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Abstract
To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can 
be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in 
particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena lead-
ing to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious 
(synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating 
at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). 
Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general 
properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other 
parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense 
grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable 
robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is 
often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also 
generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthet-
ics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.

Keywords Cerebral cortex · Computational models · Asynchronous states · Information processing · Whole-brain model · 
Parameter exploration · Brain states · High-performance computing

Introduction

Consciousness is fundamental to human existence: it is expe-
riencing, having a thought, being aware. Unconsciousness is 
not unfamiliar either: naturally, we lose consciousness when 
going into dreamless (NREM) sleep, or medically, through 
external factors like general anesthesia for surgery or brain 
injury. Furthermore, disorders of consciousness, such as 
unresponsive wakefulness syndrome or coma, as well as 

disorders of the wake-sleep cycle, such as insomnia, take a 
great toll on society (Evers, 2016; Wade, 2010). Moreover, 
approximately 200 million surgical procedures are carried 
out under anesthesia each year (Weiser et al., 2008). How-
ever, understanding from which multi-scale mechanisms 
consciousness emerges remains an active field of philosophi-
cal and scientific inquiry (Koch et al., 2016; Northoff & 
Lamme, 2020; Wu, 2018).

Although no particular brain region or mechanism can 
uniquely account for states of consciousness (Koch et al., 
2016), it is possible to roughly categorize the macroscopic 
activity of the brain into conscious-like (during dreaming 
or being awake) and unconscious-like (during deep sleep 
and under general anesthesia) states (Goldman et al., 2019).

Macroscopic recordings of electromagnetic brain activ-
ity (such as EEG and MEG) during conscious states typi-
cally show low amplitude, complex, disorganized signals 
occurring at relatively high frequencies (Niedermeyer & 
Lopes Da Silva, 2004). Conversely, unconscious states 
exhibit higher amplitude, simpler, synchronous, oscillatory, 
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low frequency activity (Goldman et al., 2019; Steriade 
et al., 1993).

Interactions between brain areas are strongly similar to 
anatomical white matter tracts during unconscious states, 
while, in conscious states, more complex brain activity 
explores a richer repertoire of functional configurations that 
are less constrained by global brain structure (Barttfeld et al., 
2015; Tagliazucchi et al., 2015). The complex and disor-
ganized activity of conscious states renders the brain more 
globally responsive to external stimuli (Destexhe et al., June 
1999; Massimini et al., 2005). In contrast, during uncon-
scious states, responses to stimuli remain localized, with 
more restricted propagation between non-adjacent cortical 
regions (Massimini et al., 2005).

There are also observable differences between conscious 
and unconscious states at the neuronal scale. During con-
sciousness, cortical neurons exhibit sustained, but sparse 
and irregular firing patterns characterized as Asynchronous 
Irregular (AI) activity. In contrast, during periods of uncon-
sciousness, cortical neurons more synchronously oscillate 
between hyperpolarized (Down) states and depolarized and 
AI-like firing (Up) states (Goldman et al., 2019; Steriade 
et al., 1993; Destexhe, 2009).

Differences in neuron behavior between brain states can 
result from changes in ambient neuromodulator concentra-
tions that regulate neuronal spike-frequency adaptation, 
resulting in more or less synchronous activity with different 
characteristic frequency distributions (McCormick, 1992; 
Steriade & McCarley, 2005). Spike-frequency adaptation is a 
self-inhibiting process in which neurons decrease their firing 
rate in response to sustained activity, sometimes to the point 
of silencing the neuron (Gutkin & Zeldenrust, 2014). Dur-
ing conscious states, concentrations of neuromodulators such 
as acetylcholine are higher (McCormick, 1992), effectively 
suppressing spike frequency adaptation and facilitating AI 
firing patterns. During unconscious states, such neuromodu-
lator concentrations are lower, increasing spike frequency 
adaptation, thus entraining neurons into alternating periods 
of silence and activity (McCormick, 1992; Steriade & McCa-
rley, 2005).

Understanding the relationships between macroscopic 
global dynamics and microscopic neuromodulatory pro-
cesses and neuronal network activity, both in conscious and 
unconscious brain states, can help the scientific community 
shed light onto the puzzling concept of consciousness. This 
is the principal goal of the present study, to explore the rela-
tion between microscopic parameters with the emergence of 
properties at large-scales in the brain.

An essential tool to realize this exploration, is the 
TVB-AdEx model, introduced by Goldman and col-
leagues, which consists of a multi-scale whole brain 
model that connects the behavior of individual neurons to 

whole brain dynamics (Goldman et al., 2020, 2023). To 
build this model, one starts at the microscopic scale by 
simulating a spiking network containing excitatory and 
inhibitory Adaptive Exponential (AdEx) integrate and 
fire neuron models (Brette & Gerstner, 2005). Then, the 
mesoscopic AdEx mean-field model is derived from this 
network, which captures the aggregated spiking dynam-
ics of the network at mesoscopic scales (El Boustani & 
Destexhe, 2009; Zerlaut et al., 2017; di Volo et al., 2019). 
In order to bridge mesoscopic to macroscopic scales, net-
works of neurons, represented as AdEx mean-field mod-
els, are connected according to anatomical tractography 
data, with model delays informed by the properties of the 
tracts. The TVB-Adex is therefore a multi-scale model 
capable of exhibiting clear transitions in dynamical states, 
from fast-oscillating low-amplitude complex (AI) states 
to slow-oscillating high-amplitude Up and Down (UD) 
states, when changing the adaptation value that simulates 
changes in acetylcholine concentration (Destexhe, 2009). 
The model is also capable of reproducing different evoked 
patterns of activity during simulated conscious and uncon-
scious states (Goldman et al., 2020, 2023), consistent with 
empirical experiments (Destexhe et al., 1999; Massimini 
et al., 2005; Casali et al., 2013).

The TVB-AdEx model is a high-dimensional dynami-
cal model with a multitude of parameters that should 
be understood, estimated, and the resulting dynamical 
behavior characterized. Fortunately, many parameters 
can be informed through physiological and mathematical 
constraints (El Boustani & Destexhe, 2009; di Volo et al., 
2019; Zerlaut et al., 2017). However, the values of at least 
five parameters can still vary within a considerable range, 
allowing the model to explore many, possibly interesting, 
regimes. Thoroughly studying the effects and interactions 
of five different parameters within such a complex network 
presents a computationally-costly challenge that had not 
yet been addressed. Such a thorough exploration is neces-
sary to explore the emerging properties of the system at 
large-scales, which is our aim here.

In this paper, we provide such an exploration, using 
a detailed parameter scan realized on High Performance 
Computing (HPC) systems. We show the different states 
(including pathological states) that emerge at large scales, 
depending on the model’s microscopic parameters. We 
also characterize properties of brain-scale dynamics, 
reporting changes in functional connectivity and its rela-
tion to structural connectivity resembling global neural 
dynamical properties of experimental measurements of 
the brain in varying states of consciousness. In sum, we 
report the exploration and openly offer code to run paral-
lel simulations of global human brain dynamics using the 
parallelized TVB-AdEx model with HPC.
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Methods

The TVB‑AdEx Model

The TVB-AdEx model is a biologically informed, brain-
scale cortical model built using The Virtual Brain (TVB) 
platform. Using MRI scans, one can divide a scanned 
brain into different anatomical regions and estimate the 
strength of the connections between regions using trac-
tography analyses (Schirner et al., 2015). From this data 
one can build the TVB-AdEx model as a network of AdEx 
mean-field models, each mean-field model describing the 
neuronal activity of one of the anatomical regions in the 
scanned brain. The strength of the interactions between 
the mean-field models are determined by the connectiv-
ity matrix, also called connectome, obtained from the 
MRI tractography analyses. The parcellation used for this 
model divides the brain into 68 regions (berlinSubjects/
QL_20120814 from https:// zenodo. org/ record/ 42637 23, 
Schirner et al. (2015)) and, therefore, 68 AdEx mean-field 
models make up the TVB-AdEx model.

Each one of the 68 AdEx mean-field models repro-
duces the mean behavior of a spiking network made up 
of 104 Adaptive Exponential (AdEx) integrate and fire 
neurons (80% of them being excitatory and the other 
20% inhibitory) (di Volo et al., 2019). Through a Master 
equation formalism (El Boustani & Destexhe, 2009), the 
mean-field model describes the general activity of the 
neural populations in the spiking network with seven dif-
ferential equations (di Volo et al., 2019; Zerlaut et al., 
2017). When spike-frequency adaptation is low (simu-
lating conscious brain states with high levels of neuro-
modulation (di Volo et al., 2019)) the mean-field model 
is able to reproduce AI states through noisy perturbations 
around a stable non-zero fixed point (Up fixed point). 
When adaptation is increased (simulating reduced neu-
romodulation in the brain), the model also reproduces 
Up-Down states by cyclically traveling between the fixed 
point at the origin (Down fixed point) and the Up fixed 
point (di Volo et al., 2019).

Note that there are two different networks needed to 
build this macroscopic model: the spiking network, mod-
eling 104 neurons at the microscale, and the TVB-AdEx 
network, consisting of the 68 inter-connected AdEx mean-
field models. From now on, we will only refer to the spik-
ing network when the term "spiking" is explicitly men-
tioned, in any other case, the word "network" will refer to 
the TVB-AdEx model.

The variables that describe the mean activity of the 
excitatory and inhibitory populations are the mean excit-
atory and inhibitory firing rate, �e and �i , respectively. 
Under normal working conditions, both mean firing rates 

remain under 100 Hz, typically in the range [0, 50] Hz. 
However, the dynamical landscape of the AdEx mean-field 
model also contains a fixed point at a pathologically high 
level of activity, around 190 Hz, where neurons in the 
populations fire immediately after their refractory period 
(see Fig. 14). This fixed point does not disappear when 
building the TVB-AdEx network. Instead it becomes more 
difficult to detect under which conditions one, or multiple, 
mean-fields in the network stabilize at that pathological 
point, an event that we will refer to as "paroxysmal firing 
rates" or "paroxysmal fixed points". We argue later that 
these paroxysms are more relevant to epileptic states, so 
they were avoided in this study.

In the TVB-AdEx model, the long-range connections 
between mean-field models are excitatory, as is shown in the 
left panel of Fig. 1, and their strength is given by the structural 
connectivity matrix Cjk derived from tractography data, shown 
in the right panel of Fig. 1.

Equation 1 describes node k’s evolution in time of the firing 
rate of the excitatory and inhibitory ( �k

�
 with � = {e, i} ) popu-

lations. Equation 2 describes the covariance between popula-
tions � and � ( �, � = {e, i} ) in node k and Eq. 3 describes the 
evolution in time of the adaptation variable of node k, Wk . Note 
that Einstein’s index summation convention is used, omitting 
summation symbols and summing over repeated indices.
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Fig. 1  Left panel shows a diagram showing two of 68 mean-field 
nodes in the simulation alongside tractography data informing long-
range connectivity between mean-field nodes. Right panel shows the 
strength connectivity matrix, Cj,k , between the 68 nodes. Reproduced 
with permission from (Goldman et al., 2023)

https://zenodo.org/record/4263723
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The parameter T sets the time scale of the mean-field mod-
els’ dynamics. Since the choice of T is delicate when deal-
ing with non-stationary dynamics (di Volo et al., 2019), it has 
been one of the parameters included in this work’s parameter 
sweep. The function F�={e,i} = F�={e,i}(�

k,tot
e

, �k
i
,Wk) is the 

transfer function of the excitatory and inhibitory AdEx neurons 
in the spiking network, which determines the firing rate of 
the neuron when receiving �k,tot

e
 and �k

i
 as inputs. These func-

tions are obtained through a semi-analytical derivation which 
is explained in detail in di Volo et al. (2019).

Parameters be and a come from the AdEx single neuron 
model, at the microscopic scale, and stand for spike-triggered 
adaptation (in pA) and subthreshold adaptation (in nS), respec-
tively. The value of a has been fixed to a = 0 nS, while differ-
ent values of parameter be will be explored during this work 
as we are interested in observing how the TVB-AdEx mod-
el’s activity changes when spike-triggered adaptation varies. 
�V (�

k
e
, �k

i
,Wk) is a function that returns the average membrane 

potential of the population, obtained when deriving the mean-
field model (di Volo et al., 2019). The EL,e parameter is also 
related to the single neuron model used in the spiking network. 
It stands for the leakage reversal potential of AdEx excitatory 
neurons (their resting membrane potential (Brette & Gerstner, 
2005)) and its impact on the model is discussed in this work. 
Although it is not explicitly present in the equations, the leak-
age reversal potential of inhibitory neurons EL,i also has an 
important effect on the outcome of the model through both �V 
and the transfer functions, so it has also been included in the 
parameter sweep.

Finally, �k,tot
e

 corresponds to the total incoming excitatory 
input to a neuronal population given by:

where �aff  is an afferent transient input, �k
drive

 is an external 
noise simulated by an Orsntein-Uhlenbeck (OU) process, Cjk 
is the connectivity between regions j and k (with Ckk = 1 ) 
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j
e
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and �je(t − ||j − k||∕vc) is the activity of the excitatory popu-
lation in node j with a delay corresponding to the distance 
between the regions divided by the axonal propagation speed 
vc . The S parameter is phenomenologically tuned to modify 
the overall inter-region connectivity strength and, therefore, 
it is the final parameter included in this work’s analyses.

The set of differential equations are integrated using the 
stochastic Heun integrator from the TVB toolbox (Tvb inte-
grators, 2023; Kloeden & Platen, 1992) where 
�drive(t) = �drive + ��(t) is the stochastic variable, where �(t) 
is an OU process evolving through the following equation 
d�(t) = −�(t)

dt

�OU
+ dWt where dWt is a Wiener process of 

amplitude 1 and zero average. An integration time step of 
dt = 0.1ms has been chosen, see an extended discussion in 
Section B.3

Parameter Exploration

As previously mentioned, such a complex model contains 
many parameters that need to be understood and to have 
reasonable, physiological ranges determined for them. Most 
of those variables can be set based on biological or math-
ematical arguments (Zerlaut et al., 2017; Carlu et al., 2020), 
but there remains a subset of parameters whose impact needs 
to be studied to have a deeper and general understanding of 
the model. In Table 1, one can find the characteristics of the 
parameters chosen and the reason for their choice.

For each parameter, 16 evenly spaced values are obtained 
inside the described range. A simulation would have been run 
for each of the possible combinations of parameter values, 
which would result in having to analyse 165 differently para-
metrized TVB-AdEx configurations. However, preliminary 
results showed that neuronal activity remains silent when 
EL,i is significantly greater than EL,e , a result of the inhibitory 
populations being more active than the excitatory ones. For 
this reason, only those combinations where EL,i < EL,e + 4 
mV have been simulated. In the end, a total number of 
675,840 different configurations have been analyzed.

Table 1  Name, description, reason of choice, range and units of the parameters chosen for the parameter sweep

Parameter Description Reason of choice Range Units

S Coupling strength between nodes Has to be chosen phenomenologically [0, 0.5] Dimensionless
EL,i Leakage reversal potential of AdEx inhibitory 

neurons
Resting membrane potential of a neuron might 

vary depending on external conditions
[−80,−60] mV

EL,e Leakage reversal potential of AdEx excitatory 
neurons

Resting membrane potential of a neuron might 
vary depending on external conditions

[−80,−60] mV

T Timescale of the AdEx mean field model Has to be chosen phenomenologically [5, 40] ms
be Adaptation strength of excitatory AdEx neurons Models the change in neuromodulation that 

induces transition between AI and UD
[0, 120] pA
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High Performance Computing

Though more computationally tractable than simulating 
a brain-scale network of spiking neurons, simulating the 
TVB-AdEx consisting of mean-field populations remains a 
relatively computationally expensive process, taking approxi-
mately a minute to simulate one second of activity on a per-
sonal computer. For each parameter combination that is going 
to be studied, at least five seconds of activity need to be simu-
lated. The analyses of the simulation might take up to an extra 
minute to be executed. Fortunately, the simulations needed to 
perform a parameter sweep can be easily parallelized.

For these reasons, the use of HPC has made this parameter 
sweep possible. We ran our scripts on the JUSUF supercom-
puter in the Jülich Supercomputing Centre (Jusuf supercom-
puter, 2022), which consists of 187 nodes, with each node 
having two AMD EPYC 7742 @2.25 GHz processors for a 
total of 128 cores, 256GB DDR4 of RAM and 1TB NVMe 
for memory (Jusuf supercomputer configuration, 2022).

A profiling of a five-seconds TVB-AdEx simulation, 
together with the corresponding feature extraction pipeline, 
showed that running the script required less than 600 MB 
of RAM at any point in time, less than one GB of static 
memory for I/O operations, and approximately 6 min of exe-
cution time (see Fig. 8 in the Supplementary Information). 
Thus, it was possible to run 128 simultaneous simulations 
on each JUSUF node, increasing significantly the simulation 
and analysis speed.

Feature Extraction on Spontaneous Activity

In order to visualize the results of the parameter explora-
tion, a feature extraction pipeline has been applied, obtaining 
a series of metrics (or features) that represent the overall 
behavior of the TVB-AdEx model for each parameter combi-
nation studied (see Fig. 9 in the Supplementary Information 
for a schematic representation).

For each parameter combination, a five seconds simula-
tion of the TVB-AdEx model has been run with a time step 
of 0.1 ms. In other words, the differential equations describ-
ing the TVB-AdEx network are numerically integrated over 
5 × 104 time steps.

The first two seconds following initialization of the simu-
lation are considered a transient state and, therefore, ignored. 
In Sections B.1 and B.2, the interested reader can find the 
reasoning behind the simulation length choices. Afterwards, 
the array of data containing the evolution in time of the �k

e
(t) 

of the 68 regions of the model is recovered to apply the fea-
ture extraction.

In order to analyze the spectral characteristics of a param-
eter combination, the Fourier Transform is applied to each 
of the 68 time series in the �k

e
(t) array, obtaining a �k

e
(f ) 

array in the Fourier space. Then, each element of the array 
is squared and an average over the nodes, obtaining a single 
PSD(f) curve representing the average Power Spectral Den-
sity (PSD) of the nodes in the network, from which spectral 
features will be obtained.

Table 2 displays the features that will be analyzed in 
this report, along with a short description of how they are 
obtained. Other features that have been computed but whose 
analyses are too extensive for the limited space of this report 
are displayed in Table 3 in the Supplementary Information.

As a final note, the excitatory firing rate has been is the 
source of the features shown in this manuscript, since there 
is little observable difference between features obtained with 
�e and �i.

Results

Normal and Paroxysmal States

First of all, it is fundamental to have a precise characteriza-
tion of when the dynamics of the TVB-AdEx model exhibit 

Table 2  Table containing the features that will be analyzed in this work, along with a short description of their derivation

Feature Name Feature Derivation

Max�
e

The maximum value of �e for all nodes and time bins is stored.
Mean�

e
Firing rate is averaged over time and nodes of the network.

Mean of SD of�
e The Standard Deviation (SD) of �k

e
(t) is obtained for each node k and then averaged.

Mean duration of Up states For each node, an algorithm detects the Up states where �e crosses a threshold. The mean duration of the Up 
states in each node is obtained. Then it is averaged over nodes.

Frequency at peak of PSD A peak detection algorithm is applied to the PSD, which returns the most relevant peak in the PSD. The fre-
quency at which this peak appears is stored.

Mean FC The Functional Connectivity (FC) matrix is obtained by computing the Pearson correlation between the �e of 
every pair of nodes in the network, resulting in a (68, 68) array. The mean value of this array is stored as a 
feature.

corrFCSC The FC matrix can also be compared with the Structural Connectivity (SC) matrix (the connectome, Cj,k ). This 
can be done by obtaining the Pearson correlation coefficient between the FC and SC flattened arrays.
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firing rates in the physiological range or if they exhibit par-
oxysmal or aberrant activity. In this case, one, or multiple, 
mean-field model reaches the pathologically high activity 
fixed point. Since this pathological fixed point is found at 
around 190 Hz, well above the “normal” working range, it 
is possible to analyze the occurrence of this event by study-
ing the maximum �e reached for every one of the 675,840 
different configurations: if the maximum value of �e exceeds 
175 Hz (activity only reaches such high values in the parox-
ysmal fixed point), that parameter configuration is counted 
as exhibiting paroxysmal dynamics.

The parameters that mostly favor the emergence of parox-
ysmal dynamics are S, EL,i and EL,e (see Fig. 15 in the Sup-
plementary Information), which are all related to the level 
of excitatory/inhibitory balance in the network, consistent 
with previous results (Dehghani et al., 2016).

It is thus possible to build a 3D histogram, with the objec-
tive of seeing how these three different parameters interact 
between them to favor pathological activity, shown in Fig. 2. 
This is done by fixing the values of S, EL,i and EL,e and count-
ing how many Paroxysmal Fixed Points (PFPs) appear when 
varying the remaining parameters (T and be).

As one could expect, the probability of reaching a PFP 
is largest in the region of highest S and EL,e and lowest EL,i , 
since it groups together all the conditions that favor the 
appearance of PFPs. Curiously, one can also see that the 
S = 0 , high EL,e , low EL,i corner also exhibits higher prob-
ability of exhibiting paroxysmal activity, indicating that dis-
connected mean-field modes tend to reach this pathological 
activity more easily. It seems that near the EL,i = EL,e diago-
nal is a relatively safe working region, which we will use in 
the following section.

Robustness of AI to UD Transition When Increasing 
Adaptation Strength

The parameter sweep described in this work was designed to 
initially study the robustness of transitions between AI and 
UD states when changing the spike-frequency adaptation 
strength, modeled by the be parameter. The main objective 
was to determine the regions of the parameter space where 
this transition takes place, as well as to look for other pos-
sible dynamics of the system that might relate to empirical 
findings. Therefore, a representative feature of the transi-
tion between AI and UD states (the �e standard deviation) 
is shown in Figs. 3 and 4 for two different regions of the 
parameter space, together with the time evolution of the 
TVB-AdEx network’s excitatory and inhibitory firing rates.

In the TVB-AdEx, AI states are described by small 
amplitude stochastic perturbations around a fixed point of 
sustained activity while UD states are described by an oscil-
latory traveling between the origin (Down state) and this AI 
fixed point (Up state). Thus, AI states are characterized by 
higher mean �e , since there are no silent periods; smaller 
standard deviations, due to their range being narrower; and 
much longer Up state duration than UD states, since they are 
at a constant Up state.

Figure 3 shows the standard deviation (averaged over time 
and nodes of the network) of �e when fixing EL,i and EL,e at 
equal and relatively high values (-64 mV). We will refer to 
the region of the parameter space where −60 mV ≥ EL,e ≥ 
−65 mV as the depolarized region. Additionally, the time 
evolution of the excitatory (green) and inhibitory (red) firing 
rates are shown for different parameter combinations of the 
model (each panel corresponding to a simulation computed 
with the parameters of a point in the cube).

One can clearly see that, for low be and for most S and 
T values, AI-like dynamics are found (three left-most pan-
els). These patterns of activity are characterized by high 
mean �e , low standard deviation, high duration of Up states 
and higher frequencies of PSD peak, which are plotted in 
Fig. 16 in the Supplementary Information. When increasing 
the spike-frequency adaptation, one can see a sharp change 
in the behavior (three right-most panels), towards an UD-
like behavior where the standard deviation of the firing rates 
increases, while the mean firing rate decreases, together with 
the Up-state duration and the frequency at the peak of the 
PSD (again, shown in Fig. 16).

It is also interesting to explore the influence of these 
same three parameters but in a much different region. 
In Fig.  4, similar plots to those in Fig.  3 are shown, 
but in this case, the parameters EL,i and EL,e are fixed 
to EL,i = −78.667 mV and EL,e = −80 mV, while S, be 
and T are swept in the same range. In this situation, the 

Fig. 2  Number of Paroxysmal Fixed Points (PFPs) as a function of S, 
EL,i and EL,e parameter values
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inhibitory and excitatory populations are at the lower limit 
of the physiologically relevant leakage reversal potentials 
values (inhibitory populations are slightly less hyperpolar-
ized for plotting purposes, to avoid some of the parosysms 
that may appear when EL,i = −80 mV). Thus, we will refer 
to the region where −75 mV ≥ EL,e ≥ −80 mV as the hyper-
polarized region.

Now, the standard deviation values show a non-expected 
peculiar behavior: the nodes of the TVB-AdEx network 
exhibit the highest standard deviation of �e for the lowest val-
ues of be , which should, in theory, correspond to AI states, 
associated to low standard deviation. Looking at the time 
evolution curves of the selected parameter combinations, it 
is clear that these standard deviation values come from the 
appearance of UD states, even when there is no adaptation 
in the system. This type of behavior could be associated to 
anesthetized brains, a state of unconsciousness where neu-
rons are typically hyperpolarized (Alkire et al., 2008).

This modification of the behavior when EL,i and EL,e shift 
between the depolarized and the hyperpolarized states is rel-
atively smooth when increasing the leakage reversal poten-
tial of the populations (increasing EL,i = EL,e = EL from −80 

to −60 mV), as can be seen in Fig. 5. When there is no 
spike frequency adaptation, if the neuronal populations are 
hyperpolarized, UD states dominate the dynamics. However, 
when the neurons reach their typical EL,e and EL,i values, AI 
states start to appear.

Thus, this parameter sweep has shown a remarkable 
robustness of the transition between AI and UD states when 
varying the adaptation strength, be , especially in the depo-
larized region of the parameter space. Additionally, a tran-
sition from AI behavior to slow-wave oscillations has been 
found when hyperpolarizing the neural populations in the 
model, which could be related to transitions between con-
scious and anesthetized states.

Relationship Between FC and SC

The parameters used in the original TVB-AdEx model in 
Goldman et al. (2020, 2023) show a transition from asyn-
chronous AI to synchronized UD states, consistent with 
LFP empirical recordings (Destexhe et al., 1999). In order 
to extend that line of work, one of the objectives of this 
project was to investigate whether transitions from low to 

Fig. 3  Average standard deviation values from a subspace of the 
depolarized region of the parameter space. In the floating panels, the 
time evolution curves of the inhibitory and excitatory populations of 
the 68 AdEx mean-field models are plotted for six different param-
eter combinations in the depolarized region ( EL,i = EL,e = −64 mV). 

In be = 0 pA, for intermediate values of S, one can see how AI states 
appear, consistent with the low value of SD shown in the feature plot. 
For S = 0.5 , one can see the transition between AI and UD states 
when increasing be
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Fig. 4  Average standard deviation values in a subspace of the hyper-
polarized region of the parameter space. In the floating panels, the 
results of running the TVB-AdEx model for six other parameter com-
binations are plotted. In the hyperpolarized region ( EL,i = −78.667 
mV, EL,e = −80 mV) one can clearly see the effects of leakage rever-
sal potential values on the behavior of the model. Here, AI states 

do not appear even for be = 0 pA and high values of S. Instead, this 
sub-region of the parameter space is dominated by UD dynamics. 
For small T values, one can see how the dynamics are very fast and 
desynchronized, making model behavior hard to visualize. However, 
since the the excitatory firing rate values reach zero, one can con-
clude that they consist of desynchronized UD states

Fig. 5  Average standard deviation values with fixed T = 19ms , 
exploring EL,i = EL,e = EL , be and S. When b = 0pA , varying EL pro-
duces a clear transition between AI (higher values of EL ) and UD 

states (low values of EL ), which could be associated to a descent from 
consciousness towards anesthetized states (Alkire et al., 2008)
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high synchronization between network nodes with increas-
ing adaptation is maintained throughout the studied param-
eter space. Additionally, empirical studies show that the 
Structural Connectivity (SC), described here by the matrix 
Cj,k , tends to be the substrate upon which FC correlations 
appear during unconscious states, while the repertoire of 
FC patterns varies considerably and diverges from the SC in 
conscious states (Barttfeld et al., 2015; Tagliazucchi et al., 
2015; Hahn et al., 2021). So, the relationship between the 
FC patterns and the SC of the TVB-AdEx model has been 
studied when modeling a descent towards modeled uncon-
scious dynamics by increasing be.

To do that, the evolution of the mean value of the FC 
matrix, (from now on FC) and the Pearson correlation 
between the FC and SC matrix (from now on corrFCSC), 
described in Table 2, are studied as a function of be for each 
combination of S, EL,i , EL,e and T values. In other words, 
parameters S, EL,i , EL,e and T are fixed and one observes 
how FC and corrFCSC vary when increasing be from 0 to 
120 pA, obtaining the FC(be) and corrFCSC(be) traces for 
that parameter combination. This results in 42,240 different 
FC(be) and corrFCSC(be) traces that need to be analyzed.

To approach this cumbersome task, the FC(be) and 
corrFCSC(be) traces have been clustered (using a K-means 
clustering algorithm) with the objective of automatically 
grouping them in six FC(be) classes and six corrFCSC(be) 
classes. Those S, EL,i , EL,e and T combinations containing 
paroxysmal activity at any point of be were ignored from this 
analysis. In Fig. 6, one can see the centroids of the six FC(be) 
and corrFCSC(be) classes. In K-means clustering, the cen-
troid of a class represents the average behavior of all the traces 
associated to that class, giving a general idea of their tendency.

The left panels in Fig. 7 shows the corrFCSC(be) class 
for each parameter combination found in the depolarized 
region of the parameter space, while the right panels dis-
play the fraction of time that one of the parameter combina-
tions in the left panel is assigned both FC(be) class i and 
corrFCSC(be) class j.

One can see that a low value of T = 5ms results in a pre-
dominance of little to no increase of corrFCSC with be , 
being purple the most frequent class (recall corrFCSC(be) 
centroids from Fig. 6). Also, looking at the histogram, one 
can see that most corrFCSC(be) classes are paired with the 
red FC(be) class, implying that FC remains extremely low 
throughout the whole be range for T = 5 ms. For T = 19 
ms, both blue, red and olive corrFCSC(be) classes appear 
quite frequently. Analysing the centroids in Fig. 6, blue, red 
and olive corrFCSC(be) classes are the ones that show an 
increase in correlation when increasing be , consistent with 
empirical recordings (Barttfeld et al., 2015; Tagliazucchi 
et al., 2015; Hahn et al., 2021). Examining the histograms, 
one can see that the blue, red and olive corrFCSC(be) are 
also paired to an interesting variety of FC(be) classes. 
Finally, for T = 40 ms, most of the points in this parameter 
region are assigned to the green corrFCSC(be) class, which 
is characterized by a peak and slight decrease of corrFCSC 
when increasing adaptation. Although this region is the most 
heterogeneous of the three in terms of different class pairs, 
the most significant corrFCSC(be) classes (blue, red and 
olive) are scarce.

The behavior of the hyperpolarized region is considerably 
different (see Fig. 18 in the Supplementary Information). In 
the hyperpolarized region, for T = 19 ms, blue and green 
corrFCSC(be) points, whose centroids start at a consider-
ably high level of corrFCSC, dominate the region. This is 
consistent with the fact that, in the hyperpolarized region, 
one can find UD states associated to unconscious dynamics 
even for low values of be.

Thus, these results show that during slow-wave activity, 
the FC patterns of the TVB-AdEx model typically become 
more constrained by the anatomical connectivity than during 
conscious-like states, which is in close agreement with the 
empirical results obtained in Barttfeld et al. (2015), Taglia-
zucchi et al. (2015), and Hahn et al. (2021), especially for 
intermediate values of T, such as T = 19 ms.
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Fig. 6  Centroids of FC(be) and corrFCSC(be) classes, determined 
by a K-means algorithm with six clusters. Note that colors are used 
to distinguish between classes in the same category. FC(be) and 

corrFCSC(be) classes are not related, a priori, although they share the 
same colors. The number of classes has been chosen for plotting pur-
poses
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Discussion and Future Perspectives

In this work, using HPC resources, we have explored the 
large-scale activity of the TVB-AdEx whole brain model 
throughout a large parameter space spanned by microscopic 
parameters. We found that transitions between conscious 
and unconscious-like dynamics when increasing adapta-
tion strength be are largely robust, especially when the leak-
age reversal potential of excitatory populations is −60 mV 
≥ EL,e ≥ −65 mV. Moreover, we showed that it is possible 
to obtain slow-wave activity, similar to unconscious brain 
states, when strongly hyperpolarizing the neural populations 
of the model via EL,i and EL,e , independently of the level of 
spike-frequency adaptation. Finally, we found that the FC 
patterns arising from unconscious-like dynamics are usu-
ally closer to the underlying anatomical connectivity than 
those from conscious-like states, which is consistent with 
results from several empirical studies (Barttfeld et al., 2015; 
Tagliazucchi et al., 2015; Hahn et al., 2021).

Studying Paroxysmal Fixed Point probability in the TVB-
AdEx model, one finds that the total number of PFPs in 
the parameter space is considerable, where approximately 
one fifth of the tested parameter combinations reaches this 

pathological fixed point. The parameters that most strongly 
modulate the probability of reaching a PFP are S, EL,e and 
EL,i , which are able to modify the balance between excitation 
and inhibition in the neural populations. This high number of 
PFPs could be decreased by applying a stronger long-range 
excitatory coupling on inhibitory populations with respect 
to excitatory populations (Li et al., 2021), to compensate for 
the imbalance between excitation over inhibition that causes 
pathological activity. This asymmetry could be further 
investigated to relate values of EL,e and EL,i to experimental 
findings of resting membrane potentials in different areas of 
the cortex. Because these paroxysmal points exhibit exces-
sively high firing rates, and appear generally when there is 
an excess of excitation, they resemble epileptic-type activ-
ity. Although the TVB-AdEx produces epileptic activity, the 
resolution will be improved in the future with further bio-
physical detail to include the direct representation of other 
microscopic mechanisms underlying epilepsy, for instance, 
K + dynamics (Depannemaecker et al., 2021).

The timescale of the model, expressed through parameter 
T, has a powerful influence on the dynamics of the TVB-
AdEx model. Apart from strongly modulating the frequency 
of oscillations of neuronal activity (clearly seen in Figs. 16 

Fig. 7  Distribution of 
corrFCSC(be) classes as a 
function of S, EL,i and EL,e 
values. For different T values 
(left panels) and histograms 
represent the fraction of time a 
point in the parameter space is 
assigned to FC(be) class i and 
corrFCSC(be) class j (right pan-
els) for the depolarized range 
of EL,e ( −60 mV ≥ EL,e ≥ −65 
mV). The bottom color of the 
histogram bars are the same as 
the pair’s FC(be) color, while 
the top color is the same as the 
pair’s corrFCSC(be) color
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and 17), it affects the overall level of synchronization and 
how the FC patterns relate to the anatomical connectivity 
matrix (Figs. 7 and 18).

In the TVB-AdEx network, low values of T, such as T = 5 
ms, can result in violating one of the necessary assumptions 
used to build the AdEx mean-field model: that the system 
is Markovian over a certain time scale T (El Boustani & 
Destexhe, 2009). This violation results in aberrant, noisy and 
fast oscillating activity (an example of this has been shown 
in Fig. 4 bottom-left panel). Therefore, correlations between 
nodes become extremely rare, resulting in low levels of 
mean FC and corrFCSC independently of the adaptation 
strength value. For large values of the timescale parameter, 
such as T = 40 ms, the dynamics of the model slow down 
considerably, and correlations between regions increase, 
especially in UD states. This increase homogenizes the FC 
matrix, which leads to a greater dissimilarity between the FC 
and SC matrices, thus explaining the overall decrease in cor-
rFCSC as a function of be for T = 40 ms. Additionally, for 
large values of T, the system remains memoryless. However, 
inputs arriving to networked mean-field models at frequen-
cies faster than 1/T (around 25 Hz for T = 40 ms) appear as 
a constant external drive (di Volo et al., 2019). Therefore, 
the results obtained for intermediate values of T, such as 
T = 19ms, support the idea that it is necessary to use a slow 
enough timescale to not violate the Markovian assumption, 
but fast enough to keep the loss of high-frequency informa-
tion to a minimum.

Although the TVB has been shown to effectively mimic 
both conscious and unconsciouss-like large-scale dynamics 
throughout the studied parameter sweep, the model still has 
several noteworthy limitations.

First of all, this version of the TVB-AdEx model uses an 
anatomical substrate representing purely cortical regions and 
their connectivity and therefore does not directly represent 
subcortical dynamics (Alkire et al., 2008; Aru et al., 2019). 
Rather, the TVB-AdEx model relies on simplified repre-
sentations of incoming subcortical effects of transient and 
noisy inputs, modeled as �aff  and �k

drive
 , respectively, from 

Eq. 4. Therefore, future advances should include cortical-
subcortical loops, particularly, the explicit representation of 
thalamo-cortical connections in TVB-AdEX.

Additionally, this multi-scale cortical model assumes 
that each region shares the same parameters as the others. 
For instance, one could try to make use of an acetylcholine 
receptor density map to obtain a heterogeneous distribu-
tion of be parameters, similarly to what is done in Herzog 
et al. (2023). Future iterations of the TVB-AdEx model will 
therefore need to run even more quickly to efficiently scan 
parameter space.

Finally, most current empirical functional connectivity 
studies use fMRI data (Barttfeld et al., 2015; Tagliazucchi 
et al., 2015; Hahn et al., 2021) to record brain activity at 

long temporal scales, with a typical sampling rate of two 
seconds, while the sampling time of the TVB-AdEx model is 
of 0.1 ms. While we report progress in biophysically bridg-
ing between spatial scales in neural simulations, bridging 
between time scales is out of the scope of this manuscript. 
Bridging time scales will be explored in later work, profit-
ing from the TVB library fMRI simulator (BOLD moni-
tor), which is resource intensive, requiring long simulations 
to compare with empirical fMRI data. In the TVB-AdEx 
model, there is typically an increase of the mean FC value 
with increased adaptation, as has been shown in Section 3.3. 
However, this is not the case in fMRI signals, where the 
mean FC value decreases during the descent to deep sleep 
(Hahn et al., 2021). An intriguing possibility is that this 
discrepancy might be related to differences in time scales, 
which should be further investigated. However, even with 
HPC, the parameter space is too large to assess efficiently. 
Thus, reducing the computational cost of long TVB-AdEx 
model simulations would be extremely beneficial, as it 
would allow the use of TVB’s BOLD monitor to simulate 
fMRI signals. Analyzing simulated BOLD signals would 
allow to better relate the model’s behavior to empirical fMRI 
findings. Also, the reduction of computational cost would 
allow to repeat a similar parameter sweep but studying the 
network properties of the FC matrix, in order to determine 
whether the TVB-AdEx model can also simulate known 
fMRI FC characteristics of brain pathologies (Bullmore & 
Sporns, 2009; Fornito et al., 2015; Farahani et al., 2019). 
Therefore, we propose RateML as tool that would allow 
to speed up simulations by allowing the user to generate 
accelerated CPU and GPU-ready TVB models (van der Vlag 
et al., 2022).

In recent years, multiscale brain modeling has gained 
prominence (Breakspear, 2017; D’Angelo & Jirsa, 2022), 
ultimately leading to the development of virtual brain mod-
els (D’Angelo & Jirsa, 2022; Leon et al., 2013). These vir-
tual whole brain models have been extensively researched 
and applied to address diverse neurological issues, including 
epilepsy (Jirsa et al., 2017; Olmi et al., 2019), neurodegen-
erative diseases (Alexandersen et al., 2023; van Nifterick 
et al., 2022), and the exploration of various states of con-
sciousness (Goldman et al., 2020, 2023; Herzog et al., 2023; 
Cakan et al., 2022).

Despite the recent progress in whole brain modeling, 
to the best of our knowledge, only the models presented 
by Cakan et al. (2022) and the TVB-AdEx, presented by 
Goldman et al. (2020, 2023), have demonstrated successful 
simulations of slow oscillations, associated to deep sleep 
and unconscious states. Furthermore, in Goldman et al. 
(2020, 2023), the authors show that Perturbational Com-
plexity Index (PCI) of the TVB-AdEx model decreases when 
the spike frequency adaptation parameter, be , is increased, 
simulating the reported decrease of PCI when losing 
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consciousness (Casali et al., 2013). Therefore, we have 
further analyzed the behavior of the TVB-AdEx model by 
conducting an extensive exploration of the parameter space, 
which serves to provide a more comprehensive characteri-
zation of the model’s behavior. Additionally, we have also 
analyzed the relationship between functional and structural 
connectivity within the model, a characteristic closely tied 
to consciousness (Barttfeld et al., 2015; Tagliazucchi et al., 
2015; Hahn et al., 2021).

In Hahn et al. (2021), Hahn et al. constructed a whole 
brain model that successfully simulated the functional con-
nectivity (FC) and the similarity between FC and structural 
connectivity (SC) for humans and primates, both falling 
asleep and under different levels of anesthesia. However, 
the model used in Hahn et al. (2021) simulated the BOLD 
signals of each brain area with the normal-form of the Hopf 
bifurcation, which lacks biological inspiration and interpre-
tation. In this study, we have shown that the TVB-AdEx 
is a biologically-inspired multiscale model that also simu-
lates an increase in similarity between FC and SC during 
the descent into deep sleep, coinciding with the appearance 
of slow-wave activity. However, in Hahn et al. (2021), both 
the empirical recordings and the presented model showcase 
a decrease in the mean value of the FC when slow-wave 
dynamics emerge, while the TVB-AdEx tends to show an 
increase in FC. As previously mentioned, this divergence 
could potentially be attributed to the timescales being simu-
lated and will be further explored in future studies.

Together, these results show that the TVB-AdEx model 
is a flexible and robust multi-scale model, where changes of 
microscopic parameters lead to transitions in the dynamical 
behavior of simulated activity, where the emergent activity 
states display properties in general agreement with experi-
mental measurements.
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