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Whole-brain image volumes at the micron scale are helping 
scientists characterize neuron-level morphology and con-
nectivity, and discover new neuronal subtypes. These vol-
umes require intense computational processing to uncover 
the rich neuronal information they contain. Currently, how-
ever, image acquisition is outstripping the availability and  
throughput of analysis pipelines. The steps in analyzing 
these images include registration, axon segmentation, soma 
detection, visualization and analysis of results. Several tools  
exist for these individual steps, but are rarely all part of an 
integrated pipeline and able to facilitate cloud-based col-
laboration (Tyson et al., 2022; Pisano et al., 2021). Further, 
many existing machine learning based tools are highly 
tuned to their training data and perform poorly when they 

encounter out-of-distribution artifacts or signal levels (Geisa 
et al., 2021).

To address these challenges, we present BrainLine, an 
open-source, fully-integrated pipeline that performs registra-
tion, axon segmentation, soma detection, visualization, and 
analysis on whole-brain fluorescence volumes (Figure 1a). 
BrainLine combines state-of-the-art, already available open-
source tools such as CloudReg (Chandrashekhar et al., 2021) 
and ilastik (Berg et al., 2019) with brainlit, our Python pack-
age developed here. The BrainLine pipeline accommodates 
images that are hundreds of gigabytes in size and uses gen-
eralizable machine learning training schemes that adapt to 
out-of-distribution samples.

To share and interact with data across multiple institu-
tions, BrainLine uses Amazon S3 to store data in precom-
puted format, so it can be viewed using Neuroglancer 
(n/a). Specifically, we use CloudReg (Chandrashekhar  
et al., 2021) for file conversion of the stitched image, and 
for image registration to the Allen atlas (Wang et al., 2020).

For axon segmentation and soma detection, we sought 
to leverage recent machine learning advances but experi-
enced two major constraints. First, as generating ground 
truth image annotations is labor intensive, we wanted the 
approach to be effective on a small amount of training data. 
Second, images were provided to us in a sequential manner, 
and new samples would sometimes have unique artifacts 
or different levels of image quality (Figure 1b, c, e, f). We 
therefore sought a learning algorithm that could be quickly 
retrained on new data. Many learning algorithms assume 
that all training and testing data come from the same distri-
bution and fail when this is not the case (Quinonero-Candela 
et al., 2008). However, using our closed-loop training para-
digm with ilastik (Berg et al., 2019), we were able to use a 
single ilastik project for all samples, only occasionally add-
ing training data when difficult samples arose.

We used an ilastik pixel classification workflow for both 
axon segmentation and soma detection, but in the latter case 
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we applied a size threshold to the connected components fol-
lowing segmentation. In both cases, the training approach 
was the same. For each new whole-brain volume, we identi-
fied a set of subvolumes ( 993 voxels for axons, 493 for somas) 
across a variety of brain regions, and annotated only a few 
slices (three for axons, five for somas) in each subvolume for 
our validation set. This strategy is similar to that employed 
in Friedmann et al. (2020). If our model could not achieve 
a satisfactory f-score on this validation dataset, we would 
annotate more subvolumes from the sample and add them to 
the training set until satisfactory performance was achieved.

We observed that this heterogeneous training procedure 
(i.e. training on multiple brain samples) often improved 
performance on other samples as well. In an experiment 
where we controlled the number of subvolumes used for 
training, this approach was at least as good as a homogene-
ous approach, where all training subvolumes came from a 
single brain sample (Figure 1d, g).

The pipeline can display the axon segmentation and 
soma detection results in a variety of ways, including brain-
region-based bar charts accompanied by statistical tests 
(Fig. 1a.i), 2D plots with the atlas borders (Fig. 1a.ii), and 

Fig. 1  BrainLine allows for efficient processing of heterogeneous 
whole brain fluorescence volumes. a BrainLine combines CloudReg  
(Chandrashekhar et al., 2021), ilastik (Berg et al., 2019) and our pack-
age, brainlit, to produce results in both quantitative (a.i) and visual  
(a.ii-a.iii) formats. b Example images with fluorescently labeled axon 
projections and arrows pointing to regions with (green) and with-
out (red) labeled axons. c Intensity histograms of 20x20x20 voxel 
subvolumes located at the arrows in b. d Comparison between axon 

segmentation performance after training on subvolumes from dif-
ferent samples (heterogeneous) or the same sample (homogeneous). 
e Example images with fluorescently labeled cell bodies and arrows 
pointing to regions with (green) and without (red) labeled cell bodies. 
f Intensity histograms of 20x20x20 voxel subvolumes located at the 
arrows in e. g Comparison between soma detection performance after 
training on subvolumes from different brain samples (heterogeneous) 
or a single brain sample (homogeneous)
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3D visualizations using brainrender (Fig. 1a.iii) (Claudi 
et al., 2021). Since every experimental design is unique, 
we designed our pipeline in a modular way, so investiga-
tors can pick and choose which components they want to 
incorporate in their own analyses. We also leverage existing 
software and file formats to facilitate interoperability (Tyson  
et al., 2022).

BrainLine enables accelerated analysis of brain-wide 
connectivity through parallel programming, the use of 
cloud-compliant file formats, and a machine learning 
training scheme that generalizes across brain samples. As 
a result, BrainLine alleviates the need for investigators to 
build custom analysis pipelines from scratch, helping them 
characterize the morphology and connectivity profiles of 
neurons, and discover new neuronal subtypes. BrainLine 
is available as a set of thoroughly documented notebooks 
and scripts in our Python package brainlit: http:// brain lit. 
neuro data. io/.
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