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Abstract
Intra-tumor heterogeneity results from both genetic heterogeneity of cancer (sub)clones and phenotypic plasticity of cancer cells
that could be induced by different local microenvironments. Here, we used mass spectrometry imaging (MSI) to compare
molecular profiles of primary tumors located in the thyroid gland and their synchronous metastases in regional lymph nodes
to analyze phenotypic heterogeneity in papillary thyroid cancer. Two types of cancerous (primary tumor and metastasis) and two
types of not cancerous (thyroid gland and lymph node) regions of interest (ROIs) were delineated in postoperative material from
11 patients, then the distribution of tryptic peptides (spectral components) was analyzed by MSI in all tissue regions. Moreover,
tryptic peptides identified by shotgun proteomics in corresponding tissue lysates were matched to components detected byMSI to
enable their hypothetical protein annotation. Unsupervised segmentation of all cancer ROIs revealed that different clusters
dominated in tumor ROIs and metastasis ROIs. The intra-patient similarity between thyroid and tumor ROIs was higher than
the intra-patient similarity between tumor and metastasis ROIs. Moreover, the similarity between tumor and its metastasis from
the same patients was lower than similarities among tumors and among metastases from different patients (inter-patient similarity
was higher for metastasis ROIs than for tumor ROIs). Components differentiating between tumor and its metastases were
annotated as proteins involved in the organization of the cytoskeleton and chromatin, as well as proteins involved in
immunity-related functions. We concluded that phenotypical heterogeneity between primary tumor and lymph node metastases
from the same patient was higher than inter-tumor heterogeneity between primary tumors from different patients.
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Introduction

Tumor heterogeneity is a crucial phenomenon involved in the
natural history of cancer affecting the response to treatment.
Genetic heterogeneity in individual cancer is a result of

evolution characterized by (usually) a monoclonal origin and
poly(sub)clonal progression, which involves the accumulation
of genetic alterations. As a result, solid cancers evolve into
mosaic entities composed of a mixture of cells with different
genomes. Intra-tumor heterogeneity could be hypothetically
observed in all phenotypic features, including cellular mor-
phology, gene and protein expression, metabolism, and meta-
static potential. Tumor heterogeneity observed at the level of a
phenotype could be “hereditary” in nature and result from
genetic (and epigenetic) heterogeneity. However, a substantial
component of phenotypic tumor heterogeneity could be relat-
ed to “non-hereditary” factors. These non-hereditary compo-
nents involve differentiation of cancer stem cells, epidermal to
mesenchymal transition, and phenotypic plasticity induced by
interactions between cancer cells and different local microen-
vironments. Moreover, tumor heterogeneity is further in-
creased by the presence of heterotypic elements, including
immune cells, connective tissues, microvasculature, etc.
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Furthermore, the divergence between a primary tumor and a
metastatic outgrowth is another important aspect of tumor
heterogeneity [1–3].

Cancer is a systemic disease, where a large number of cells is
shed into the bloodstream and lymph vessels at some stage of
development, some of which settle down in distinct sites and
develop into metastases. Distant metastasis is responsible for
the majority of cancer-related deaths; hence, understanding the
heterogeneity of metastatic cancers is an important issue to ad-
dress. Therefore, molecular testing based on metastases-derived
specimens is an emerging aspect of cancer diagnostics. Different
models of a metastatic spread could be proposed, assumed that
the acquisition of a metastatic potential is the final step of cancer
progression or that acquiring the ability of a metastatic spread
could be an early event during cancer development characteristic
for a small subclone of the primary tumor, which could imply
either high or low genetic similarity between the primary site and
metastasis, respectively [4]. Though general conclusiveness of
experimental evidence is rather limited, the available data on
genetic and molecular similarities between a primary tumor and
distant metastases could support either possibility [5–8]. It is still
a matter of debate whether cancer cells first form metastases in
(regional) lymph nodes then subsequently disseminate further
(possibly after acquiring additional features), or simultaneously
spread from a primary tumor to regional lymph nodes and distant
sites. Nevertheless, the molecular characteristics of cancer cells
settled in regional lymph nodes remains a valuable potential
diagnostic and prognostic feature [9]. Different degrees of genet-
ic heterogeneity (mutations and chromosomal aberrations) were
reported between primary tumor and different lymph node me-
tastases in colorectal cancer [10, 11], melanoma [12] and thyroid
cancer [13, 14]. Moreover, a few works reported differences
between a primary tumor and lymph node metastases with re-
spect to the expression of alternative transcripts [15] and the
expression of receptors like HER2 [16]. Nonetheless, data on
molecular heterogeneity between a primary tumor and cancer
cells present in lymph nodes are rather incomplete, which re-
stricts their general impact.

Despite the fundamental importance of intra-tumor hetero-
geneity, surprisingly few experimental data were collected
with direct relevance to this phenomenon over decades, which
is a consequence of the serious limitations of analytical ap-
proaches that could be implemented in this field. In general,
two major approaches were used in the studies of molecular
heterogeneity of solid cancers. The first approach is based on
imaging methods that could analyze selected factors in a “con-
tinuous” mode, which included analysis of target genes (by
fluorescent in situ hybridization) or proteins (by immunohis-
tochemistry) in a specific morphological context. The second
approach is based on analysis of material derived from a few
physically separated sub-regions of a tumor (e.g., multiple
biopsies) [17] or even single cells isolated from a tumor
[18]. This strategy allows for global characterization of the

genetic and molecular profile of tumor sub-regions using mul-
tiple “omics” approaches, yet the possibility to place the
resulting data in a specific histological context is rather limited
(or even lost in the case of current single-cell sequencing
approaches). Therefore, mass spectrometry imaging (MSI),
which enables an analysis of a complete molecular profile in
a spatially continuous manner and a close correlation of a
molecular map with histopathological features of a tissue, ap-
pears the best available method to study the phenotypic het-
erogeneity of cancer [19–22]. Here, we used the matrix-
assisted laser desorption/ionization mass spectrometry imag-
ing (MALDI-MSI) approach to analyze molecular phenotypic
heterogeneity in papillary thyroid cancer (PTC) and compared
molecular profiles of primary tumors located in the thyroid
gland and synchronous metastases of cancer in regional lymph
nodes. Unexpectedly, we provided direct evidence that phe-
notypical intra-tumor heterogeneity between primary tumor
and lymph node metastases from the same patient was higher
than inter-tumor heterogeneity between primary tumors from
different patients.

Materials and Methods

Clinical Material

Postoperative tissue was collected during thyroidectomy and
simultaneous lymphadenectomy (surgery was the first thera-
peutic intervention in all cases), then stored as formalin-fixed
paraffin-embedded (FFPE) material. Samples derived from 11
patients (10 females; aged 17–71, median age 44) with papil-
lary thyroid carcinoma, PTC (stages pT: 1a-2, pN 1a-1b) treat-
ed at Maria Skłodowska-Curie Institute–Oncology Center in
Gliwice between 2014 and 2016 were used in the study. The
study was approved by the appropriate local Ethics
Committee (approval no. KB/430-17/13). Tissue material
was re-inspected by an experienced pathologist before the
study; cancer regions of interests (ROI) were delineated in
both thyroid glands and lymph nodes.

Sample Preparation for MALDI-MSI

FFPE tissue blocks were sectioned into 6 μm sections using
an HM 340E rotary microtome (Thermo Fisher Scientific,
Waltham, MA, USA). For each patient (p1-through p11), a
set of FFPE tissue sections (one from the primary location
and at least three from lymph nodes) was placed on a separate
ITO glass slide (Bruker Daltonik, Bremen, Germany) covered
with poly-L-lysine; a mixture of poly-L-lysine solution 0.1%
(w/v) in H2O with 0.2% (v/v) water solution of IGEPAL®
CA-630 (both from Sigma-Aldrich) in a volume ratio of 1:1
was used for ITO glass slide coating. Slides were subsequent-
ly subjected to thermal treatment (37 °C for 18 h followed by
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1 h at 60 °C) in order to increase adherence of tissue sections
to the slide surface. Paraffin was removed from sections by
consecutive washing in xylene 5 min (twice), ethanol 99.8% 5
min, ethanol 96% 5 min, ethanol 50% 5 min, then glass slides
were dried on air. Heat-induced antigen retrieval was per-
formed in 10 mM Tris-HCl pH 9.0 for 20 min at 95 °C using
a StableTemp™ water bath (Cole Palmer Instruments Co.,
Chicago, IL, USA). The solution was then cooled down for
20 min at room temperature, slides were washed in water for 1
min, dried and placed in a vacuum desiccator for 15 min.
Trypsin solution (20 μg/mL in 25 mM NH4HCO3) was uni-
formly sprayed over the whole glass slide with the use of
SunCollect micro fraction collector/MALDI spotter
(SunChrom GmbH, Friedrichsdorf, Germany) operated in
the pneumatic sprayer mode, according to the method of
Heijs et al. [23], resulting in deposition of 0.006 μg of trypsin
per square millimeter. This was followed by incubation at 37
°C for 18 h in a humid chamber. Sequencing Grade Modified
Trypsin from Promega (Madison, WI, USA) was used in the
study. An optical image (2400 dpi) was registered for a glass
slide with marked fiducials, and a tissue section was coated
with matrix solution (5 mg/mL α-cyano-4-hydroxycinnamic
acid in 50% ACN, 0.3% TFA) with the use of SunCollect
device according to [23], resulting in deposition of 3.8 μg of
matrix per square millimeter.

MALDI-MSI Measurements

Prior to automatic measurements, the spectrometer was exter-
nally calibrated with the use of Peptide Calibration Standard II
(Bruker Daltonik, Bremen, Germany). Spectra of tryptic pep-
tides were acquired using an ultrafleXtreme MALDI-TOF/
TOF mass spectrometer (Bruker Daltonik, Germany)
equipped with a smart-beam II™ laser operating at 1 kHz
repetition rate working in positive reflectron mode within m/
z range of 700–3700, with laser focus diameter of 4_large and
100 μm raster width. Ions were accelerated at 25 kV with a
PIE time delay of 100 ns. Four hundred shots were collected
from each laser position with a random walk on (40 shots at a
raster spot). After imaging, the matrix was washed off the
glass slides with 70% ethanol (two washes, 1 min each), and
the sections were stained with hematoxylin and eosin, then
scanned and used for image co-registration (using
flexImaging software). Compass for flex 1.4 software package
(Bruker Daltonik, Bremen, Germany) was used for spectra
acquisition and handling.

Spectra Processing and Identification of Spectral
Components

Standard spectrum preprocessing sequenced steps were ap-
plied as follows: (i) resampling to common mass channels,
(ii) adaptive baseline detection and correction [24], (iii)

outlying spectra identification according to TIC value using
Bruffaerts’ criterion [25], (iv) fast Fourier transform-based
spectral alignment [26], and (v) TIC normalization. The
Gaussian mixture model (GMM) approach described in detail
elsewhere [27, 28] was used for the average spectrum model-
ing and peak detection. Peptide abundance was estimated by
pairwise convolution of the GMM components and individual
spectra. Spectrum post-processing procedure was applied to
reduce the data dimensionality by filtering out GMM compo-
nents of high variance and low amplitude. GMM components
modeling the same spectrum peakwere identified andmerged.
The resulting dataset featured 2696 components detected in
m/z range between 699 and 3430 that were termed molecular
components hereafter, which represent tryptic peptide species
imaged by MSI.

MSI Data Analysis

To assess the similarity between different ROIs of tissue sam-
ples, the pairwise similarity index [29] was calculated. Spectra
were labeled according to their location in tissue specimens of
11 patients (p1–p11) and 1 of 4 possible tissue histopatholog-
ical types (thyroid tumor, metastasis, normal thyroid, normal
lymph node) creating 44 spectra subsets. Similarity index was
calculated between or within spectra subsets in three different
manners: (i) within the same type of ROI and within the same
patient (intra-patient), (ii) between different types of ROI
within the same patient (intra-patient), and (iii) within the
same type of ROI among different patients (inter-patient).
Cohen’s effect size based on mean and pooled standard devi-
ation [30] was calculated as a quantitative measure of the
magnitude of differences in the abundance of each molecular
component between different ROIs. Unsupervised molecular
image segmentation was performed for cancer tissue regions
(primary thyroid tumor and metastasis) for all 11 tissue spec-
imens together by the deglomerative divisive iK-means algo-
rithm [31, 32]. The algorithm’s stop criterion was adjusted to
create clusters of size not less than 40 spectra included (the
assumption results from a relatively small number of spectra
creating metastases ROI in a single tissue specimen).

LC-MALDI MS/MS Analysis and Identification
of Molecular Components

Representative samples of the cancerous thyroid gland (ca.
60% of cancer cells) and lymph node with cancer spread (ca.
20% of cancer cells) were used for protein identification using
the shotgun LC-MS/MS approach. Protein lysates were pre-
pared and subjected to tryptic digestion according to a modi-
fied version of a combination of FASP with Stage-Tip frac-
tionation as described in detail elsewhere [33]. Tryptic pep-
tides were then separated using an EASY-nLC nano-liquid
chromatograph (Proxeon) coupled with PROTEINEER fc II
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fraction collector (Bruker) and analyzed using ultrafleXtreme
MALDI-TOF/TOF mass spectrometer. A detailed description
of instrumental settings of the LC-MALDI-MS/MS system is
given in [33]. Registered MS/MS spectra were exported to
ProteinScape 3.1 software (Bruker Daltonik) and analyzed
using Mascot Server 2.5.1 (Matrix Science, London, UK);
for details, see [33]. The hypothetical identity of molecular
components detected in MSI was established via assignment
of their m/z values to measured masses of peptides identified
in LC-MALDI-MS/MS experiment; the assignment was per-
formed allowing ± 0.05% mass tolerance (components over-
represented in lymph nodes were annotated in the list of pep-
tides identified in specimens of metastasis-containing lymph
nodes while components overrepresented in thyroid and can-
cer were annotated in the list of peptides identified in speci-
mens of cancer-containing thyroid).

Results

Cancer and not cancer (i.e., normal tissue) regions of interest
(ROIs) were delineated by a pathologist in specimens of thy-
roid glands and lymph nodes derived from 11 patients with
papillary thyroid cancer (samples p1 through p11). Spectra
generated by imaging of tryptic peptides were exported from
both types of cancer ROIs—primary tumors in the thyroid
gland and their metastases in lymph nodes, and both types
of not cancer ROIs—normal thyroid glands and normal lymph

nodes. The participation of spectra from each ROI in global
figures was as follows: tumors—24.6%, metastases—4.2%,
normal thyroid—45.1%, and lymph nodes—26.1% (yet vari-
ation was observed between individual samples).

In the first step, spectra from cancer ROIs (both types of
cancer ROI from all specimens together) were clustered using
unsupervised deglomerative image segmentation. The first
step of segmentation revealed two clusters presented in Fig.
1a (clusters marked in green and red, respectively). The con-
tribution of each cluster in either primary tumor or metastasis
ROI from each patient was not random: the overrepresentation
of cluster 1 (green) in primary tumor ROI and the overrepre-
sentation of cluster 2 (red) in metastasis ROI was generally
observed. Substantial contribution of cluster 2 in tumor ROI
(approx. 70%) was visible only for samples p2 and p7, while
the substantial contribution of cluster 1 in metastasis ROI
(approx. 50%) was visible only for sample 11 (Fig. 1b). The
contribution of each cluster in both ROIs was also calculated
for all patients’ samples together. The majority of spectra in
primary tumor ROI belonged to cluster 1 (67%) while the
majority of spectra in metastasis ROI belonged to cluster 2
(89%) (Fig. 1c). Hence, one could conclude the different mo-
lecular composition of cancer ROIs between the primary tu-
mor and its metastasis. Moreover, the results of image seg-
mentation suggested inter-patient similarity of a specific type
of cancer ROIs.

In the next step, similarities between spectra derived from
different types of ROIs were addressed more specifically. The

Fig. 1 Unsupervised
segmentation of tissue regions
corresponding to cancer. a The
first level of segmentation of
cancer ROIs detected in the
thyroid glands and lymph nodes
of all eleven patients (p1–p11);
two resulting clusters are marked
on microscopic images in green
and red. b Contribution of both
clusters detected in panel A in
both types of cancer ROIs (T–
primary tumor, M–metastasis) in
tissue specimens of individual
patients. c Participation of image
clusters (1 and 2) in cancer ROIs
(T and M) in all combined tissue
specimens
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similarity index between pairwise compared spectra from four
types of ROIs was estimated based on all registered molecular
components (i.e., tryptic peptides); the frequencies of pairs
with assumed similarity index and the resulting cumulative
distribution functions are depicted in Fig. 2. To assess intra-
tissue inter-patient heterogeneity, similarities between spectra
from the same type of ROI were compared between different
samples (patients). We found that the inter-patient heteroge-
neity was the highest for normal (not cancer) thyroid tissue
and the lowest for normal lymph nodes, and that similarity
between lymph node metastases of different patients was
higher than the similarity between primary tumors of different
patients (Fig. 2a). To assess inter-tissue intra-patient

heterogeneity, similarities between spectra from different
ROIs were compared within the same patient. We found that
intra-patient heterogeneity was the highest between normal
thyroid and normal lymph nodes while it was the lowest be-
tween normal lymph nodes and cancer metastases in lymph
nodes. Moreover, the similarity between thyroid tumors and
normal thyroids was higher than the similarity between thy-
roid tumors and their lymph node metastases (Fig. 2b). By
direct comparison of similarities within and between both
types of cancer ROIs, we stated that intra-tumor heterogeneity
between thyroid tumors and their lymph node metastases in
the same patient was higher than inter-cancer heterogeneity of
thyroid tumors from different patients and cancer metastases

Fig. 2 Similarity index between
different tissue regions. a
Similarity between the same type
of ROI assessed among different
patients (inter-patient). b
Similarity between different types
of ROI assessed within the same
patient (intra-patient). c
Comparison of intra-patient
similarity between two types of
cancer ROIs (tumor and
metastasis) and inter-patient
similarity within the same type of
cancer ROI (tumor or metastasis).
The similarity index is presented
as a relative number of events (left
diagrams) and as a cumulative
distribution function (right
diagrams)
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from different patients (the latter one was the most homoge-
nous) (Fig. 2c). Hence, this observation was coherent with the
results of the unsupervised segmentation of cancer ROIs pre-
sented above.

Finally, we searched for molecular components with abun-
dances markedly different between different types of ROIs (all
spectra from a given ROI were combined for analysis).
Considering the structure of data and large disparity of the
number of spectra across different ROIs, the strength of dif-
ferences was estimated by the effect size factor, which is in-
dependent of the number of compared samples/spectra.
Cohen’s d (absolute) values above 0.5, 0.8, and 1.2
corresponded to medium, large, and very large effects, respec-
tively [30]. The number of components that discriminated
different ROIs with different effect sizes is illustrated in Fig.
3 (see details in Supplementary Table S1). There were 96
components (ca. 4% of all registered components) whose
abundances markedly differentiated normal thyroid gland
and normal lymph nodes (including 15 components with a
very large effect). However, relatively few components
showed significantly different abundances between cancer re-
gions and adjacent normal tissues. There were 29 components
with markedly different abundances between thyroid tumor
and normal thyroid (Table 1) and 17 components with mark-
edly different abundances between metastases and normal
lymph nodes (Table 2). On the other hand, a larger number

of components showed markedly different abundances be-
tween thyroid tumors and their lymph node metastases.
There were 36 components with markedly different abun-
dances between thyroid tumors and their lymph node metas-
tases. Importantly, most of them (32 components) similarly
discriminated normal thyroid and lymph nodes (Table 3).

The hypothetical identity of MSI components could be
established by attributing masses (m/z values) of imaged mo-
lecular components (i.e., tryptic peptides) to measured masses
of peptides identified by the LC-MS/MS in lysates from the
same type of tissue specimens. Here, hypothetical identity
could be attributed to the majority of molecular components
detected by MSI, yet one should be aware that this type of
annotation is not unique and more than one identified peptide
could be matched to an MSI component due to the relatively
low resolution of MALDI-ToF MSI (Supplementary
Table S2). Nevertheless, proteins whose tryptic fragments
were the most frequently attributed to discriminatory MSI
components included species involved in the development,
homeostasis, cytoskeleton organization, extracellular matrix
organization, chromatin organization, and cell death.
Biological processes associated with hypothetical proteins
discriminating between thyroid tumor and normal thyroid in-
cluded gland development (THYG, APT, CAN1, HNRPD),
chromosome organization (ACINU, DHX9, H2B2E,
HNRPD, SKP1), and extracellular matrix organization

Fig. 3 Spectral components discriminating different types of ROIs.
Significance of differences in the abundance of each component
(represented by a dot) between ROIs was estimated as Cohen’s d effect

size (shown are absolute values); components are ordered according to
their m/z values
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(collagens, CAN1, LEG1, HNRPR) (Table 1). Processes as-
sociated with hypothetical proteins discriminating between
cancer metastasis and normal lymph nodes included actin cy-
toskeleton organization, hemostasis (ACTG, CO1A1, FIBB,
H33, RAC2), and regulation of immune-related functions
(ACTG, ACTR, CO1A1, FIBB, HCLS1, H4, K2C1,
RAC2); importantly, an increased level of thyroglobulin
(THYG) was characteristic for cancer metastasis when com-
pared to normal lymph nodes (Table 2). Furthermore, process-
es associated with hypothetical proteins discriminating be-
tween thyroid tumor and their metastases included cytoskele-
ton organization (actins, keratins, CEP250, RAC2), chromo-
some organization (core histones), and blood-related
functions/components (hemoglobin, fibrinogen, transferrin,
CO4B) upregulated in lymph node metastases; importantly,
the level of thyroglobulin did not discriminate between prima-
ry tumor and metastases (Table 3). On the other hand, thyro-
globulin appeared the major protein discriminating normal
thyroid from normal lymph nodes (11 out of 40 MSI-
detected components upregulated in thyroid could be attribut-
ed to tryptic fragments of this thyroid-specific protein), while

proteins involved in blood- and immune-related processes
were overrepresented in normal thyroid (Supplementary
Tables S1 and S2).

Discussion

In general, intra-tumor heterogeneity results from genetic het-
erogeneity of cancer (sub)clones and phenotypic plasticity
induced among others by interactions between cancer cells
and local microenvironment. Both components apparently af-
fect the divergence between a primary tumor and metastatic
outgrowths in lymph nodes, which is an important yet under-
researched aspect of intra-tumor heterogeneity [1–3]. There
are a few reports related to papillary thyroid cancer that ad-
dressed the divergence between a primary tumor and lymph
node metastases, most of them concerning the status of BRAF
V600E mutations. These works showed the concordance of a
mutation status between the tumor and lymph nodemetastases
in the majority of patients, yet cases with mutation-positive
tumor and mutation-negative metastases or mutation-negative

Table 1 Components that
discriminate between thyroid
tumor and normal thyroid

Component (m/z) Significance of differences (Cohen’s effect size) Hypothetical identity

Tumor vs. thyroid Tumor vs. metastasis

775.49 0.775 − 0.103 n.d.
776.50 0.554 − 0.121 n.d.
1075.62 0.548 0.052 CLUS, THYG, ANXA4
1076.62 0.557 − 0.112 GBRL3, LEG1, VIME
1111.54 0.656 − 0.033 n.d.
1111.57 0.649 0.164 n.d.
1274.72 0.508 0.565 HBB, ARMX3, ACINU
1384.72 0.512 0.071 THYG, NONO
1384.85 0.521 0.117
1465.68 0.537 0.104 APT
1466.20 0.561 − 0.226 SKP1, APT, TPIS1
1466.68 0.522 − 0.103
1467.37 0.525 − 0.271 CO6A3, ALBU
1467.68 0.514 − 0.207
1478.75 − 0.595 − 0.213 TRFE, HBB, ODO2
1479.75 − 0.559 − 0.316 n.d.
1561.77 − 0.541 − 0.111 ACTN4, OAT
1757.95 0.588 − 0.024 THYG, CO6A1, EMIL1
1758.91 0.586 − 0.028 ACTN4, HNRPR
1758.95 0.590 − 0.031
1759.94 0.589 − 0.012 H2B2E
1818.86 − 0.574 − 0.283 n.d.
1971.07 0.559 0.003 DHX9, THYG
1972.05 0.548 − 0.035 HNRPD
1973.05 0.523 − 0.056 SC22B
2689.29 − 0.549 − 0.393 SYSC, CAN1
2690.31 − 0.557 − 0.272
2692.37 − 0.513 − 0.273 n.d.
2693.36 − 0.503 − 0.299 n.d.

A positive value of the effect size indicates the factor’s downregulation in the first ROI while its negative value
indicates the factor’s upregulation of the firsts ROI (significant differences are in bold, lack of significant differ-
ences in italics); listed are up to three proteins whose fragments showed the maximum concordance with m/z
values of imaged components (n.d. not determined)
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tumor and mutation-positive metastases were also frequently
reported [13, 14, 34, 35]. An interesting genomics study was
reported by Le Pennec et al. [15] who performed a systemic
cDNA sequencing screening of a primary tumor (different
subregions), lymph node metastases and distant (pleural) me-
tastasis in a patient with an aggressive PTC. The study re-
vealed the existence of several cancer subclones and showed
a greater genetic divergence between a primary tumor and
lymph node metastases than between a primary tumor and
distant metastasis. Moreover, differences between metastases
in two different lymph nodes were detected (though it should
be noted that the material from metastases was collected after
radioiodine treatment of the patient) [15]. These genetic data
collectively confirmed the subclonal appearance of mutational
events during PTC tumorigenesis. However, a phenotypic
molecular divergence between a primary tumor and its metas-
tases was not addressed systematically in PTC samples yet.

Mass spectrometry imaging, which is a perfect tool to an-
alyze molecular tissue heterogeneity, was used in several stud-
ies focused on the classification of different types of thyroid
tumors, e.g., [36–38]. Here, we used this approach to compare
for the first time the molecular profile of PTC in a primary
tumor site (i.e., thyroid gland), and its lymph node metastases
aimed to estimate inter-patient/tumor and intra-patient/tumor
heterogeneity of these two cancer regions. We found a higher
level of molecular similarity amongst thyroid tumors than

amongst “normal” thyroid tissue from different patients. A
similar observation was reported previously when lipid com-
ponent was imaged by MALDI-MSI in a tumor and adjacent
not cancerous thyroid tissue of PTC patients [39]. These in-
teresting observations could be related to the fact that different
pathological conditions (e.g., inflammation-related) frequent-
ly exist in not cancerous tissue adjacent to a tumor that was
considered here as a “normal thyroid.” Moreover, we ob-
served several differences between primary tumors and their
lymph node metastases. Interestingly, the intra-tumor hetero-
geneity between primary tumors and metastases from the
same patient was higher than the inter-tumor heterogeneity
between primary tumors from different patients. This intrigu-
ing phenomenon apparently mirrored changes in a phenotype
of cancer cells induced by a specific lymph node microenvi-
ronment and/or specific phenotypic features of invasive can-
cer cells. Lymphocytes and other blood cells are the major
components of lymph nodes; hence, the cross-talk between
immune cells and cancer cells should be the critical factor
affecting the phenotype of cancer cells located in this organ.
Classical hallmarks of cancer include immune-related mecha-
nisms; evading immune destruction and tumor-promoting in-
flammation [4]. It is well known that, in addition to the sup-
pression of anti-tumor functions of the immune system by
progressing cancer, immune cells promote cancer progression
in many ways. These not only include remodeling of tumor

Table 2 Components that
discriminate between cancer
metastasis in lymph nodes and
normal lymph nodes

Component (m/z) Significance of differences (Cohen’s effect size) Hypothetical identity

Metastasis vs. LN Tumor vs. thyroid

836.43 − 0.523 0.018 CO1A1, RS10, SYNC1

1032.57 0.524 0.143 FIBB, RAC2, H33

1033.58 0.560 − 0.027 AOC3, K2C1

1105.56 − 0.501 − 0.034 DAAM2, THYG, PUF60

1138.55 − 0.551 0.340 SRSF9, EF2, SDHB

1199.71 0.556 − 0.306 HSP7C

1200.70 0.667 − 0.307 CPSF1

1200.71 0.660 − 0.349

1325.73 0.578 0.115 H4, HCLS1

1326.73 0.652 0.001 TKT

1477.74 − 0.673 − 0.482 RINI, SDHF2, PEA15

1953.13 0.505 0.098 TRFE

1954.11 0.501 0.373 ACTG, ACTBL, SEPT7

1954.12 0.502 0.373

1955.10 0.514 0.152 KCD12, ACTC

1976.03 0.568 0.121 ACTA

1977.04 0.575 0.034 ARP2, ACTA

A positive value of the effect size indicates the factor’s downregulation in the first ROI while its negative value
indicates the factor’s upregulation of the firsts ROI (significant differences are in bold, lack of significant differ-
ences in italics); listed are up to three proteins whose fragments showed the maximum concordance with m/z
values of imaged components (n.d. not determined)
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niche (e.g., reorganization of extracellular matrix and forma-
tion of blood vessels) but also production of cytokines and
growth factors that increase motility and invasiveness of can-
cer cells as well as decrease their sensitivity to pro-death fac-
tors [40, 41]. Immune cells have an obvious role also in the
development and progression of thyroid cancers [42, 43]. On

the other hand, phenotypic differences between a primary tu-
mor and its lymph nodemetastases could also reflect invasion-
related features of metastatic cells. Increased motility and in-
vasiveness of cancer cells involves remodeling of their skele-
ton and extracellular matrix; hence, factors regulating these
cellular components are frequently associated with the

Table 3 Components that
discriminate between thyroid
tumor and its metastasis in lymph
nodes

Component (m/z) Significance of differences (Cohen’s effect size) Hypothetical identity

Tumor vs. metastasis Thyroid vs. LN

788.47 1.358 1.371 n.d.

788.99 0.611 0.582 n.d.

789.47 0.573 0.694 n.d.

816.44 0.952 0.693 H2B1B, CP250, FBN1

850.49 0.743 1.039 GRD2I, K1C19, H2AX

850.51 0.803 1.066

944.52 1.879 1.503 H2AX

944.74 1.863 1.509

945.52 1.913 1.641 TIM10, PGBM, MATR3

946.51 1.259 1.673 n.d.

946.52 1.330 1.709 n.d.

966.50 0.644 0.889 RP10A

1032.57 1.590 1.387 FIBB, RAC2, H33

1033.58 1.065 1.385 AOC3, K2C1

1198.71 1.624 1.498 ACTC, POTEE,

1198.91 0.675 0.819

1199.71 1.547 1.576 HSP7C, ACTN

1200.70 1.029 1.622 CPSF1

1200.71 1.202 1.697

1274.72 0.565 − 0.071 H2AX, HBB, TCPE

1325.73 1.304 1.504 H4, HCLS1

1326.73 1.028 1.462 TKT

1529.70 0.659 0.399 HBA, TYPH

1530.70 0.718 0.364 G3P

1743.77 0.802 0.924 H2B1B, CO6A3, CO4B

1743.80 0.802 0.928

1744.79 0.795 1.100 ACTG

1745.78 0.503 0.988 HSP7C

1790.88 0.925 1.077 ACTG, PTPRC

1791.88 0.843 1.224 K1C9

1792.88 0.515 1.091 MATR3

1953.13 1.110 1.092 TRFE

1954.11 1.155 1.030 SEPT7, ACTG, KCD12

1954.12 1.154 1.031

1955.10 0.756 1.016 GPX3

1976.03 0.575 0.328 ACTA

1977.04 0.602 0.916 ACTR

A positive value of the effect size indicates the factor’s downregulation in the first ROI while its negative value
indicates the factor’s upregulation of the firsts ROI (significant differences are in bold, lack of significant differ-
ences in italics); listed are up to three proteins whose fragments showed the maximum concordance with m/z
values of imaged components (n.d. not determined)
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aggressiveness of thyroid cancer [44, 45]. Moreover, mecha-
nisms related to epithelial to mesenchymal transition, possibly
involving cancer stem-like cells, are well documented in the
progression of thyroid cancers [46, 47]. The strong influence
of the tumor niche in lymph nodes and specific features asso-
ciated with invasiveness could explain the relative “equaliza-
tion” of a phenotype of metastatic cancer cells since inter-
patient heterogeneity of metastases was markedly lower than
inter-patient heterogeneity of thyroid tumors. Finally, hypo-
thetical coexistence of cancer cells and immune cells in tissue
regions delineated as metastasis ROI could also contribute to
differences observed between a primary tumor and metastasis
ROIs as well as to similarities observed between metastasis
and lymph node ROIs.

Overall similarities between tissue regions were obvious-
ly associated with the number of components that showed
significantly different abundances between these regions.
The highest number of discriminatory components was ob-
served between the most dissimilar tissues—normal thyroid
and normal lymph nodes. As one could expect, components
more abundant in lymph nodes were hypothetically attrib-
uted to proteins involved in immune-related functions and
blood components. On the other hand, the major factor spe-
cific for thyroid (as well as for both types of cancer regions)
was thyroglobulin, the precursor of thyroid hormones which
is the major protein synthesized in this gland. Components
that differentiated normal and cancerous thyroid included
those attributed to proteins involved in gland development
and functions (e.g., thyroglobulin) as well as in chromo-
some organization and extracellular matrix organization,
factors apparently associated with the etiology of thyroid
cancer. In fact, changes in the chromosome structure are
frequently observed in thyroid cancers and the abnormal
nuclear morphology is an important diagnostic factor in
PTC [48]. Remodeling of the extracellular matrix is associ-
ated with the development and progression of different ma-
lignancies [49] and differential expression of its compo-
nents (e.g., galectins and collagens) was reported also in
PTC [50, 51]. It is noteworthy that the same components
that discriminated normal and cancerous thyroid glands
did not discriminate the thyroid tumor and its metastases
in lymph nodes, which suggested their general cancer-
specific patterns. On the other hand, there were two types
of features differentiating tumor and its metastases. One of
them included proteins involved in immune-related func-
tions and other blood components, which most probably
reflected the infiltration of immune cells in metastasis
ROIs. Another group of differentiating features included
chromatin proteins (e.g., core histones) and proteins in-
volved in the cytoskeleton organization (e.g., actins and
keratins). Noteworthy, demethylation and other epigenetic
modifications of core histones were reported as an impor-
tant factor in early lymphatic metastasis of PTC that resulted

in modulation of migration and invasiveness of cancer cells
[52]. Moreover, remodeling of the cytoskeleton was gener-
ally involved in the epithelial-mesenchymal transition and
metastatic potential of cancer cells [53]. Interestingly, dif-
ferent properties of actin cytoskeleton were reported for
colorectal cancer cells derived from the primary tumor and
its lymph node metastasis from the same patient [54], yet
similar data is not available for thyroid cancer. It is also
noteworthy that cytokeratin 19 (K1C19; upregulated here
in metastasis ROI), an established marker of different ma-
lignancies, was highly expressed in lymph node metastases
of PTC [55] and was associated with extensive vascular
invasion of follicular thyroid cancer [56]. Even though a
relative overall similarity between lymph nodes and cancer
metastases in lymph nodes was noted, several components
discriminating these ROIs were detected. These included
thyroglobulin detected in cancer metastasis as well as pro-
teins involved in functions of blood and immune cells de-
tected in normal lymph nodes (not surprisingly, similar
components discriminated between normal thyroid and nor-
mal lymph nodes). In general, proteins hypothetically ascribed to
components that discriminated different ROIs reflected molecular
features and functions that could be attributed to the imaged types
of tissue. However, this type of analysiswas not specific enough to
identify features of cancer proteome associated with invasive po-
tential, hence preferably observed in metastatic cells, or their
changes related to the influence of lymph node microenvironment
(mainly interactions between cancer cells and immune cells).

Conclusions

A marked molecular difference between the primary thyroid
cancer and its lymph node metastases was observed using
mass spectrometry imaging. Importantly, we concluded that
phenotypical inter-tumor heterogeneity between primary tu-
mors from different patients was lower than intra-tumor het-
erogeneity between primary tumor and lymph node metasta-
ses from the same patient.
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