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Abstract Pheochromocytomas (PCCs) are slow-growing
neuroendocrine tumors arising from adrenal chromaffin
cells. Tumors arising from extra-adrenal chromaffin cells are
called paragangliomas. Metastases can occur up to approxi-
mately 60% or even more in specific subgroups of patients.
There are still no well-established and clinically accepted
“metastatic” markers available to determine whether a primary
tumor is or will become malignant. Surgical resection is the
most common treatment for non-metastatic PCCs, but no
standard treatment/regimen is available for metastatic PCC.
To investigate what kind of therapies are suitable for the
treatment of metastatic PCC, animal models or cell lines are
very useful. Over the last two decades, various mouse and rat
models have been created presenting with PCC, which include
models presenting tumors that are to a certain degree biochem-
ically and/or molecularly similar to human PCC, and develop
metastases. To be able to investigate which chemotherapeutic
options could be useful for the treatment of metastatic PCC,
cell lines such as mouse pheochromocytoma (MPC) and
mouse tumor tissue (MTT) cells have been recently introduced
and they both showed metastatic behavior. It appears these
MPC and MTT cells are biochemically and molecularly similar
to some human PCCs, are easily visualized by different imag-
ing techniques, and respond to different therapies. These
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studies also indicate that some mouse models and both mouse
PCC cell lines are suitable for testing new therapies for meta-
static PCC.
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Introduction

Pheochromocytomas (PCC) are rare neuroendocrine tumors
that arise from chromaffin cells of the adrenal medulla, or
extra-adrenally (also called paragangliomas (PGL)), and
they are characterized by overproduction of catecholamines,
such as epinephrine and norepinephrine [1]. These tumors
occur sporadically, but 30—40% occur in the context of a
hereditary syndromes, most commonly multiple endocrine
neoplasia type 2 (MEN 2), von Hippel-Lindau disease, neu-
rofibromatosis type 1 (NF1), and the pheochromocytoma—
paraganglioma syndrome [2]. Approximately 10% of PCC
are malignant, although this frequency is much higher in
patients with germline mutations in succinate dehydrogenase
subunit B (SDHB) [3]. The management of patients with PCC
follows an algorithm including biochemical testing, conven-
tional anatomic imaging, and functional imaging. The stan-
dard treatment of benign PCCs is surgical removal of the
tumor [4]. In contrast, there is no standard treatment of meta-
static PCCs. While new PCC susceptibility genes have been
revealed in the last decade, the pathogenesis of both benign
and malignant/metastatic sporadic or genetically inherited
PCC:s is still not well understood.

Knock-in and knock-out mice are proven useful models
to investigate the pathogenesis of human tumors including
their metastatic potential. Many different mouse models that
develop PCCs have been generated (Fig. 1), some of which
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Fig. 1 Hematoxylin eosin
staining of a healthy mouse
adrenal and b mouse PCC

accidentally [5—-16]. An overview of all murine models is
listed in Table 1.

In recent years, there has been great interest in the devel-
oping a PCC cell line that would be physiologically similar or
relevant to human PCC cells and could be used for further
study of genetic abnormalities, preclinical applications, testing

Table 1 Mouse and rat models with PCC

new imaging probes and techniques, as well as the develop-
ment of new radiotracers and therapeutic options. Despite
some initial promising reports [17], no proven human PCC
cell lines exist. In this article, we will review all mouse and rat
models that develop PCC, discuss different imaging techni-
ques, and two recently developed mouse PCC cell lines and

Mouse model AMH PCC  PCC metastases Other affected organs References
Rb*" 71% Pituitary, thyroid, parathyroid, lung, pancreas Nikitin et al. [10]
Rb" p107"~ 4% Intestine, bone, lymph nodes, ovary, thyroid, Dannenberg et al. [6]
lung, testis
Rb" p130™~ 55% Eye, lung Dannenberg et al. [6]
Rb"~ 46% Pituitary, lung, uterine, lymph nodes, gastro, Yamasaki et al. [16]
Rb" E2F1""~ 52% testis, thyroid
Rb"E2F1 95%
Rb"F2 Typ53F2-10/F2-10 100% Tonks et al. [31]
plSI“_l‘4°_/ B 33% 8% 4% pelvic nerve  Pituitary, thyroid, testis, parathyroid, pancreas, Franklin et al. [7]
p27KiPt="~ 19%  24% stomach, intestine, lungs
P 1 8[nk4c*/*p27](ip 1+/— 42% 17%
P 1 8Ink4c+/fp27Kipl*/* 339, 50%
plglnkde/—pogKipi—/- 9%  91%
p27Pt Yes Pituitary Pellagata et al. [11]
p27%iP! rat 95% Pituitary, pancreas, parathyroid, sympathetic Fritz et al. [8]
) paraganglioma (85%)

27kfp1;+/CK7 29% Pituitary, ovarian, lymph nodes, intestine, uterus, Besson et al. [36]
p27kiplCK—/CK= 79% liver, breast, harderian
Pten™” 10%  65% Pituitary gland, thyroid, prostate, lung, breast Bai et al. [5]
p1ginkde= 29%  14%
Pten p1giksct/” 6% 1%
Pten p1gikée/ 11%  84%
Pten"’” 24% 15% lungs Prostate, breast, salivary gland You et al. [22]
Ink4a™™" Pten""” 57%
Ink4a™™ " Pten""” 59%
Pten™” 23% breast, endometrium, prostate, gastrointestin, lymphoid ~Stambolic et al. [14]
Pten'®*F/loxP 100% 35% lungs Prostate, salivary gland Korpershoek et al. [9]
Pten™” 100% Prostate, thyroid, intestine, endometrium, lung Di Christofano et al. [21]
Pten™ p27%iP1~~ 100%
RetMe@18ThWt 16% 2% Smith-Hicks et al. [92]
RETMe?ISTR/MeISThr 1 0y, Hyperplasia of sympathetic ganglia Sweetser et al. [15]
Nf1*~ 20% Powers et al. [60]
Nf1"" irradiated 87%
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their suitability for testing current as well as new therapies that
might be used for the treatment of human metastatic PCC.

Pten Knock-Out Mice

The PTEN gene (phosphatase and tensin homolog deleted
from chromosome 10) is a tumor suppressor gene that inhibits
the AKT-pathway by converting phosphatidylinositol 3,4,5
triphosphate (PIP3) into phosphatidylinositol 3,4 biphosphate
(PIP2). This dephosphorylation is counteracted by PI-3 kinase
(PI3K), which converts PIP2 into the active PIP3. Through
PI3K, multiple pathways are triggered, many of which are
associated with cell growth and survival [18]. The PTEN gene
is one of the most frequently mutated genes in human cancer,
although it has never been directly associated with human
PCC [19, 20]. In contrast, several Pfen knock-out mouse
models have been reported to present with PCC at a high
frequency [5, 21, 22]. Stambolic et al. found PCC in 23%
(19 of 81) of conventional Pren”~ knock-out mice older than
8 months, which were, with the exception of one, all female
[14]. In the study of You et al. [22], mice with identical genetic
backgrounds were investigated in more detail. In addition, a
combined double knock-out mouse model was created, inac-
tivating both Pren and Ink4a™. The Ink4a™” gene encodes
16" and p 197, which act as tumor suppressor genes and
regulate the pRb and p53 pathways, respectively [23]. Four
genotypes, including mono-allelic inactivation of Pten and
mono-allelic and bi-allelic inactivation of Ink4a™”, were in-
vestigated for the occurrence of all tumor types, including the
presence of PCC. Only (mono-allelic) inactivation of Pten led
to PCC, and co-inactivation of Ink4a™’ resulted in earlier
tumor presentation and its higher frequency. At a mean age
of onset of 42 weeks, the Pren™” mice showed PCC in 24%,
whereas Ink4a™""" Pten™”" and Ink4a™" Pten™”" displayed
PCC in 57% at a mean age of 30 weeks and in 59% at mean
age of 24 weeks, respectively [22]. The PCC displayed loss of
parts or the entire chromosome 4, which includes a chromo-
somal area syntenic to human chromosome 1p, which is lost at
a high frequency in human PCC [24-27]. In addition, PCC
metastases were seen in lungs of approximately 15% of the
Pten”’” mice. Our group has reported another conditional Pten
knock-out mouse model that had PCC at a high frequency [9].
It appeared that these mice developed PCC in 30% of the mice
at 7-9 months of age, 88% at 10—14 months, and 100% at 15—
16 months. Furthermore, PCC metastases were found in 35%
of lungs of mice at 10 months and older. This frequency of
lung metastases had never been described before, indicating
this model could be unique for the investigation of pathogen-
esis of organ metastatic PCC. In addition, the genomic alter-
ations found in our model were different from those found in
the study of You et al. [22]. The PCCs in our study displayed
loss of chromosomes 6 and 19 as their main genomic

alterations, whereas mouse PCCs of You et al. showed mainly
(partial) loss of chromosome 4. Mouse chromosomes 6 and 19
are syntenic to human chromosomal regions that are altered in
human PCC, such as chromosome 11q13, 5p15, and 22q.

Other studies combined the inactivation of Pfen with the
knock-down of other genes, such as p/8™* and p27*7.
pI18™# is involved in the activation of pRb, a regulator of
cell division. Bai et al. generated Pren and p18™** double
knock-out (KO) mice and investigated the tumor spectrum,
including adrenal tumors [5]. The homozygous p/8™** KO
mice showed PCC at relatively low frequency (14%, 2 of 14),
exclusively at 6 months and older. The Pten™” mice of 3—
6 months already showed PCC in 22% (two of nine), whereas
the mice of 6-15 months presented PCC in 65% (13 of 20).
Heterozygous and homozygous inactivation of p/8™** leads
to higher frequencies of tumor occurrence. The PCC pene-
trance was almost entirely complete (84%, 16 of 19) in
18"~ Pten*™”” mice of 6-10 months. In addition, tumors
of the heterozygous and homozygous double knock-out mice
were relatively larger compared with those of the Pren™ or
pI18~" mice and frequently invaded the cortex and surround-
ing tissues, but no metastases were reported.

Rb Knock-Out Mice

The retinoblastoma gene family includes the RB gene, the
pl107 gene, and the p/30 gene, which are all tumor suppres-
sor genes. The RB gene is the most frequently involved gene
in the pathogenesis of multiple tumors. Inactivation of the
RB gene has been associated with familial and sporadic
retinoblastomas, small cell lung carcinomas, and osteosar-
comas [28, 29]. In addition, inactivation of Rb has also been
associated with chromosomal instability, cancer progres-
sion, and activation of angiogenesis [30]. RB functions as
an essential regulator of cell cycle progression. Several
research groups have created Rb knock-out mice, often with
heterozygous or homozygous inactivation of an additional
gene [6, 10, 16, 31].

One study investigated heterozygous inactivation of Rb in a
conventional knock-out mouse model and demonstrated PCC
in 71% of the mice (22 of 31 mice), of which 14% showed
bilateral adrenal medulla hyperplasia in approximately half of
the mice [10]. Other tumors that occurred at a high frequency
in these mice were pituitary tumors (100%), medullary thyroid
carcinoma (95%), and corresponding lung metastases (68%).

Another study combined heterozygous inactivation of Rb
with homozygous knock-down of p/30 and p107 [6]. These
enzymes, including RB, can repress transcription from
E2F-responsive promoters and are regulated by cell-cycle-
dependent phosphorylation [32, 33], but act on different
E2Fs [34]. The study of Dannenberg et al. showed PCC
in 55% of the Rb" p107 " mice (6 of 11 mice) and in
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4% of the Rb* " p130™" (2 of 53 mice) [6]. Besides the
different penetrance of PCC in these models, there was
also a difference in occurrence of other tumors.

A third study investigated an Rb"~ knock-out model in
combination with heterozygous or homozygous inactivation
of E2f1 [16]. Adrenal medullary hyperplasia was reported in
46% of the Rb™"~ mice, in 52% of the Rb+/_E2f1+/_ mice,
and in 95% of the Rb"“E2f1”"" . In contrast to the increas-
ing frequency of PCC occurrence in the Rb" E2f1""", pi-
tuitary adenocarcinomas occurred less frequently in these
mice (62%) compared with a nearly full penetrance of the
Rb™" and Rb™E2fI""" mice.

Recently, another study published a conditional knock-
out mouse model that used the Cre-lox system to inactivate
the Rb and Trp53 gene [31]. Inactivation was accomplished
by removal of Rb exon 2 and 7ip53 exons 2 to 10 by Cre
recombinase. Cre recombinase expression was driven from
the TECI transgene using elements of #yrosine transcrip-
tional elements, which are active in the development of a
subset of neural crest-derived tissues including the adrenal
medulla. All of the Rb*?F/Trp53"19F 10/ TECT™ mice
(n=13) showed bilateral PCCs. Catecholamine synthesis
was relatively intact, but storage of catecholamines was
altered as shown by the heterogeneous and lower levels of
immunohistochemical staining for chromogranin A and syn-
aptophysin, and the empty and much smaller vesicles seen
by electron microscopy of the PCC [31]. In addition to PCC,
one of these mice showed a tumor in the neck region,
suggested to be a distant metastasis by the authors. However,
this could also have been a paraganglioma, as the carotid body
is known to produce tyrosine in rats [35].

p18™C and p277! Knock-Out Mice and Rats

p18™K?C and p27%"P! belong to the family of cyclin-
dependent kinase (CDK) inhibitors, which are classified into
two families: The CIP/KIP family members are known to
inhibit a variety of cyclin-CDK complexes, whereas INK4
family members specifically inhibit CDK4/CDK6 [36, 37].
All CDK inhibitors are involved in regulation of the cell cycle
and result in G1 arrest.

pI18™5*“ has been described as a tumor suppressor gene in
human glioblastomas [38], and p/8™%*“ mutations have also
been demonstrated in RET-mutated PCC [39]. p18™%*“ knock-
out mouse models present with organomegaly and a
disproportionately enlarged pituitary gland, spleen, thymus,
and adrenal gland [40]. Pheochromocytomas occurred in
8.3% of the p/8 mice (2 of 24 mice aged 8 months
or older), 23.8% of the p27/7 mice (5 of 21), 17% of the
pI18 p27"" mice (4 of 24), 50% of the p/8" p27 " mice
(three of six), and in 91.3% of the p/8 " p27 " double
knock-out mice (21 of 23) [7]. The study also combined p/8
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knock-out mice with p2/ knock-out mice, and both p217~ as
well as p18 7 p217~ did not display PCC. Of the latter group,
one mouse developed a PCC metastasis at the pelvic nerve.
Mouse and rat models with inactivated or mutated
p2757! also presented with a multiple endocrine
neoplasia-like syndrome (MEN 4). Both the p275%!~~
knock-out mice and the p27%%’ mutated rats developed
pheochromocytomas, the latter of which was in 95% of
cases [8, 11]. In addition, these rats also developed sympa-
thetic PGLs [8]. These tumors were investigated for ge-
nomic imbalances and approximately 30% displayed loss
of chromosomes 8 and 19 [13]. The chromosomal region
8q31—q32, showing the highest frequency of loss (29%), is
syntenic to human chromosome 3q21.3—q24, which is lost
frequently in MEN2-related as well as sporadic PCC [13,
27, 41]. Loss of chromosome 19p12—p14 occurred in 30%
of the rat PCC and is syntenic to human chromosome
16921. This chromosomal region has not been reported to
be altered in human PCC or PGL but has been associated
with other tumors such as retinoblastoma and papillary
thyroid carcinoma [13, 42—44]. Furthermore, gene expres-
sion profiling was performed on these MEN-associated rat
PCC, which revealed a neural precursor cell-like signature
[45] similar to the expression profile of PCC of the NF/
knock-out mice described by Powers et al. [46] Recently,
germline mutations in the p275"" gene have been associated
with a novel type of multiple endocrine neoplasia syndrome
type 4 in humans (reviewed extensively by Maroni and
Pellegata) [47] but was also found in another study [48].

RETY*"?" transgenic mice

RET (rearranged during transfection) is a receptor tyrosine
kinase, located on chromosome 10ql1.2, and is a proto-
oncogene. RET is a receptor for the glial cell line-derived
neurotrophic factor family, which plays a role in a number
of biological processes such as cell survival, differentiation,
and migration [49]. Mutations in RET cause the multiple
neuroendocrine neoplasia type 2 (MEN 2) syndrome, which
is subdivided into MEN 2A and MEN 2B [50]. These
subtypes are clinically different, but both present with
PCC and medullary thyroid carcinomas. Studies have
revealed that activation by RET-mutant proteins result in
activation of the RAS/RAF/MAPK, and PI3K/AKT path-
ways [51]. A RETY*N?2 transgenic mouse model that has
been created to investigate the pathogenic effect of a
MEN2B-specific mutation, also developed PCC [15]. No
specific percentage of PCC penetrance was mentioned in the
report, but besides adrenal tumors, the mice also developed
benign neuroglial tumors in the entire sympathetic nervous
system, which seem to be histologically identical to human
ganglioneuromas [15].
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Nfl Knock-Out Mice

NF'1 (neurofibromin gene) is a tumor suppressor gene located
on chromosome 17q11.2 and inhibits the RAS/ERK and AKT
pathway by dephosphorylating active RAS to an inactive form
[52]. Germline mutations cause neurofibromatosis type 1, which
is characterized by café-au-lait spots, Lisch nodules in the eye,
fibromatous tumors of the skin, and PCCs at a low frequency
(0.1-5.7%) [53]. A heterozygous NfI knock-out mouse model
was created, which carried a heterozygous germline mutation in
exon 31 that was representative for a mutation found in human
NF1 patients [54]. In total, 250 Nf**! mice were investigated
for the typical clinical characteristics that occur in human NF1
patients, but no neurofibromas or pigment defects were detected.
Forty of these mice were studied more closely and revealed PCC
in approximately 15% of the mice, which all displayed loss of
the wild-type allele, and stained positive for phenylethanolamine
N-methyltransferase, so were able to produce epinephrine [54,
55]. Four cell lines were cultured from the Nfl ™! mouse PCC,
which displayed loss of chromosomes 4 and 9, which are
homologous to chromosomal regions that show loss in human
PCC. Mouse chromosome 4 is syntenic to a part of chromosome
1p, and mouse chromosome 9 is syntenic to regions of human
chromosomes 3p, 3q, and 11q. The cell lines will be described in
more detail below.

Sdhb/d Knock-Out Mice

The SDHB and SDHD genes encode two subunits of mito-
chondrial complex II, and inactivating mutations in both genes
have been associated with PCCs and PGLs in humans [56].
One study investigated the Sdh activity of heart samples in an
Sdhb KO mouse model, heterozygous for a deleterious muta-
tion in the Sdhb gene (exon 2 deletion), and found a 40%
decreased activity compared with the heart samples of healthy
animals. The presence of PCC or PGLs was not reported in
this paper. Another study generated a conventional knock-
down of Sdhd in a mouse, by removal of the entire third exon,
to create a mouse model for PCCs and PGLs [57]. In addition,
these mice were crossed with H79 knock-out mice, which is
postulated as a modifier gene of Sdhd tumorigenesis, to in-
vestigate if inactivation of these genes would lead to initiation
or enhancement of tumor development. Inactivation of both
SDHD alleles resulted in embryonic lethality and of one allele
in a healthy phenotype without evidence of PCC or PGL.

Mouse PCC-Related Genes in a Common Pathway
and Their Relation with Human PCC

If we investigate the genes involved in human and mouse PCC
in more detail and focus on how they are related, a common

pathway could be proposed (Fig. 2). Most of the mouse PCC-
related genes are involved in the regulation of the G1 to S phase
of the cell cycle, including CDK inhibitors. All CDK inhibitors
result in G1 arrest when overexpressed in transfection. Two of
these cell cycle-related genes, p18™%*“ and p27°"", have also
been associated with human PCC. Somatic p/8™**“ gene
mutations co-occurred with somatic and germline RET mutated
PCC and medullary thyroid cancer [39]. Furthermore, p275"
mutations were associated with the MEN type 4 syndrome, but
not with PCC [11, 48, 58]. Downregulation of p/8™** and
275" expression appears an essential step in the tumorigen-
esis of RET-related tumors, and both genes are regulated by
RET, of which downregulation of p18™ < is through N-Myc
[59, 60]. PTEN mutations have never been associated with

cell cycle progression

&

i

Fig. 2 A proposed common pathway for genes that are associated with
the pathogenesis mouse and/or human PCC [34, 36, 37, 51, 52, 60-62,
95-101]
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PCC in humans, but PTEN is an important key player in
regulating the AKT and mammalian target of rapamycin
(mTOR) pathways, which are altered in human PCC. In addi-
tion, mutations in patients with PCCs have recently been
described in TMEM127, which is a negative regulator of the
mTOR pathway [61] and MAX, the MY C-associated factor X
gene, which is a tumor suppressor [62].

An Animal Model Derived from Nfl Mouse PCC Cells

PCC is a rare condition, with limited availability of tumor
tissue. The existence of a PCC cell line would provide us
with unlimited tumor cells for the investigation of all kinds
of therapies. Unfortunately, no human PCC cell line exists,
but there are cell lines from mouse and rat PCC. The rat
PC12 cell line has already been reviewed extensively, so we
will focus on the mouse pheochromocytoma (MPC) cell line
created from a Nf7 KO mouse PCC by the group of Tischler

Fig. 3 a Liver pathology after
tail vein injection of 10 million
MPC cells. 7 weeks post
injection; PCC tumors almost
replaced liver parenchyma that
usually causes death of mice.

b 2 weeks post injection of
MPC cells, highly mitotic liver
metastases were harvested and
cultured to create MTT cell line.
¢, d A comparison of tumor
growth rate 4 weeks
post-injection between MPC
and MTT cells using microCT.
¢ One million of MPC cells,

d one million of MTT cells
injected tail vein. The
aggressive growth rate of liver
tumors after MTT cell injection
is significant. While
MPC-derived liver tumors
reached approximately 0.7 mm
in diameter, the MTT-derived
tumors reached 2—-8 mm in
diameter
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et al. [63]. These MPC cells were the basis for the mouse
tumor tissue (MTT) cells that will also be discussed below.
The main advantages of the MPC cell line include the
genetic and biochemical resemblances to human PCCs, such
as the expression of substantial levels of the epinephrine-
synthesizing enzyme phenylethanolamine N-methyltransfer-
ase, and expression of high levels of the receptor tyrosine
kinase, Ret [64, 65]. These biochemical features are charac-
teristics of sporadic and familial human PCCs but not of the
rat PC12 cells [64—66]. MPC cells were originally used to
create a subcutanecous mouse model [67]. Subsequently,
MPC cells were injected via the tail vein in nude female
mice, which resulted in a model of metastatic PCC, showing
numerous liver lesions in more than 90% of the injected
animals. Liver lesions were detectable as early as 4 weeks
after injection of MPC cells, using very sensitive imaging
techniques (Fig. 3). Non-hepatic PCC lesions developed
usually in the fifth week or later and included the adrenal
glands (30%), which were often bilateral, ovaries (30%),

d
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lungs (20%), kidneys (10%), bones (spine and hip bone
area) (10%), and, much less frequently, muscles [68].

The metastatic PCC model provides a unique platform
for studying physiologic changes and interactions, especially
since implants can be created in all major organs. Gene
expression microarray analysis can be used to screen tumors
for differentially expressed genes between two or more
groups. Both animal models (metastatic and subcutaneous)
revealed different gene expression of metastasis-associated
genes. Using quantitative real-time PCR, expression of five
genes (Metap2, Reck, S100a4, Timp2, and Timp3) were ver-
ified as significantly lower in liver than in subcutaneous
tumors. Downregulation of these genes has been previously
associated with malignancy of PCCs [67]. Subcutaneous
tumors are simple to monitor but do not resemble the micro-
environment of animal/human body. Therefore, a metastatic
model is more relevant in the study of tumor biology, evalu-
ation of response to treatment, and for monitoring toxicity
after drug administration.

Bench-to-Bedside Approach

Since conventional management of clinical PCC includes
biochemical testing and anatomical and functional imaging
modalities, the same approach should be used in metastatic
animal models. As a miniaturized version of the traditional
clinical computed tomographic (CT) imaging system, small-
animal microCT scanners are capable of providing tumor
localization and tumor growth monitoring with excellent
spatial resolution. However, this imaging technique requires
the use of specific contrast agents for proper localization of
soft tissue tumors. The hepatobiliary contrast agent Fenes-
tra™Liver Contrast (Fenestra™LC, Advanced Research
Technologies, Inc.) is ideal for liver tumors localization,
and its utility was described in detail previously [68-70].
Other anatomical imaging techniques, such as magnetic
resonance imaging (MRI), provide certain advantages over
microCT. T2-weighted MRI, for instance, does not require
contrast agents and is rapid to perform, with whole body
images obtained in less than 5 min [68]. However, none of
the anatomical imaging techniques properly access tumor
physiology.

PCCs are characterized by the presence of membrane nor-
epinephrine transporters (NET), vesicular monoamine trans-
porter (VMAT) system, catecholamine synthesis and storage
mechanisms, and amino acid transporters, all of these provid-
ing a potential molecular imaging target. The dopamine ana-
logue ['® F]-dopamine (['® F]-DA) [71, 72] enters cells via the
membrane NET [73, 74] and is then translocated via the
VMAT into storage vesicles, where the radioactivity is con-
centrated. ['**I]-MIBG uses similar mechanisms to enter these
cells, but importantly, its affinity to NET is lower compare with

['® F]-DA. Uptake in these tumors depends on both NET and
VMAT and subsequently storage in vesicles. Therefore, if PCC
metastases do not express NET, other (less specific) radio-
tracers can be used for detection and localization of tumors,
including ['® F]-DOPA. ['® F]-DOPA is an analog of L-3,4-
dihydroxyphenylalanine (L-DOPA) [75], a precursor of cate-
cholamines (dopamine, norepinephrine, and epinephrine).
These two radiotracers revealed great discrepancy in uptake
in mouse subcutaneous and metastatic PCCs. A recently pub-
lished study [76] demonstrated that the same MPC cells,
injected intravenously and subcutaneously, create physiologi-
cally different tumors, as could be expected, in relation to the
microenvironment of the tumor cells. While ['* F]-DA
and ['® F]-DOPA PET performed equally well for the detection
of ovarian metastatic tumors, ['® F]-DOPA PET showed supe-
riority to ['® F]-DA PET in the detection of hepatic, lung, and
subcutaneous tumors. In particular, subcutaneous tumors were
detected only with ['® F]-DOPA PET. Comparisons of the in
vitro uptake of both radiotracers by MPC cells confirmed the
importance of the NET for uptake of ['® F]-DA and also
confirmed that VMAT?2, and to a lesser extent VMATI, is
important for its retention in catecholamine storage vesicles.
The differences in uptake of these two radiotracers may be
relevant to recent clinical findings of differences in functional
imaging characteristics of various PCC, depending on their
underlying mutations and nature [77]. For example, in patients
with malignant paragangliomas due to succinate dehydroge-
nase subunit B mutations, ['® F]-DA is superior to ['® F]-
DOPA for localization of metastases (reverse to the present
animal model of PCC), whereas in other patients with so-called
head-and-neck paragangliomas, ['® F]-DOPA is superior
to ['* F]-DA [78].

More Aggressive Mouse Model of Metastatic PCC

Recently, another model of metastatic PCC has been devel-
oped, following the approach revealed from gene expression
differences between subcutaneous and liver metastases [79].
Liver lesions behaved more aggressively compared with the
rest of the non-hepatic PCC metastases, and thus, disaggre-
gated tumor cells from hepatic metastases were isolated and
cultured, resulting in a more aggressive sub-line named
MTT cells (Fig. 3a, b). The MTT cells, when injected via
the tail vein, produce metastatic disease that retains the histo-
logical and biochemical features of PCC, while at the same
time representing a closer convergence with the aggressive-
ness seen in the human disease. Martiniova et al. confirmed
that the MTT cells derived from MPC maintain a PCC phe-
notype by measuring intracellular catecholamines; the expres-
sion of TH by immunocytochemistry; TH and PNMT gene
expression by quantitative real-time polymerase chain reac-
tion (QRT-PCR); and the morphologic presence of dense-core
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secretory granules by electron microscopy, a diagnostic fea-
ture of PCC [79]. Elevated norepinephrine levels were also
detected in MTT-derived liver tumors compared with normal
liver tissue. Monitoring of tumor growth by microCT/MRI in
the MTT model clearly demonstrated its practicality, in par-
ticular, for pre-clinical testing of novel treatment, because of
the greater number of lesions achieved and shorter develop-
ment time (Fig. 3c, d).

Since more aggressive MTT cells could again show close
similarities to human metastatic PCC, the newly generated
MTT and MPC microarray data were mined against a previ-
ously generated human PCC microarray database [80]. Genes
that were twofold up- or downregulated were accounted for
and compared with genes in benign vs. malignant human
microarray. The 47 genes were put in the ingenuity pathway
analysis to determine if these genes are part of any biological
pathway. As a result, seven genes were found to be part of a
network. qRT-PCR was performed on the mouse MPC and
MTT cells and also on a different set of human metastatic and
non-metastatic PCCs to compare the in vitro/animal data to
the human samples. This validation revealed two genes (FRK,
P=0.0027, and KRT8, P=0.0003) that were significantly
downregulated in MTT cells compared with MPC confirming
the microarray analysis [79].

Application of PCC Metastatic Models in Preclinical
Treatment Assessment

Here, we will introduce three different approaches, how a
model of metastatic PCC was used in preclinical treatment
assessment. All these approaches are ready for translation
into the clinic in the near future. In the process of experi-
mental drug screening, all were evaluated in vitro using
MPC or MTT cells. For the purpose of assessment of tar-
geted therapy, the expression of transporters and proteins
was evaluated in both human and mouse metastases. When
a candidate drug was selected, the appropriate imaging
technique to monitor tumor response longitudinally was
chosen.

Utilization of Increased Expression of Interleukin (IL)-13
IL-13Ra2 in PCCs

Gene expression microarray analysis has been used to
screen for genes and signaling pathways that play pivotal
roles in cellular transformation, tumor progression, and de-
velopment of metastases. Increased expression of interleu-
kin (IL)-13 IL-13R«2 in PCC was identified through human
and mouse microarray analysis as a potential target for
directed therapy with an immunotoxin consisting of IL-13
and truncated Pseudomonas exotoxin A (IL-13PE). The IL-
13R«2 binds IL-13 with high affinity and is over-expressed
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in a variety of cancers [81, 82]. Experimental drug testing
started on both subcutaneous and metastatic tumors, with
intratumoral injection of 100 pg/kg IL-13PE or PBS for three
consecutive days. IL-13Ro2 expression was confirmed in
both subcutaneous and liver tumors, as well as in human
PCC by quantitative RT-PCR [83]. Conversely, normal adre-
nal medulla tissue did not reveal expression of IL-13R«x2. IL-
13PE treatment resulted in significant suppression of subcu-
taneous tumors compared with placebo after 3 days initial
treatment (P=0.0021), but not of liver tumors, which required
intratumoral delivery of IL-13PE [83]. This treatment could
still be used, due to the high specificity for most of human
PCCs with all gene mutations, however, in limited number of
cases. Drug would have to be administered using guided CT
or MRI intratumoral injections.

The Utilization of Histone Deacetylase Inhibitor
Romidepsin Evaluated by ['® F]-DA PET

The advantage of positive results from ['® F]-DA functional
imaging and identifying of NET expression in metastases in
the metastatic mouse model allowed utilizing this animal
model in experimental treatment through the modification of
NET expression in PCC. One of the most effective treatments
for malignant PCC includes ['*'I]-MIBG [84-90] that specif-
ically targets chromaffin and PCC cells via the NET [88, 89,
91]. Unfortunately, only 30% of patients show a tumor re-
sponse to ['*'I]-MIBG [86]. This disappointing response rate
is most likely related to the under-expression of NET and low
number of storage granules that results in lower ['*'1-MIBG
concentrations within the tumor cells. Thus, an increase of
NET and of the number of storage granules might improve the
response rate of such treatment. Liver tumors in MPC mouse
model revealed a wide range of NET expression as well as
['*1]-MIBG/['® F]-DA uptake [92]. Testing two structurally
different HDACI1, romidepsin and trichostatin A, in MPC cells
in vitro and in a mouse model of metastatic PCC in vivo
resulted in modification of NET transporter expression in liver
metastases. The following clinical approach was used in this
study: Mouse/patient was initially scanned with ['**I]-MIBG/
['® F]-DA. In general, those positive on ['**I]-MIBG scintig-
raphy are good candidates for ['*'T-MIBG treatment, but
there is a need to treat also those patients with negative
['*1]-MIBG scintigraphy. After series of tests, a pretreatment
with a single dose of romidepsin, 2.5 mg/kg, was used to
evaluate its effect on isotope accumulation in the tumors. In
conclusion, treatment with the HDAC inhibitors romidepsin
and trichostatin A increased ['**1]-MIBG and ['® F]-DA up-
take in MPC cells in vitro and in vivo in liver metastatic
lesions, through the upregulation of the cell membrane NET
[92]. These data support the notion that this approach may be
used clinically to augment the therapeutic efficacy of ['*'I]-
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MIBG in patients with advanced malignant PCC, paragan-
glioma, and other related tumors such as neuroblastoma.

A Complex Drug Evaluation and Treatment of Liver
Metastases Using a Small Molecule Inhibitor

of Serine/Threonine Protein Phosphatase 2A

in Combination with Conventional Chemotherapy

The failure of cytotoxic cancer regimens to cure the most drug-
resistant, well-differentiated solid tumors has been attributed to
the heterogeneity of cell types that differ in their capacity to
grow, differentiate, and metastasize. Data also supports that
MPC cells and PCC metastasis are in different cell cycle
phases, and thus any experimental treatment approach would
have only short-term responses. A new approach of investigat-
ing the effect of LB1, a small molecule inhibitor of serine/
threonine protein phosphatase 2A (PP2A), was proposed and
presented by Lu et al. [93], in a neuroblastoma xenograft
model, where, by modifying the tumors’ cell cycle, they in-
creased chemotherapeutic (temozolomide) effectiveness. For
treatment of liver metastases, LB1 was continuously released
by surgically inserting a small osmotic pump into the perito-
neal cavity in mice. Longitudinal MRI was used to monitor
lesions from MPC injection until the end of the treatment. The
effect of LB1 and temozolomide, a standard chemotherapeutic
agent that alone only transiently suppressed the growth and
regression of metastatic PCC, was evaluated. This new ap-
proach resulted in long-term, disease-free survival of up to
40% of animals bearing multiple intrahepatic metastases, a
disease state that the majority of patients die from. Inhibition
of PP2A was associated with prevention of G1/S phase arrest
by p53 and of mitotic arrest mediated by polo-like kinase 1
(Plk-1) [94]. The elimination of DNA damage-induced defense
mechanisms, through transient pharmacologic inhibition of
PP2A, is proposed as a new approach for enhancing the
efficacy of non-specific cancer chemotherapy regimens against
a broad spectrum of low growth fraction tumors very com-
monly resistant to cytotoxic drugs.

Conclusion

PCC of several animal models have been shown to resemble
human PCC. Most mouse and rat models presented with
benign PCC, but two studies reported lung metastases. Be-
cause no human PCC cell line exists, other cell lines would be
very relevant to determine what chemotherapeutics could be
used for the treatment of metastatic PCC. It would be benefi-
cial to create cell lines of the “spontaneously” metastasizing
PCC of Pten knock-out mice, but this has not been successful
yet. As an alternative, the MPC and MTT cell lines could be
used, which have been created from radiated Nf knock-out
mouse PCC. Both the spontaneous metastatic PCC mouse

models and mice injected with MPC and MTT cell lines might
be useful for the investigation of currently available targeted
cancer therapies.
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