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Abstract
Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain 
tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an 
Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), 
Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the 
Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the 
membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm’s 
adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to 
heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian 
Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. 
Comparative assessments underscore esFCM’s superior performance, particularly in scenarios involving added noise and bias 
fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.

Keywords Magnetic resonance imaging (MRI) · Brain tissue segmentation · Enhanced spatial fuzzy C-means (esFCM) 
algorithm · 3D T1 MRI images · Structural similarity index (SSIM)

Introduction

Magnetic Resonance Imaging (MRI) of the human brain 
stands as one of the most important tools in neurological 
diagnosis, facilitating the identification of abnormalities and 
assessment of brain functionality. The segmentation of MRI 
data, involving the partitioning of the image into distinct 
regions with similar intensity, texture, and homogeneity, 
emerges as a critical task in the realm of medical image  
analysis. This segmentation extends to differentiating vari- 
ous brain tissues, such as White Matter (WM), Gray Matter 

(GM), and Cerebrospinal Fluid (CSF), playing a key role 
in the quantitative analysis of the brain for diagnostic pur-
poses and further subdivision of brain regions. The precision 
achieved through accurate tissue segmentation and lesion 
separation enhances the ability of medical professionals to 
diagnose brain injury, neurodegenerative diseases like Alz-
heimer’s and Parkinson’s among others (Yang et al., 2008; 
Adhikari et al., 2015).

In numerous scenarios, the localization of pathology and 
accurate diagnosis is nearly impossible without the prior 
segmentation of brain tissues, highlighting the vital role of 
this process in the medical field. Brain tissue segmentation 
significantly contributes to the improved diagnosis of cen-
tral nervous system diseases, constituting a major challenge 
in medical image analysis due to the inherent variations in 
images arising from different modalities, signal intensities, 
and device configurations. Factors such as differences in 
size, texture, shape, and unclear boundaries between regions 
compound the complexity of the segmentation problem.

Numerous approaches have been proposed for brain  
tissue segmentation (Kumar et al., 2018; Kalavathi, 2013; 
Al-Dmour & Al-Ani,  2018). These algorithms can be 
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broadly categorized into two classes: manual-based and  
non-manual-based algorithms. Manual segmentation, rely-
ing on experts with extensive knowledge of radiology and 
neurology, necessitates proper segmentation tools and a  
significant amount of time. However, it also introduces 
subjectivity and inter-expert variability, requiring further 
decision-making processes Dora et al. (2017).

Non-manual-based algorithms encompass methods based 
on thresholding Otsu (1979), supervised learning approaches 
including deep learning Kumar et al. (2018), and cluster-
ing approaches. Thresholding methods are susceptible to 
the defined threshold, demanding considerable computa-
tional time to establish an appropriate threshold. Multilevel 
thresholding methods Gao et al. (2009), often combined 
with evolutionary algorithms, have been proposed to miti-
gate computational demands. Nevertheless, the accuracy of 
these methods depends on the image histogram and the pres-
ence of noise and artifacts in images.

Recently, supervised deep learning approaches (Moeskops 
et al., 2016; Brebisson & Montana, 2015; Zhang et al., 2015; 
Ding et al., 2020; Díaz-Pernas et al., 2021; Hua et al., 2021) 
have gained attention due to their learning ability. These meth-
ods learn from a set of images and generalize their perfor-
mance to previously unseen images. However, their efficacy 
relies on a substantial amount of ground truth segmentation to 
comprehend the data distribution. Performance degradation 
occurs when the distribution of the input image deviates sig-
nificantly from the training set. Ongoing efforts are underway 
to enhance their performance for diverse image datasets and 
modalities Hoopes et al. (2022).

In clustering approaches, pixels are grouped based on 
criteria such as connectivity, distance, and pixel intensity. 
The Gaussian Mixture Model (GMM) is a popular method in 
neuroimaging that employs Gaussian probability functions 
to cluster pixels/voxels in an image based on their intensity 
values, determined through an Expectation Maximization 
(EM) algorithm. However, most clustering approaches, 
including GMM, face challenges in easily segmenting 
images with intensity inhomogeneity, commonly known as 
the bias field problem. To address this issue, bias field cor-
rection methods are employed before or during segmentation 
Liu and Zhang (2013). Maximum Likelihood (ML)-based 
GMM methods may encounter issues of overfitting or get-
ting trapped in local minima Dora et al. (2017). An alterna-
tive method is Maximum A Posteriori (MAP) estimation 
Zhang et al. (2001). Combining GMM with Markov random 
field, Markov Chain Monte Carlo, and evolutionary algo-
rithms has been explored to improve segmentation perfor-
mance (Zhang et al., 2014; Saladi & Amutha Prabha, (2018).

Fuzzy C-means (FCM) is one of the most popular 
approaches that utilizes a similarity criterion to segment 
brain tissues (Ji et al., 2011; Chuang et al., 2006; Mahata 
& Sing, 2020; Maitra et al., 2019; Singh & Bala, 2021; Li 

et al., 2014; Chahal & Pandey, 2023). A membership func-
tion assigns a voxel to a class based on a degree determined 
by a membership function. However, FCM is less suitable 
for noisy images and in the presence of intensity inhomo-
geneity. Preprocessing steps are sometimes implemented 
before using FCM to mitigate these challenges. Modified 
FCMs with bias field correction, designed to be robust 
against noise, have been proposed to overcome these issues 
(Ji et al., 2011; Chuang et al., 2006; Mahata & Sing, 2020; 
Maitra et al., 2019; Singh & Bala, 2021; Li et al., 2014). 
Notably, many of these proposed approaches have been tai-
lored for 2D MRI images, potentially limiting their appli-
cability to 3D images or synthetic MRI images, which may 
differ from real images.

In this study, we introduce an Enhanced Spatial Fuzzy 
C-means (esFCM) algorithm with simultaneous bias cor-
rection to enhance the segmentation of 3D T1 MRI images. 
The esFCM employs a weighted least-squares method for 
bias field measurement, utilizing weights derived from the 
structural similarity index (SSIM) and neighborhood pixel 
information from the previous iteration to refine the FCM 
algorithm. This algorithmic enhancement aims to address 
the challenges posed by intensity inhomogeneity and con-
tribute to more accurate and reliable segmentation results.

Related Work

The introduction of a spatial Fuzzy C-means (sFCM) empha-
sizes the role of neighboring pixels in membership degree 
assignment, incorporating a spatial function into the mem-
bership function to consider the influence of neighboring 
pixels in the images Chuang et al. (2006). Expanding on this 
idea, Adhikari et al. (2015) introduces a conditional version 
of sFCM that considers the involvement level of pixels in 
the final membership function by incorporating information 
from neighboring pixels. This adaptation aims to enhance 
the adaptability of the algorithm to complex image struc-
tures and varying pixel relationships.

Sikka et  al. (2009) shift the focus to image quality 
enhancement through a sophisticated filter based on discrete 
Fourier transformations, strategically employed to remove 
bias fields and manipulate the end-of-image histogram for 
effective contrast stretching. Cluster centers are estimated 
based on specific criteria derived from the image histogram, 
and a modified FCM method is applied for image segmenta-
tion. Notably, post-processing methods are then employed to 
discern and separate ambiguous pixels from the rest, reflect-
ing an emphasis on refining segmentation outcomes.

An approach combines a probabilistic partition matrix 
that constrains the membership function with an energy 
minimization method grounded in coherent local inten-
sity clustering proposed in Ji et al. (2011). This method 
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introduces a refined balance between local and global inten-
sity considerations within the image. In the work conducted 
by Maitra et al. (2019), the proposal involves a combination 
of local and global membership functions to address image 
inhomogeneity and noise. The local membership function is 
intricately computed through a normalized multiplication of 
two metrics: a distance metric and a binary metric. The dis-
tance metric encapsulates neighborhood intensity distances 
concerning cluster centers, while the binary metric assigns 
one for minimum intensity distances and zero otherwise, 
contributing to a comprehensive segmentation strategy.

More recently, Mahata and Sing (2020) presented a modified 
FCM algorithm featuring local and global membership func-
tions constrained by local spatial information. A regularizer is 
introduced to strike a balance between global and local factors, 
thereby refining segmentation outcomes. The proposed spa-
tially constrained likelihood-based local entropy (FCMGsLE) 
is validated using simulated and real 3D human brain datasets.

Pre-filtering images using a local Zernike moment-based 
unbiased nonlocal means approach, strategically designed 
to eliminate noise before addressing the bias field proposed 
in Singh and Bala (2021). This method utilizes M orthogo-
nal polynomials of degree P for bias field removal, with 
the degree of polynomials, filtering parameter, and order of 
moments empirically determined, underscoring the nuanced 
influence of these parameters on segmentation results.

A combination of dictionary learning and improved FCM 
is proposed to mitigate the impact of noise in MRI image 
segmentation Miao et al. (2020). However, it is acknowl-
edged that this algorithm may lack robustness concerning 
intensity inhomogeneity, signifying an avenue for potential 
improvement. Tavakoli-Zaniani et al. (2021) modified the 
FCM’s objective function and adopted a double estimation 
approach for image segmentation, employing both the origi-
nal and denoised images as inputs. The challenge of accu-
rately inferring and removing noise from the image before 
applying the FCM method is highlighted. An integration 
of probabilistic intuitionistic fuzzy set theory and spatial 
neighborhood information porposed for MRI segmentation 
by Solanki and Kumar (2023). However, the approach’s reli-
ance on an extensive grid search to find optimal parameters 
is acknowledged as a practical limitation.

The Proposed esFCM

In this section, we present the proposed enhanced spatial 
fuzzy C-means (esFCM) for MRI segmentation, introducing 
novel methodologies inspired by the structural similarity index 
(SSSIM) to mitigate the impact of bias field and spatial infor-
mation to reduce the noise impact in brain tissue segmentation.

Automated segmentation of brain tissues in MRI images 
demands consideration of inhomogeneity, noise, and the 

spatial relationships between pixels. While Fuzzy C-means 
(FCM) stands as a conventional and commonly used inten-
sity-based clustering approach for image segmentation, its 
conventional algorithms struggle with noise and the impact 
of neighboring pixels during segmentation. To address this, a 
spatial FCM (sFCM) was introduced in Chuang et al. (2006), 
designed for 2D images without accounting for bias field 
correction. Motivated by sFCM, our enhanced approach, 
esFCM, considers the relationships among neighborhood 
pixels and aims to reduce noise impact in 3D MRI images.

Considering a 3D image I of size H ×W × D and a fil-
tered image Î , we perform segmentation into C individual 
clusters, each represented by a center Vi . Assigning a degree 
of membership to each voxel in the images via the member-
ship function �i , where each voxel belongs to a cluster with 
a specific confidence degree, is expressed by

where Dij is the distance between jth voxel in the image and 
the ith cluster center

ensuring that the sum of membership function values for 
each voxel is one

Then, the cluster centers are updated using

where n is the total number of voxels in a 3D image.
Here, we introduce an energy function ( Eij ) to consider 

the impact of neighboring pixels.

where P is the number of neighbourhood pixel around each 
voxel, here p=6 and �̄�t−1

ij
 is the membership value obtained 

from the previous iteration. Then, the final membership 
function obtained by the pointwise multiplication of the ini-
tial membership function and Eij:

where ⊙ stands for the point wise multiplications. Now we 
address the inhomogeneity. A common assumption is that 
the inhomogenity in an image is a smooth, low-frequency 
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intensity variation across the image. It can often be effec-
tively modeled as a polynomial function of low degree. A 
least squares equation can be used to reduce the inhomoge-
neity (bias filed) in a given image as follows

where matrix A represents a quadratic polynomial function 
of the image coordinates in reference space, and L is the 
prediction of the original image I . In the context of the FCM 
framework, the utilization of cluster centers to predict the 
value of the j-th voxel in L is expressed by the equation:

While the conventional least square Eq. 7 for bias field 
removal treats every point in the images with equal weight, 
this global approach may not be optimal, especially consid-
ering the local impact of bias fields. To address this limi-
tation, we propose a weighted version of the least square 
equation. Specifically, we compute the Structural Similarity 
Index (SSIM) map between the image gradient and the pre-
dicted image L , enhancing the emphasis on borders among 
different crucial regions in the images.

The SSIM, introduced by Wang et al. (2004) for meas-
uring image similarity, is computed as follows to preserve 
details while highlighting contrast differences in the gradi-
ent of real image �� and the gradient of predicted image ��:

Here, constants c1 = 0.0001 and c2 = 0.0009 , Λ denotes 
the mean intensity, and Σ represents the standard deviation. 
The SSIM map highlights regions that should be given more 
importance and/or have been neglected.

After computing SSIM, the weighted least square equa-
tion is employed to determine the required weights for bias 
field correction:

Here, matrix A is the quadratic polynomial function of the 
image coordinates, and W denotes the weights derived from 
the SSIM computation. Subsequently, the filtered image Î is 
obtained through Eq. 10:

Algorithm 1 outlines the procedure of esFCM for seg-
menting a 3D image. Additionally, the average SSIM value is 
utilized as a cost function, aiding in the selection of the best-
filtered image based on its similarity to the original image. 

(7)𝛽 = (ATA)−1AT (I − L)

(8)Lj =

C∑

i=1

Vi ⋅ �ij

(9)SSIM(��,��) =
(2ΛIg

ΛLg
+ c1)(2ΣIgLg

+ c2)

(Λ2
Ig
+ Λ2

Lg
+ c1)(Σ

2
Ig
+ Σ2

Lg
+ c2)

𝛽 = (ATWA)−1ATW(I − L)

(10)Î = I − 𝛽A

Algorithm  1  Pseudo Code of the Proposed esFCM 
Algorithm

Experimental Setup

We assess the effectiveness of the proposed algorithm 
through extensive evaluations on datasets derived from four 
distinct studies:

• The BrainWeb dataset (Cocosco,  1997; Kwan 
et al., 1996, 1999; Collins et al., 1998) comprises 20 sim-
ulated T1 MRI images along with corresponding ground 
truth. All images have uniform spacing set at 1mm. The 
image dimensions are 181 × 256 × 256 . The ground truth 
segmentation has dimensions of 362 × 434 × 362 with a 
spacing of 0.5mm. We employ the SimpleITK library to 
adjust the size and spacing of the segmentation to match 
that of the image size.

• The Internet Brain Segmentation Repository (IBSR) con-
sists of 18 T1 MRI images accompanied by their respec-
tive ground truth segmentations. Similar to the Brain-
Web dataset, the IBSR images exhibit specific size and 
spacing characteristics. Both the image and segmentation 
dimensions for the IBSR dataset are 256 × 128 × 256 , 
and they feature variable spacing, specifically 0.94, 1.5, 
and 0.94 mm, respectively.

• Three T1 MRI images from eight-year-old preterm born 
patients acquired at Puerta del Mar University Hospital 
in Cádiz, Spain, and segmented using MELAGE software 
Jafrasteh et al. (2023) by medical experts in the group, 
referred as HUPM dataset https:// rodin. uca. es/ handle/ 
10498/ 25580. The brain extraction is done using the deep 
learning tools inside MELAGE. The image spacing is 
equal to 1mm. The image size is 192 × 256 × 144.

https://rodin.uca.es/handle/10498/25580
https://rodin.uca.es/handle/10498/25580
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• We included 581 T1-weighted (T1w) images from the 
IXI dataset1 The voxel spacing in each dimension is 0.94 
mm x 0.94 mm x 1.5 mm.

To gauge the robustness of the proposed algorithm, we intro-
duced artificial noise (0%, 20%, and 40%) and bias field (0%, 
5%, and 10%) to the images from all datasets. The comparison 
involved a 369 3D augmented images to be segmented by dif-
ferent algorithms in this study. This facilitated a comprehensive 
performance comparison with other algorithms employed in this 
study. The performance of the proposed esFCM is benchmarked 
against FCM, FCMGsLE Mahata and Sing (2020), spFCM 
Maitra et al. (2019), and sFCM Chuang et al. (2006). All algo-
rithms were initialized using the multiOtsu thresholding algorithm 
Liao et al. (2001), with a maximum iteration limit set to 50. More-
over, we included Gaussian Mixture Model (GMM) Greenspan 
et al. (2006) , FSL fast segmentation Zhang et al. (2001) and 
ANTs(atropos) Avants et al. (2011) in the comparison. Since there 
is no ground truth for IXI datasets, in this dataset, we compare 
the performance of the proposed esFCM against GMM, ANTS, 
and FSL, where the proposed method is considered the ground 
truth. This study can provide valuable insights into its difference in 
accuracy, robustness, and computational efficiency compared to 
established segmentation algorithms in the absence of a definitive 
reference standard. By evaluating its performance against alterna-
tive methods under these conditions, we can better understand the 
relative difference among these algorithm, thus contributing to the 
broader understanding of applicability of esFCM and its potential 
in the MRI image segmentation task.

Evaluation metrics include:

• Hausdorff distance (HD) between the ground truth and 
segmented image. 

(11)

Hausdorff Distance = max

(
max
p∈G

min
q∈S

||p − q||, max
q∈S

min
p∈G

||q − p||
)

 Where G stands for ground truth and S represents the 
segmented image using variants of FCMs.

• DICE similarity measure: 

 where TP denotes True Positive, FN signifies False 
Negative, and FP represents False Positive.

• Segmentation accuracy: the percentage of agreement 
between the ground truth and the segmented image. 

 where FN stands for False Negative.

Three types of tissue are segmented : 1) Cerebrospinal fluid 
(CSF), 2) White matter (WM), and 3) Gray matter (GM).

Results and Discussion

Tables 1, 2, 3 and 4 provide a comprehensive comparison of 
various algorithms in our study based on the DICE similarity 
measure. The findings highlight the impact of adding a bias 

(12)DICE =
2 × TP

(TP + FN) + (TP + FP)

(13)Accuracy =
TP + TN

TP + TN + FP + FN

Table 1  DICE similarity coefficient for all the datasets taken in this study with 0 percentage of added Gaussian noise and different amounts of 
bias field. The values in the parenthesis are the obtained standard deviation

Bias(%) Tissue spFCM FCM FCMGsLE sFCM esFCM GMM ANTS FSL

0 CSF 0.78(0.21) 0.78(0.22) 0.78(0.22) 0.79(0.2) 0.82(0.15) 0.76(0.22) 0.77(0.21) 0.73(0.2)
WM 0.91(0.05) 0.91(0.05) 0.92(0.05) 0.92(0.05) 0.92(0.05) 0.91(0.06) 0.92(0.05) 0.89(0.15)
GM 0.88(0.08) 0.88(0.09) 0.88(0.09) 0.89(0.08) 0.91(0.06) 0.87(0.1) 0.88(0.09) 0.85(0.08)

5 CSF 0.77(0.21) 0.76(0.22) 0.76(0.22) 0.77(0.21) 0.81(0.15) 0.77(0.21) 0.76(0.22) 0.71(0.21)
WM 0.88(0.05) 0.87(0.04) 0.87(0.05) 0.88(0.05) 0.9(0.04) 0.88(0.05) 0.88(0.05) 0.88(0.05)
GM 0.85(0.08) 0.83(0.09) 0.84(0.09) 0.85(0.08) 0.89(0.06) 0.85(0.09) 0.85(0.09) 0.82(0.09)

10 CSF 0.72(0.22) 0.71(0.23) 0.71(0.22) 0.72(0.22) 0.76(0.18) 0.7(0.22) 0.71(0.24) 0.4(0.11)
WM 0.74(0.04) 0.74(0.04) 0.74(0.04) 0.74(0.04) 0.77(0.05) 0.76(0.05) 0.74(0.05) 0.36(0.38)
GM 0.69(0.05) 0.68(0.05) 0.68(0.05) 0.68(0.05) 0.73(0.07) 0.75(0.09) 0.69(0.06) 0.32(0.33)

Table 2  Comparison of segmentation performance on IXI datasets 
using DICE, HD, and Accuracy metrics

Tissue GMM ANTS FSL

DICE CSF 0.85(0.07) 0.87(0.1) 0.84(0.07)
WM 0.94(0.04) 0.9(0.21) 0.93(0.04)
GM 0.88(0.05) 0.88(0.12) 0.86(0.05)

HD CSF 13.17(2.81) 9.77(3.22) 12.76(2.51)
WM 11.21(3.64) 13.7(14.03) 10.71(4.14)
GM 6.95(1.23) 8.0(2.93) 6.7(1.28)

Accuracy CSF 0.98(0.01) 0.98(0.02) 0.97(0.01)
WM 0.98(0.01) 0.98(0.03) 0.98(0.01)
GM 0.96(0.02) 0.96(0.05) 0.95(0.02)1 Obtained from http:// brain- devel opment. org/ ixi- datas et.

http://brain-development.org/ixi-dataset
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field on the segmentation performance of all the methods 
under investigation.

It is evident from the results that the introduction of a bias 
field or noise can lead to a reduction in segmentation accuracy 
for most methods. Notably, our proposed algorithm demon-
strates superior segmentation accuracy even under these chal-
lenging conditions. Specifically, in the absence of additional 
bias field but with a 20 percent addition of noise, the perfor-
mance of spFCM and esFCM for CSF segmentation becomes 
very close. However, esFCM maintains better accuracy for WM 
and GM segmentation.

Figures 1 and 2 further illustrate algorithmic compari-
sons based on the amount of added noise and bias field in 
the images, respectively, using criteria such as Hausdorff 
Distance (HD), DICE, and Accuracy. It is noteworthy 
that the FCM algorithm exhibits a pronounced reduction 
in DICE similarity measure with increasing noise and 
bias field, underscoring its sensitivity to these factors. 
In contrast, our proposed esFCM algorithm consistently 

outperforms other methods across all criteria, demonstrat-
ing its robustness.

Figure 3 presents the specific results for three tissue 
types-CSF, GM, and WM-with varying amounts of added 
bias field and noise. The segmentation of CSF emerges as 
particularly challenging, exhibiting lower accuracy across 
the algorithms. Notably, esFCM proves comparable to other 
algorithms in terms of DICE similarity measure, HD, and 
accuracy for CSF segmentation, while outperforming them 
for GM and WM tissue segmentation. FSL algorithm shows 
high standard deviation regarding accuracy for CSF segmet-
nation, which is related to its sensitivity to the additional 
bias filed into the image.

Figure 4 shows a 3D visulaization of one of an MRI 
image from HUPM dataset, with the corresponding 
segmentation using the proposed esFCM algorithm. In 
summary, our results indicate that the proposed esFCM 
algorithm consistently outperforms other methods, dis-
playing better accuracy and lower standard deviation 

Table 3  DICE similarity coefficient for all the datasets taken in this study with 20 percentage of added Gaussian noise and different amounts of 
bias field. The values in the parenthesis are the obtained standard deviation

Bias(%) Tissue spFCM FCM FCMGsLE sFCM esFCM GMM ANTS FSL

0 CSF 0.8(0.16) 0.78(0.17) 0.78(0.19) 0.81(0.14) 0.81(0.15) 0.74(0.22) 0.77(0.2) 0.9(0.02)
WM 0.83(0.05) 0.81(0.05) 0.83(0.05) 0.84(0.09) 0.9(0.04) 0.85(0.03) 0.9(0.04) 0.89(0.01)
GM 0.82(0.06) 0.79(0.06) 0.81(0.06) 0.81(0.14) 0.89(0.06) 0.82(0.08) 0.87(0.08) 0.88(0.01)

5 CSF 0.75(0.21) 0.73(0.22) 0.75(0.21) 0.76(0.2) 0.81(0.14) 0.73(0.21) 0.75(0.21) 0.7(0.19)
WM 0.82(0.03) 0.8(0.03) 0.81(0.03) 0.83(0.03) 0.87(0.03) 0.81(0.03) 0.84(0.03) 0.83(0.03)
GM 0.79(0.05) 0.77(0.05) 0.78(0.05) 0.81(0.05) 0.87(0.04) 0.78(0.06) 0.82(0.07) 0.78(0.06)

10 CSF 0.68(0.2) 0.66(0.2) 0.67(0.2) 0.67(0.19) 0.7(0.16) 0.66(0.2) 0.68(0.22) 0.39(0.1)
WM 0.71(0.04) 0.7(0.04) 0.71(0.04) 0.7(0.05) 0.73(0.07) 0.73(0.04) 0.72(0.04) 0.35(0.37)
GM 0.62(0.06) 0.61(0.05) 0.61(0.06) 0.61(0.07) 0.66(0.11) 0.7(0.06) 0.66(0.05) 0.31(0.32)

Table 4  DICE similarity coefficient for all the datasets taken in this study with 40 percentage of added Gaussian noise and different amounts of 
bias field. The values in the parenthesis are the obtained standard deviation

Bias(%) Tissue spFCM FCM FCMGsLE sFCM esFCM GMM ANTS FSL

0 CSF 0.76(0.15) 0.7(0.15) 0.72(0.17) 0.75(0.11) 0.78(0.15) 0.65(0.2) 0.76(0.19) 0.85(0.02)
WM 0.78(0.04) 0.73(0.04) 0.76(0.05) 0.77(0.05) 0.84(0.02) 0.73(0.04) 0.88(0.03) 0.77(0.01)
GM 0.75(0.03) 0.7(0.02) 0.72(0.04) 0.73(0.08) 0.85(0.03) 0.7(0.04) 0.86(0.06) 0.75(0.01)

5 CSF 0.69(0.19) 0.64(0.18) 0.67(0.18) 0.7(0.17) 0.75(0.13) 0.63(0.18) 0.72(0.2) 0.41(0.12)
WM 0.74(0.04) 0.71(0.04) 0.72(0.05) 0.74(0.05) 0.77(0.05) 0.69(0.06) 0.77(0.03) 0.37(0.38)
GM 0.68(0.04) 0.64(0.03) 0.65(0.05) 0.69(0.06) 0.74(0.08) 0.68(0.03) 0.74(0.04) 0.33(0.35)

10 CSF 0.59(0.14) 0.55(0.13) 0.55(0.12) 0.55(0.11) 0.55(0.1) 0.57(0.17) 0.58(0.15) 0.36(0.09)
WM 0.65(0.05) 0.65(0.05) 0.65(0.05) 0.65(0.06) 0.66(0.08) 0.65(0.11) 0.67(0.05) 0.31(0.35)
GM 0.51(0.12) 0.49(0.11) 0.48(0.14) 0.5(0.16) 0.51(0.21) 0.59(0.07) 0.57(0.08) 0.27(0.31)



Neuroinformatics 

Fig. 1  Comparison of various 
algorithms employed in this 
study in terms of noise amount, 
evaluated based on the HD, 
DICE, and Accuracy criteria 
from left to right

Fig. 2  Comparison of various 
algorithms employed in this 
study in terms of bias field 
amount, evaluated based on 
the HD, DICE, and Accuracy 
criteria from left to right

Fig. 3  Comparison of various 
algorithms employed in this 
study in terms of three different 
tissues, evaluated based on 
the HD, DICE, and Accuracy 
criteria from left to right

Fig. 4  The image depicts a 
selected 3D region (a) and 
the corresponding segmenta-
tion using esFCM (b) from a 
preterm-born eight-year-old 
patient in the HUPM dataset. In 
the visualization, cerebrospinal 
fluid (CSF) is represented in 
white, white matter (WM) in 
green, and gray matter (GM) in 
purple. 3D visualization using 
MELAGE software
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across all criteria. It is essential to emphasize that the 
efficacy of esFCM is particularly pronounced when the 
proposed bias field correction is employed, preventing it 
from falling into the performance category of sFCM in 
its absence. This reinforces the importance of our novel 
bias field correction strategy in enhancing the overall 
performance of the esFCM algorithm. Table 2 provides a 
comprehensive comparison of segmentation performance 
across different tissue types using three segmentation 
algorithms, GMM, ANTS, and FSL. The ground truth is 
based on the segmentation results of esFCM, highlights 
algorithmic performance deviations. Overall, ANTs and 
GMM show strong performance across metrics and tis-
sues. The results of esFCM can be close to GMM in 
terms of DICE coefficient. In terms of HD, FLS indicates 
more accurate segmentation in terms of spatial agree-
ment. In terms of accuracy GMM and ANTs are more 
similar to the proposed esFCM.

The code for the proposed algorithm will be made publicly 
available upon publication. It is intended to be integrated into 
the MELAGE interactive segmentation platform.

Conclusions

In this study, we present the Enhanced Spatial Fuzzy 
C-means (esFCM) algorithm designed for the segmenta-
tion of 3D T1 MRI images. The proposed algorithm inte-
grates simultaneous bias field correction and incorporates 
innovative methodologies inspired by the Structural Simi-
larity Index (SSIM) to address intensity inhomogeneity 
and reduce noise in brain tissue segmentation. Rigorous 
evaluations conducted on IBSR, Brain Web and HUPM 
dataset, attest to the robustness of esFCM. It demonstrates 
superior performance compared to other algorithms, 
especially in challenging conditions involving noise and 
bias field variations. Notably, the algorithm excels in the 
segmentation of specific tissue types, including Cerebro-
spinal Fluid (CSF), Gray Matter (GM), and White Mat-
ter (WM). The results emphasize the significance of the 
introduced bias field correction strategy in enhancing the 
overall accuracy and reliability of the esFCM algorithm. 
Additionally, we assessed the disparities between the seg-
mentation outcomes of esFCM and those of GMM, ANTs, 
and FSL algorithms utilizing the IXI dataset. The bias 
field is getting more important in MRI segmentation of 
newborn and children. As a future direction, we plan to 
extend this work to encompass the segmentation of new-
born pattients and also non-healthy MRI images, i.e.the 
ones contains lesion or tumor.

Appendix A: Results Overview: 
Segmentation

Figure 5 shows an example of the segmented image using 
different algorithms used in this study. CSF, WM and  
GM are distinguished by red, yellow and green colors, 
respectively. Figure 5(a) is slice number 64 from coronal  
section of image 2 from IBSR dataset. Figure 5(b) is the 
same image after adding 10 percent bias filed to the image. 
Figure  5(b) represent the ground truth segmentation.  
Figure 5(d-h) are the segmentation obtained from image 
with added bias field by esFCM, FCM, spFCM, sFCM and 
FCMGsLE, respectively. Focusing on the highlighted area 
(circle) one can see that the proposed esFCM have a better 
segmentation with respect to the ground truth.

Appendix B: Dataset‑Specific Findings

IBSR Dataset

Figures 7 and 6 shows comparisons of the algorithms based on 
the amount of added noise and bias field in the images, respec-
tively, using criteria such as Hausdorff Distance (HD), DICE, 
and Accuracy. Both figures highlight better performance of 
esFCM with respect to the other used algorithms in this study.

Figure 8 shows the specific results for the tissue types 
with varying amounts of added bias field and noise. It 
highlights the better perforamnce of the proposed esFCM, 
specifically for GM and WM segmentation.

HUPM Dataset

Figures 9 and 10 shows comparisons of the algorithms 
based on the amount of added noise and bias field in the 
images, respectively, using the three different criteria. 
Both figures highlight better performance of esFCM with 
respect to the other used algorithms in this study.

Figure 11 shows the specific results for the tissue types 
with varying amounts of added bias field and noise. It 
highlights the better perforamnce of the proposed esFCM, 
specifically for GM and WM segmentation.

BrainWeb Dataset

Figures 12 and 13 present algorithmic comparisons based 
on the levels of added noise and bias field in the images, 
respectively, utilizing three distinct criteria. These figures 
illustrate that the performance of esFCM is on par with 
other algorithms employed in this study.
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Fig. 5  a A coronal section 
from an image obtained from 
IBSR dataset b the same image 
after adding 10 percent bias 
field. c ground truth segmen-
tation d segmentation from 
the proposed algorithm e fcm 
f spFCM Maitra et al. (2019) 
g sFCM Chuang et al. (2006) 
and h FCMGsLE Mahata and 
Sing (2020)



 Neuroinformatics

Fig. 6  Comparison of various 
algorithms employed in this 
study in terms of bias field 
amount for IBSR dataset, evalu-
ated based on the HD, DICE, 
and Accuracy criteria from left 
to right

Fig. 7  Comparison of various 
algorithms employed in this 
study in terms of noise amount 
for IBSR dataset, evaluated 
based on the HD, DICE, and 
Accuracy criteria from left to 
right

Fig. 8  Comparison of various 
algorithms employed in this 
study in terms of three different 
tissues for IBSR dataset, evalu-
ated based on the HD, DICE, 
and Accuracy criteria from left 
to right

Fig. 9  Comparison of various 
algorithms employed in this 
study in terms of noise amount 
for HUPM dataset, evaluated 
based on the HD, DICE, and 
Accuracy criteria from left to 
right
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Fig. 10  Comparison of various 
algorithms employed in this 
study in terms of bias field 
amount for HUPM dataset, eval-
uated based on the HD, DICE, 
and Accuracy criteria from left 
to right

Fig. 11  Comparison of various 
algorithms employed in this 
study in terms of three differ-
ent tissues for HUPM dataset, 
evaluated based on the HD, 
DICE, and Accuracy criteria 
from left to right

Fig. 12  Comparison of various 
algorithms employed in this 
study in terms of noise amount 
for BrainWeb dataset, evalu-
ated based on the HD, DICE, 
and Accuracy criteria from left 
to right

Fig. 13  Comparison of various 
algorithms employed in this 
study in terms of bias field 
amount for BrainWeb dataset, 
evaluated based on the HD, 
DICE, and Accuracy criteria 
from left to right
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In scenarios characterized by high levels of noise or bias 
fields, there is a noticeable reduction in its performance for 
tissue segmentation. The specific outcomes for various tissue 
types under varying degrees of added bias field and noise are 
detailed in Fig. 14. Notably, the diminished performance of 
esFCM in the presence of elevated noise or bias fields can be 
realed to the CSF segmentation. While esFCM’s performance 
in this specific aspect may not rank as the best, it remains 
comparable to other algorithms used in the study.

IXI Dataset

Figure 15 presents a comparison of tissue segmentation 
among GMM, ANTS, and FSL using box plots on the IXI 
dataset, where the results of esFCM have been considered 
as the ground truth. This plot provides insights into how the 
results of esFCM differ from other methods. According to 
this figure, the ANTs algorithm exhibits greater variation 
compared to other methods, yet it demonstrates performance 
more similar to esFCM than the other algorithms, particu-
larly in terms of DICE and accuracy criteria.

Fig. 14  Comparison of various 
algorithms employed in this 
study in terms of three different 
tissues for BrainWeb dataset, 
evaluated based on the HD, 
DICE, and Accuracy criteria 
from left to right

Fig. 15  Comparison among 
GMM, ANTs and FSL algo-
rithms employed in terms of 
three different tissues for IXI 
dataset, evaluated based on 
the HD, DICE, and Accuracy 
criteria from left to right
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