriform-Morular Variant of Papillary Thyroid Carcinoma With Poorly Differentiated Features: A Case Report With Immunohistochemical and Molecular Genetic Analysis. Int J Surg Pathol 27:294-304 https://doi.org/10.1177/1066896918796946

    Article  PubMed  Google Scholar 

  212. Tsuji H, Yasuoka H, Nakamura Y et al (2018) Aggressive cribriform-morular variant of papillary thyroid carcinoma: Report of an unusual case with pulmonary metastasis displaying poorly differentiated features. Pathol Int 68:700-705 https://doi.org/10.1111/pin.12728

    Article  PubMed  Google Scholar 

  213. Oh EJ, Lee S, Bae JS, Kim Y, Jeon S and Jung CK (2017) TERT Promoter Mutation in an Aggressive Cribriform Morular Variant of Papillary Thyroid Carcinoma. Endocr Pathol 28:49-53 https://doi.org/10.1007/s12022-016-9454-3

    Article  CAS  PubMed  Google Scholar 

  214. Stratakis CA, Courcoutsakis NA, Abati A et al (1997) Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab 82:2037-43 https://doi.org/10.1210/jcem.82.7.4079

    Article  CAS  PubMed  Google Scholar 

  215. Carney JA, Lyssikatos C, Seethala RR et al (2018) The Spectrum of Thyroid Gland Pathology in Carney Complex: The Importance of Follicular Carcinoma. Am J Surg Pathol 42:587-594 https://doi.org/10.1097/PAS.0000000000000975

    Article  PubMed  PubMed Central  Google Scholar 

  216. Stratakis CA and Raygada M (1993) Carney Complex. GeneReviews((R))

  217. Hattori S, Yamane Y, Shimomura R et al (2018) Carney complex: a case with thyroid follicular adenoma without a PRKAR1A mutation. Surg Case Rep 4:34 https://doi.org/10.1186/s40792-018-0438-z

    Article  PubMed  PubMed Central  Google Scholar 

  218. Halaszlaki C, Takacs I, Butz H, Patocs A and Lakatos P (2012) Novel genetic mutation in the background of Carney complex. Pathol Oncol Res 18:149-52 https://doi.org/10.1007/s12253-012-9502-3

    Article  PubMed  Google Scholar 

  219. Ishikawa Y, Sugano H, Matsumoto T, Furuichi Y, Miller RW and Goto M (1999) Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype-phenotype relations to cell type and race. Cancer 85:1345-52

    Article  CAS  PubMed  Google Scholar 

  220. Winer DA, Winer S, Rotstein L, Asa SL and Mete O (2012) Villous papillary thyroid carcinoma: a variant associated with marfan syndrome. Endocr Pathol 23:254-9 https://doi.org/10.1007/s12022-012-9219-6

    Article  PubMed  Google Scholar 

  221. Sippel RS, Caron NR and Clark OH (2007) An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg 31:924-33 https://doi.org/10.1007/s00268-006-0847-1

    Article  PubMed  Google Scholar 

  222. Ito Y, Kakudo K, Hirokawa M et al (2009) Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery 145:100-5 https://doi.org/10.1016/j.surg.2008.08.004

    Article  PubMed  Google Scholar 

  223. Robenshtok E, Tzvetov G, Grozinsky-Glasberg S et al (2011) Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid 21:43-8 https://doi.org/10.1089/thy.2009.0406

    Article  PubMed  Google Scholar 

  224. Moses W, Weng J and Kebebew E (2011) Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid 21:367-71 https://doi.org/10.1089/thy.2010.0256

    Article  PubMed  PubMed Central  Google Scholar 

  225. Park YJ, Ahn HY, Choi HS, Kim KW, Park DJ and Cho BY (2012) The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid 22:356-62 https://doi.org/10.1089/thy.2011.0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kim YS, Seo M, Park SH, Ju SY and Kim ES (2020) Should Total Thyroidectomy Be Recommended for Patients with Familial Non-medullary Thyroid Cancer? World J Surg 44:3022-3027 https://doi.org/10.1007/s00268-020-05473-7

    Article  PubMed  Google Scholar 

  227. Burgess JR, Duffield A, Wilkinson SJ et al (1997) Two families with an autosomal dominant inheritance pattern for papillary carcinoma of the thyroid. J Clin Endocrinol Metab 82:345-8 https://doi.org/10.1210/jcem.82.2.3789

    Article  CAS  PubMed  Google Scholar 

  228. Bann DV, Jin Q, Sheldon KE et al (2019) Genetic Variants Implicate Dual Oxidase-2 in Familial and Sporadic Nonmedullary Thyroid Cancer. Cancer Res 79:5490-5499 https://doi.org/10.1158/0008-5472.CAN-19-0721

    Article  CAS  PubMed  Google Scholar 

  229. Cirello V, Colombo C, Karapanou O, Pogliaghi G, Persani L and Fugazzola L (2020) Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers. Front Endocrinol (Lausanne) 11:589340 https://doi.org/10.3389/fendo.2020.589340

    Article  Google Scholar 

  230. Pereira JS, da Silva JG, Tomaz RA et al (2015) Identification of a novel germline FOXE1 variant in patients with familial non-medullary thyroid carcinoma (FNMTC). Endocrine 49:204-14 https://doi.org/10.1007/s12020-014-0470-0

    Article  CAS  PubMed  Google Scholar 

  231. Zhao Y, Yu T, Chen L et al (2020) A Germline CHEK2 Mutation in a Family with Papillary Thyroid Cancer. Thyroid 30:924-930 https://doi.org/10.1089/thy.2019.0774

    Article  CAS  PubMed  Google Scholar 

  232. Gasior-Perczak D, Kowalik A, Walczyk A et al (2019) Coexisting Germline CHEK2 and Somatic BRAF(V600E) Mutations in Papillary Thyroid Cancer and Their Association with Clinicopathological Features and Disease Course. Cancers (Basel) 11 https://doi.org/10.3390/cancers11111744

  233. Cavaco BM, Batista PF, Martins C et al (2008) Familial non-medullary thyroid carcinoma (FNMTC): analysis of fPTC/PRN, NMTC1, MNG1 and TCO susceptibility loci and identification of somatic BRAF and RAS mutations. Endocr Relat Cancer 15:207-15 https://doi.org/10.1677/ERC-07-0214

    Article  PubMed  Google Scholar 

  234. Srivastava A, Kumar A, Giangiobbe S et al (2019) Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 9 https://doi.org/10.3390/biom9100605

  235. Mazeh H, Benavidez J, Poehls JL, Youngwirth L, Chen H and Sippel RS (2012) In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid 22:3-8 https://doi.org/10.1089/thy.2011.0192

    Article  PubMed  Google Scholar 

  236. Alsanea O, Wada N, Ain K et al (2000) Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery 128:1043–50; discussion 1050–1 https://doi.org/10.1067/msy.2000.110848

  237. Sturgeon C and Clark OH (2005) Familial nonmedullary thyroid cancer. Thyroid 15:588-93 https://doi.org/10.1089/thy.2005.15.588

    Article  PubMed  Google Scholar 

  238. Tavarelli M, Russo M, Terranova R et al (2015) Familial Non-Medullary Thyroid Cancer Represents an Independent Risk Factor for Increased Cancer Aggressiveness: A Retrospective Analysis of 74 Families. Front Endocrinol (Lausanne) 6:117 https://doi.org/10.3389/fendo.2015.00117

    Article  Google Scholar 

  239. Capezzone M, Marchisotta S, Cantara S et al (2008) Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer 15:1075-81 https://doi.org/10.1677/ERC-08-0080

    Article  CAS  PubMed  Google Scholar 

  240. Musholt TJ, Musholt PB, Petrich T, Oetting G, Knapp WH and Klempnauer J (2000) Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg 24:1409-17 https://doi.org/10.1007/s002680010233

    Article  CAS  PubMed  Google Scholar 

  241. Bakhsh A, Kirov G, Gregory JW, Williams ED and Ludgate M (2006) A new form of familial multi-nodular goitre with progression to differentiated thyroid cancer. Endocr Relat Cancer 13:475-83 https://doi.org/10.1677/erc.1.01138

    Article  CAS  PubMed  Google Scholar 

  242. Williams D (2020) Inherited thyroid tumours. Endocrine 68:271-273 https://doi.org/10.1007/s12020-020-02252-1

    Article  CAS  PubMed  Google Scholar 

  243. Neurofibromatosis (1988) Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–8. PMID: 3128965

  244. Suh I, Filetti S, Vriens MR et al (2009) Distinct loci on chromosome 1q21 and 6q22 predispose to familial nonmedullary thyroid cancer: a SNP array-based linkage analysis of 38 families. Surgery 146:1073-80 https://doi.org/10.1016/j.surg.2009.09.012

    Article  PubMed  Google Scholar 

  245. Malchoff CD, Sarfarazi M, Tendler B et al (2000) Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab 85:1758-64 https://doi.org/10.1210/jcem.85.5.6557

    Article  CAS  PubMed  Google Scholar 

  246. Sarquis M, Moraes DC, Bastos-Rodrigues L et al (2020) Germline Mutations in Familial Papillary Thyroid Cancer. Endocr Pathol 31:14-20 https://doi.org/10.1007/s12022-020-09607-4

    Article  CAS  PubMed  Google Scholar 

  247. McKay JD, Thompson D, Lesueur F et al (2004) Evidence for interaction between the TCO and NMTC1 loci in familial non-medullary thyroid cancer. J Med Genet 41:407-12 https://doi.org/10.1136/jmg.2003.017350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Prazeres HJ, Rodrigues F, Soares P et al (2008) Loss of heterozygosity at 19p13.2 and 2q21 in tumours from familial clusters of non-medullary thyroid carcinoma. Fam Cancer 7:141-9 https://doi.org/10.1007/s10689-007-9160-x

    Article  PubMed  Google Scholar 

  249. McKay JD, Lesueur F, Jonard L et al (2001) Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 69:440-6 https://doi.org/10.1086/321979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Cavaco BM, Batista PF, Sobrinho LG and Leite V (2008) Mapping a new familial thyroid epithelial neoplasia susceptibility locus to chromosome 8p23.1-p22 by high-density single-nucleotide polymorphism genome-wide linkage analysis. J Clin Endocrinol Metab 93:4426-30 https://doi.org/10.1210/jc.2008-0449

    Article  CAS  PubMed  Google Scholar 

  251. Wilson TL, Hattangady N, Lerario AM et al (2017) A new POT1 germline mutation-expanding the spectrum of POT1-associated cancers. Fam Cancer 16:561-566 https://doi.org/10.1007/s10689-017-9984-y

    Article  CAS  PubMed  Google Scholar 

  252. Potrony M, Puig-Butille JA, Ribera-Sola M et al (2019) POT1 germline mutations but not TERT promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. Br J Dermatol 181:105-113 https://doi.org/10.1111/bjd.17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Richard MA, Lupo PJ, Morton LM et al (2020) Genetic variation in POT1 and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study. PLoS One 15:e0228887 https://doi.org/10.1371/journal.pone.0228887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Srivastava A, Miao B, Skopelitou D et al (2020) A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer. Cancers (Basel) 12 https://doi.org/10.3390/cancers12061441

  255. He H, Nagy R, Liyanarachchi S et al (2009) A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res 69:625-31 https://doi.org/10.1158/0008-5472.CAN-08-1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bonora E, Rizzato C, Diquigiovanni C et al (2014) The FOXE1 locus is a major genetic determinant for familial nonmedullary thyroid carcinoma. Int J Cancer 134:2098-107 https://doi.org/10.1002/ijc.28543

    Article  CAS  PubMed  Google Scholar 

  257. Mancikova V, Cruz R, Inglada-Perez L et al (2015) Thyroid cancer GWAS identifies 10q26.12 and 6q14.1 as novel susceptibility loci and reveals genetic heterogeneity among populations. Int J Cancer 137:1870-8 https://doi.org/10.1002/ijc.29557

    Article  CAS  PubMed  Google Scholar 

  258. Bignell GR, Canzian F, Shayeghi M et al (1997) Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet 61:1123-30 https://doi.org/10.1086/301610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhang T and Xing M (2016) HABP2 G534E Mutation in Familial Nonmedullary Thyroid Cancer. J Natl Cancer Inst 108:djv415 https://doi.org/10.1093/jnci/djv415

  260. Bevan S, Pal T, Greenberg CR et al (2001) A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial nonmedullary thyroid cancer: confirmation of linkage to TCO1. J Clin Endocrinol Metab 86:3701-4 https://doi.org/10.1210/jcem.86.8.7725

    Article  CAS  PubMed  Google Scholar 

  261. Canzian F, Amati P, Harach HR et al (1998) A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 63:1743-8 https://doi.org/10.1086/302164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Harach HR, Lesueur F, Amati P et al (1999) Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. J Pathol 189:387-93 https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<387::AID-PATH443>3.0.CO;2-S

  263. Kraimps JL, Canzian F, Jost C et al (1999) Mapping of a gene predisposing to familial thyroid tumors with cell oxyphilia to chromosome 19 and exclusion of JUN B as a candidate gene. Surgery 126:1188-94 https://doi.org/10.1067/msy.2099.102606

    Article  CAS  PubMed  Google Scholar 

  264. He H, Bronisz A, Liyanarachchi S et al (2013) SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J Clin Endocrinol Metab 98:E973-80 https://doi.org/10.1210/jc.2012-3823

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ngan ES, Lang BH, Liu T et al (2009) A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst 101:162-75 https://doi.org/10.1093/jnci/djn471

    Article  CAS  PubMed  Google Scholar 

  266. Liao S, Song W, Liu Y et al (2013) Familial multinodular goiter syndrome with papillary thyroid carcinomas: mutational analysis of the associated genes in 5 cases from 1 Chinese family. BMC Endocr Disord 13:48 https://doi.org/10.1186/1472-6823-13-48

    Article  PubMed  PubMed Central  Google Scholar 

  267. Ye F, Gao H, Xiao L et al (2019) Whole exome and target sequencing identifies MAP2K5 as novel susceptibility gene for familial non-medullary thyroid carcinoma. Int J Cancer 144:1321-1330 https://doi.org/10.1002/ijc.31825

    Article  CAS  PubMed  Google Scholar 

  268. Tomsic J, He H, Akagi K et al (2015) A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep 5:10566 https://doi.org/10.1038/srep10566

    Article  PubMed  PubMed Central  Google Scholar 

  269. Maximo V, Botelho T, Capela J et al (2005) Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer 92:1892-8 https://doi.org/10.1038/sj.bjc.6602547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Bonora E, Evangelisti C, Bonichon F, Tallini G and Romeo G (2006) Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br J Cancer 95:1529-36 https://doi.org/10.1038/sj.bjc.6603455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Gasior-Perczak D, Kowalik A, Gruszczynski K et al (2021) Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma. Cancers (Basel) 13 https://doi.org/10.3390/cancers13030470

  272. Pires C, Marques IJ, Dias D, Saramago A, Leite V and Cavaco BM (2021) A pathogenic variant in CHEK2 shows a founder effect in Portuguese Roma patients with thyroid cancer. Endocrine 73:588-597 https://doi.org/10.1007/s12020-021-02660-x

    Article  CAS  PubMed  Google Scholar 

  273. Szeliga A, Pralat A, Witczak W et al (2020) CHEK2 Mutation in Patient with Multiple Endocrine Glands Tumors. Case Report. Int J Environ Res Public Health 17 https://doi.org/10.3390/ijerph17124397

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The original draft of the manuscript was written in parts by all authors and Vania Nosé have finalized the manuscript.

Corresponding author

Correspondence to Vania Nosé.

Ethics declarations

Ethical Approval

All evaluations performed in this analysis do not involve any individual patient’s data but was still performed in accordance with the ethical standards of the institutional review board. The opinions or assertions contained herein are the private views of the authors.

Consent Statement

No personally identifiable information is included and thus informed consent is not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosé, V., Gill, A., Teijeiro, J.M.C. et al. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 33, 197–227 (2022). https://doi.org/10.1007/s12022-022-09705-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-022-09705-5

Keywords

Navigation