Skip to main content
Log in

IABC: A Toolbox for Intelligent Analysis of Brain Connectivity

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Brain functional networks and connectivity have played an important role in exploring brain function for understanding the brain and disclosing the mechanisms of brain disorders. Independent component analysis (ICA) is one of the most widely applied data-driven methods to extract brain functional networks/connectivity. However, it is hard to guarantee the reliability of networks/connectivity due to the randomness of component order and the difficulty in selecting an optimal component number in ICA. To facilitate the analysis of brain functional networks and connectivity using ICA, we developed a MATLAB toolbox called Intelligent Analysis of Brain Connectivity (IABC). IABC incorporates our previously proposed group information guided independent component analysis (GIG-ICA), NeuroMark, and splitting-merging assisted reliable ICA (SMART ICA) methods, which can estimate reliable individual-subject neuroimaging measures for further analysis. After user inputs functional magnetic resonance imaging (fMRI) data of multiple subjects that are regularly organized (e.g., in Brain Imaging Data Structure (BIDS)) and clicks a few buttons to set parameters, IABC automatically outputs brain functional networks, their related time courses, and functional network connectivity of each subject. All these neuroimaging measures are promising for providing clues in understanding brain function and differentiating brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

See Information Sharing Statement.

References

  • Abou Elseoud, A., Littow, H., Remes, J. J., Starck, T., Nikkinen, J., Nissilä, J., Timonen, M., Tervonen, O., & Kiviniemi, V. J. (2011). Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity. Frontiers in Systems Neuroscience, 5. https://doi.org/10.3389/fnsys.2011.00037

  • Adalı, T., & Calhoun, V. (2022). Reproducibility and replicability in neuroimaging data analysis. Current Opinion in Neurology, 35. https://doi.org/10.1097/WCO.0000000000001081

  • Agcaoglu, O., Wilson, T. W., Wang, Y.-p., Stephen, J. M., & Calhoun, V. D. (2019). Resting state connectivity differences in eyes open versus eyes closed conditions. Human Brain Mapping, 40. https://doi.org/10.1002/hbm.24539

  • Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlíček, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J. R., Clark, V., Feldstein Ewing, S. W., Filbey, F. M., Ford, C. C., Hutchison, K. E., Jung, R. E., Kiehl, K. A., Kodituwakku, P. W., Komesu, Y. M., Mayer, A. R., Pearlson, G. D., Phillips, J. P., Sadek, J. R., Stevens, M. C., Teuscher, U., Thoma, R. J., & Calhoun, V. D. (2011). A Baseline for the Multivariate Comparison of Resting-State Networks. Frontiers in Systems Neuroscience, 5. https://doi.org/10.3389/fnsys.2011.00002

  • Allen, E. A., Erhardt, E. B., Wei, Y., Eichele, T., & Calhoun, V. D. (2012). Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study. NeuroImage, 59. https://doi.org/10.1016/j.neuroimage.2011.10.010

  • Amann, B. L., Canales-Rodríguez, E. J., Madre, M., Raduà, J., Monté, G. C., Alonso-Lana, S., Landin-Romero, R., Moreno-Alcázar, A., Bonnín, C. M., Sarró, S., Ortíz-Gil, J., Gomar, J. J., Moro, N., Fernández-Corcuera, P., Goikolea, J. M., Blanch, J., Salvador, R., Vieta, E., McKenna, P. J., & Pomarol-Clotet, E. (2016). Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder. Acta Psychiatrica Scandinavica, 133. https://doi.org/10.1111/acps.12440

  • Arbabshirani, M. R., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2013). Classification of schizophrenia patients based on resting-state functional network connectivity. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00133

  • Bai, L., Liang, J., Du, H., & Guo, Y. (2018). A novel community detection algorithm based on simplification of complex networks. Knowledged Based System, 143. https://doi.org/10.1016/j.knosys.2017.12.007

  • Beckmann, C., Mackay, C., Filippini, N., & Smith, S. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47. https://doi.org/10.1016/S1053-8119(09)71511-3

  • Beckmann, C. F. (2012). Modelling with independent components. NeuroImage, 62. https://doi.org/10.1016/j.neuroimage.2012.02.020

  • Bell, A. J., & Sejnowski, T. J. (1995). An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 7, 1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129

    Article  CAS  PubMed  Google Scholar 

  • Bi, X.-a., Zhao, J., Xu, Q., Sun, Q., & Wang, Z. (2018). Abnormal Functional Connectivity of Resting State Network Detection Based on Linear ICA Analysis in Autism Spectrum Disorder. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00475

  • Caldwell, J. Z. K., Zhuang, X., Leavitt, M. J., Banks, S. J., Cummings, J. L., & Cordes, D. (2019). Sex Moderates Amyloid and Apolipoprotein ε4 Effects on Default Mode Network Connectivity at Rest. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00900

  • Calhoun, V. D., Adalı, T., Pearlson, G. D., & Pekar, J. J. (2001a). A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 14.

  • Calhoun, V. D., Adalı, T., Pearlson, G. D., & Pekar, J. J. (2001b). Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms. Human Brain Mapping, 13. https://doi.org/10.1002/hbm.1024

  • Calhoun, V. D., & de Lacy, N. (2017). Ten Key Observations on the Analysis of Resting-state Functional MR Imaging Data Using Independent Component Analysis. Neuroimaging Clinics of North America, 27, 4. https://doi.org/10.1016/j.nic.2017.06.012

    Article  Google Scholar 

  • Chahal, R., Gotlib, I. H., Guyer, A. E., & psychiatry, & disciplines, a. (2020). Research Review: Brain network connectivity and the heterogeneity of depression in adolescence - a precision mental health perspective. Journal of Child Psychology. https://doi.org/10.1111/jcpp.13250

    Article  Google Scholar 

  • Chen, Z., & Calhoun, V. D. (2018). Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00015

  • Chen, Z., Daniel, E., Chen, B. T., & function. (2021a). Phase fMRI defines brain resting-state functional hubs within central and posterior regions. Brain Structure. https://doi.org/10.1007/s00429-021-02301-z

    Article  PubMed  Google Scholar 

  • Chen, Z., Shi, Q., Daniel, E., & Chen, B.T. (2020). Inferring brain functional hubs by eigencentrality mapping of phase fMRI connectivity. Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging.

  • Chen, Z., Zhou, J., Wu, D., Ji, C., Luo, B.-y., & Wang, K. (2021b). Altered executive control network connectivity in anti‐NMDA receptor encephalitis. Annals of Clinical Translational Neurology, 9. https://doi.org/10.1002/acn3.51487

  • Cheng, M.-Y., Gupta, A., Ong, Y., & Ni, Z.-W. (2017). Coevolutionary multitasking for concurrent global optimization: With case studies in complex engineering design. Engineering Applications of Artificial Intelligence, 64. https://doi.org/10.1016/j.engappai.2017.05.008

  • Comon, P., & Jutten, C. (2010). Handbook of Blind Source Separation: Independent Component Analysis and Applications.

  • Dautricourt, S., Gonneaud, J., Landeau, B., Calhoun, V., de Flores, R., Poisnel, G., Bougacha, S., Ourry, V., Touron, E., Kuhn, E., Demintz-King, H., Marchant, N. L., Vivien, D., de la Sayette, V., Lutz, A., Chételat, G., Arenaza-Urquijo Allais André Asselineau Bejanin Ch, E. M. F. C. J. A. P. G. A., Arenaza-Urquijo, E. M., Allais, F., André, C., Asselineau, J., Bejanin, A., Champetier, P., Chételat, G., Chocat, A., Dautricourt, S., de Flores, R., Delarue, M., Egret, S., Felisatti, F., Devouge, E. F., Frison, E., Gonneaud, J., Heidmann, M., Tran, T. H., Kuhn, E., le Du, G., Landeau, B., Lefranc, V., Lutz, A., Mézenge, F., Moulinet, I., Ourry, V., Palix, C., Paly, L., Poisnel, G., Quillard, A., Rauchs, G., Rehel, S., Requier, F., Touron, E., Vivien, D., Ware, C., Lugo, S. B., Klimecki, O. M., Vuilleumier, P., Barnhofer, T., Collette, F., Salmon, E., de la Sayette, V., Delamillieure, P., Batchelor, M. J., Beaugonin, A., Gheysen, F., Demnitz-King, H., Marchant, N. L., Whitfield, T., Schimmer, C., & Wirth, M. (2022). Dynamic functional connectivity patterns associated with dementia risk. Alzheimer's Research & Therapy, 14.

  • Du, Y., Allen, E. A., He, H., Sui, J., Wu, L., & Calhoun, V. D. (2016). Artifact removal in the context of group ICA: A comparison of single‐subject and group approaches. Human Brain Mapping, 37. https://doi.org/10.1002/hbm.23086

  • Du, Y., & Fan, Y. (2013). Group information guided ICA for fMRI data analysis. NeuroImage, 69. https://doi.org/10.1016/j.neuroimage.2012.11.008

  • Du, Y., Fu, Z., & Calhoun, V. D. (2018). Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00525

  • Du, Y., Fu, Z., Sui, J., Gao, S., & Calhoun, V. D. (2020a). NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage: Clinical. https://doi.org/10.1016/j.nicl.2020.102375

  • Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., Salman, M. S., Abrol, A., Rahaman, M. A., Chen, J., Hong, L. E., Kochunov, P. V., Osuch, E. A., & Calhoun, V. D. (2020b). NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage : Clinical, 28.

  • Du, Y., He, X., & Calhoun, V. D. (2021). SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks. 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society. https://doi.org/10.1109/EMBC46164.2021.9630284

  • Du, Y., Pearlson, G. D., He, H., Wu, L., Chen, J., & Calhoun, V. D. (2015a). Identifying brain dynamic network states via GIG-ICA: Application to schizophrenia, bipolar and schizoaffective disorders. IEEE 12th International Symposium on Biomedical Imaging. https://doi.org/10.1109/ISBI.2015.7163915

  • Du, Y., Pearlson, G. D., Liu, J., Sui, J., Yu, Q., He, H., Castro, E., & Calhoun, V. D. (2015b). A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage, 122. https://doi.org/10.1016/j.neuroimage.2015.07.054

  • Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adalı, T., & Calhoun, V. D. (2011). Comparison of multi‐subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32. https://doi.org/10.1002/hbm.21170

  • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cerebral Cortex, 26. https://doi.org/10.1093/cercor/bhw157

  • Fu, Z., Iraji, A., Sui, J., & Calhoun, V. D. (2021). Whole-Brain Functional Network Connectivity Abnormalities in Affective and Non-Affective Early Phase Psychosis. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.682110

  • Ghahremani, M., Yoo, J., Chung, S. J., Yoo, K., Ye, J.-C., & Jeong, Y. (2018). Alteration in the Local and Global Functional Connectivity of Resting State Networks in Parkinson’s Disease. Journal of Movement Disorders, 11. https://doi.org/10.14802/jmd.17061

  • He, X., Calhoun, V. D., & Du, Y. (2022). SMART (splitting-merging assisted reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks. techrxiv, [Preprint]. https://doi.org/10.36227/techrxiv.21581142

  • Himberg, J., & Hyvärinen, A. (2003). Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. IEEE XIII Workshop on Neural Networks for Signal Processing. https://doi.org/10.1109/NNSP.2003.1318025

    Article  Google Scholar 

  • Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22. https://doi.org/10.1016/j.neuroimage.2004.03.027

  • Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K. E., D'Ambrosio, S., David, O., Devinsky, O., Dichter, B. K., Flinker, A., Foster, B. L., Gorgolewski, K. J., Groen, I. I. A., Groppe, D. M., Gunduz, A., Hamilton, L. S., Honey, C. J., Jas, M., Knight, R. T., Lachaux, J.-P., Lau, J. C., Lee-Messer, C., Lundstrom, B. N., Miller, K. J., Ojemann, J. G., Oostenveld, R., Petridou, N., Piantoni, G., Pigorini, A., Pouratian, N., Ramsey, N. F., Stolk, A., Swann, N. C., Tadel, F., Voytek, B., Wandell, B. A., Winawer, J. A., Whitaker, K. J., Zehl, L., & Hermes, D. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 6. https://doi.org/10.1038/s41597-019-0105-7

  • Hrybouski, S., Cribben, I., McGonigle, J., Olsen, F., Carter, R., Seres, P., Madan, C., & Malykhin, N. (2020). Investigating the effects of healthy cognitive aging on brain functional connectivity using 4.7 T resting-state functional Magnetic Resonance Imaging. Brain structure & function, 1067–1098. https://doi.org/10.1007/s00429-021-02226-7

  • Hsu, S.-H., Pion-Tonachini, L., Palmer, J. A., Miyakoshi, M., Makeig, S., & Jung, T.-P. (2018). Modeling brain dynamic state changes with adaptive mixture independent component analysis. NeuroImage, 183. https://doi.org/10.1016/j.neuroimage.2018.08.001

  • Hu, G., Waters, A. B., Aslan, S., Frederick, B. B., Cong, F., & Nickerson, L. D. H. (2020). Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data. Frontiers in Neuroscience, 14.

  • Huang, H., Condor, A., & Huang, H.J. (2020). Classification of EEG Motion Artifact Signals Using Spatial ICA.

  • Iraji, A., Faghiri, A., Fu, Z., Rachakonda, S., Kochunov, P. V., Belger, A., Ford, J. M., McEwen, S. C., Mathalon, D. H., Mueller, B. A., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., van Erp, T. G. M., & Calhoun, V. D. (2021). Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia. Network Neuroscience, 6. https://doi.org/10.1162/netn_a_00196

  • Iraji, A., Faghiri, A., Lewis, N., Fu, Z., DeRamus, T. P., Qi, S., Rachakonda, S., Du, Y., & Calhoun, V. D. (2019). Ultra-high-order ICA: an exploration of highly resolved data-driven representation of intrinsic connectivity networks (sparse ICNs). Paper presented at the Optical Engineering + Applications.

  • Jafri, M. J., Pearlson, G. D., Stevens, M. C., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage, 39. https://doi.org/10.1016/j.neuroimage.2007.11.001

  • Jarrahi, B. (2021). Examining the Influence of Spatial Smoothing on Spatiotemporal Features of Intrinsic Connectivity Networks at Low ICA Model Order. 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society. https://doi.org/10.1109/EMBC46164.2021.9630520

  • Kairov, U., Cantini, L., Greco, A., Molkenov, A., Czerwińska, U., Barillot, E., & Zinovyev, A. Y. (2017). Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-4112-9

  • Kamathe, R. S., & Joshi, K. R. (2018). A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer's disease. Biomed. Signal Process. Control., 40. https://doi.org/10.1016/j.bspc.2017.09.005

  • Khodatars, M., Shoeibi, A., Ghassemi, N., Jafari, M., Khadem, A., Sadeghi, D., Moridian, P., Hussain, S., Alizadehsani, R., Zare, A., Khosravi, A., Nahavandi, S., Acharya, U. R., Berk, M., & Medicine. (2021). Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of Autism Spectrum Disorder: A Review. Computers in biology, 139. https://doi.org/10.1016/j.compbiomed.2021.104949

  • Khorshidi, G. S., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90. https://doi.org/10.1016/j.neuroimage.2013.11.046

  • Kim, J., Criaud, M., Cho, S. S., Díez-Cirarda, M., Mihaescu, A., Coakeley, S., Ghadery, C., Valli, M., Jacobs, M. F., Houle, S., & Strafella, A. P. (2017). Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain, 140. https://doi.org/10.1093/brain/awx233

  • Kuang, L.-D., Lin, Q.-H., Gong, X., Cong, F., & Calhoun, V. D. (2018). Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia. Journal of Neuroscience Methods, 304. https://doi.org/10.1016/j.jneumeth.2018.02.013

  • Lai, J. W., Ang, C. K. E., Acharya, U. R., Cheong, K. H., & Health, P. (2021). Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. International Journal of Environmental Research, 18. https://doi.org/10.3390/ijerph18116099

  • Lei, J., Jiang, T., Wu, K., Du, H., Zhu, G., Wang, Z., & Applications. (2016). Robust K-means algorithm with automatically splitting and merging clusters and its applications for surveillance data. Multimedia Tools, 75. https://doi.org/10.1007/s11042-016-3322-5

  • Lian, C., Liu, M., Zhang, J., Shen, D., & Intelligence, M. (2020). Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI. IEEE Transactions on Pattern Analysis, 42. https://doi.org/10.1109/TPAMI.2018.2889096

  • Littow, H., Elseoud, A. A., Haapea, M., Isohanni, M., Moilanen, I. K., Mankinen, K., Nikkinen, J., Rahko, J. S., Rantala, H. M. J., Remes, J. J., Starck, T., Tervonen, O., Veijola, J., Beckmann, C. F., & Kiviniemi, V. J. (2010). Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study. Frontiers in Systems Neuroscience, 4. https://doi.org/10.3389/fnsys.2010.00032

  • Madsen, K. H., Churchill, N. W., & Mørup, M. (2017). Quantifying functional connectivity in multi‐subject fMRI data using component models. Human Brain Mapping, 38. https://doi.org/10.1002/hbm.23425

  • Meng, X., Iraji, A., Fu, Z., Kochunov, P. V., Belger, A., Ford, J. M., Mcewen, S., Mathalon, D. H., Mueller, B. A., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., van Erp, T. G. M., Sui, J., & Calhoun, V. D. (2021). Multi-model Order ICA: A Data-driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales. Brain Connectivity. https://doi.org/10.1101/2021.10.24.465635

    Article  PubMed  Google Scholar 

  • Murphy, G. L., Ross, B., & cognition. (2010). Uncertainty in category-based induction: when do people integrate across categories. Journal of experimental psychology. Learning, memory,, 36. https://doi.org/10.1037/a0018685

  • Neha, & Gandhi, T.K. (2016). Resting state fMRI analysis using seed based and ICA methods. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2551–2554.

  • Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N. A., Jas, M., Litvak, V., T Moreau, J., Oostenveld, R., Schoffelen, J.-M., Tadel, F., Wexler, J., & Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.110

  • Osuch, E., Gao, S., Wammes, M., Théberge, J., Willimason, P., Neufeld, R. J., Du, Y., Sui, J., & Calhoun, V. (2018). Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication class of response in complex patients. Acta Psychiatrica Scandinavica. https://doi.org/10.1111/acps.12945

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J. E., Jung, S. C., Ryu, K. H., Oh, J. Y., Kim, H. S., Choi, C. G., Kim, S. J., & Shim, W. H. (2017). Differences in dynamic and static functional connectivity between young and elderly healthy adults. Neuroradiology, 59, 781–789. https://doi.org/10.1007/s00234-017-1875-2

    Article  PubMed  Google Scholar 

  • Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., & Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6. https://doi.org/10.1038/s41597-019-0104-8

  • Phang, C.-R., Noman, F. M., Hussain, H., Ting, C.-M., Ombao, H. C., & Informatics, H. (2020). A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns. IEEE Journal of Biomedical, 24. https://doi.org/10.1109/JBHI.2019.2941222

  • Qureshi, M. N. I., Ryu, S., Song, J., Lee, K. H., & Lee, B. (2019). Evaluation of Functional Decline in Alzheimer’s Dementia Using 3D Deep Learning and Group ICA for rs-fMRI Measurements. Frontiers in Aging Neuroscience, 11. https://doi.org/10.3389/fnagi.2019.00008

  • Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00897

  • Ray, K. L., McKay, D. R., Fox, P. M., Riedel, M. C., Uecker, A., Beckmann, C. F., Smith, S. M., Fox, P. T., & Laird, A. R. (2013). ICA model order selection of task co-activation networks. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00237

  • Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. NeuroImage, 206. https://doi.org/10.1016/j.neuroimage.2019.116189

  • Salman, M. S., Du, Y., Damaraju, E., Lin, Q.-H., & Calhoun, V. D. (2017). Group information guided ICA shows more sensitivity to group differences than dual-regression. IEEE 14th International Symposium on Biomedical Imaging. https://doi.org/10.1109/ISBI.2017.7950538

  • Salman, M. S., Du, Y., Lin, D., Fu, Z., Damaraju, E., Sui, J., Chen, J., Yu, Q., Mayer, A. R., Posse, S., Mathalon, D. H., Ford, J. M., van Erp, T. G. M., & Calhoun, V. D. (2019). Group ICA for identifying biomarkers in schizophrenia: ‘Adaptive’ networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression. NeuroImage : Clinical, 22. https://doi.org/10.1016/j.nicl.2019.101747

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks : the official journal of the International Neural Network Society, 61. https://doi.org/10.1016/j.neunet.2014.09.003

  • Schreiner, M. W., Klimes-Dougan, B., & Cullen, K. R. (2019). Neural Correlates of Suicidality in Adolescents with Major Depression: Resting-State Functional Connectivity of the Precuneus and Posterior Cingulate Cortex. Suicide and Life-Threatening Behavior, 49, 3. https://doi.org/10.1111/sltb.12471

    Article  Google Scholar 

  • Sendi, M. S. E., Zendehrouh, E., Ellis, C. A., Liang, Z., Fu, Z., Mathalon, D. H., Ford, J. M., Preda, A., van Erp, T. G. M., Miller, R. L., Pearlson, G. D., Turner, J. A., & Calhoun, V. D. (2021). Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity. Frontiers in Neural Circuits, 15. https://doi.org/10.3389/fncir.2021.649417

  • Shen, H., Zhang, L., Xu, C., Zhu, J., Chen, M., & Fang, Y. R. (2018). Analysis of Misdiagnosis of Bipolar Disorder in An Outpatient Setting. General Psychiatry, 30. https://doi.org/10.11919/j.issn.1002-0829.217080

  • Shi, Y., Zeng, W., & Wang, N.-z. (2017). SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis. Computer methods programs in biomedicine, 148. https://doi.org/10.1016/j.cmpb.2017.07.001

  • Sockeel, S., Schwartz, D., Pélégrini-Issac, M., Benali, H., & Yao, D. (2016). Large-Scale Functional Networks Identified from Resting-State EEG Using Spatial ICA. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0146845

  • Stephan, K. E., Schlagenhauf, F., Huys, Q. J. M., Raman, S., Aponte, E. A., Brodersen, K. H., Rigoux, L., Moran, R. J., Daunizeau, J., Dolan, R. J., Friston, K. J., & Heinz, A. (2017). Computational neuroimaging strategies for single patient predictions. NeuroImage, 145. https://doi.org/10.1016/j.neuroimage.2016.06.038

  • Toenders, Y. J., van Velzen, L. S., Heideman, I. Z., Harrison, B. J., Davey, C. G., & Schmaal, L. (2019). Neuroimaging predictors of onset and course of depression in childhood and adolescence: A systematic review of longitudinal studies. Developmental Cognitive Nerouscience, 39. https://doi.org/10.1016/j.dcn.2019.100700

  • Turpyn, C. C., Niehaus, C. E., Gonçalves, S. F., & Jenness, J. L. (2020). Systematic Review of Affective Functional Magnetic Resonance Imaging in Pediatric Major Depressive Disorder. Journal of Pediatric Neuropsychology, 6. https://doi.org/10.1007/s40817-020-00080-9

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15. https://doi.org/10.1006/nimg.2001.0978

  • Venugopalan, J., Tong, L., Hassanzadeh, H., & Wang, M. D. (2021). Multimodal deep learning models for early detection of Alzheimer’s disease stage. Scientific Reports, 11. https://doi.org/10.1038/s41598-020-74399-w

  • Wu, C., Matias, C. M., Foltynie, T., Limousin, P., Zrinzo, L. U., & Akram, H. (2021). Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson’s Disease. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.729677

  • Wu, L., Caprihan, A., Bustillo, J. R., Mayer, A. R., & Calhoun, V. D. (2018). An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia. NeuroImage, 179. https://doi.org/10.1016/j.neuroimage.2018.06.024

  • Wu, M., Hu, S., Wei, B., & Lv, Z. (2022). A novel deep learning model based on the ICA and Riemannian manifold for EEG-based emotion recognition. Journal of Neuroscience Methods, 378. https://doi.org/10.1016/j.jneumeth.2022.109642

  • Xia, M., Womer, F. Y., Chang, M., Zhu, Y., Zhou, Q., Edmiston, E. K., Jiang, X., Wei, S., Duan, J., Xu, K., Tang, Y., He, Y., & Wang, F. (2019). Shared and Distinct Functional Architectures of Brain Networks Across Psychiatric Disorders. Schizophrenia Bulletin, 45, 450–463. https://doi.org/10.1093/schbul/sby046

    Article  PubMed  Google Scholar 

  • Xu, J., Potenza, M. N., & Calhoun, V. D. (2013a). Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00154

  • Xu, J., Zhang, S., Calhoun, V. D., Monterosso, J. R., Li, C.-s. R., Worhunsky, P. D., Stevens, M. C., Pearlson, G. D., & Potenza, M. N. (2013b). Task-related concurrent but opposite modulations of overlapping functional networks as revealed by spatial ICA. NeuroImage, 79. https://doi.org/10.1016/j.neuroimage.2013.04.038

  • Yu, Q., Du, Y., Chen, J., Sui, J., Adalē, T., Pearlson, G. D., & Calhoun, V. D. (2018). Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. Proceedings of the IEEE, 106. https://doi.org/10.1109/JPROC.2018.2825200

  • Zhang, W., Lv, J., Li, X., Zhu, D., Jiang, X., Zhang, S., Zhao, Y., Guo, L., Ye, J., Hu, D., & Liu, T. (2019). Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data. IEEE Transactions on Biomedical Engineering, 66. https://doi.org/10.1109/TBME.2018.2831186

  • Zhu, Y., Zhang, C., Toiviainen, P., Huotilainen, M., Mathiak, K., Ristaniemi, T., & Cong, F. (2019). Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. Brain Topography, 33. https://doi.org/10.1007/s10548-020-00758-5

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62076157 and 61703253 to YHD), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (to YHD), and the 1331 Engineering Project of Shanxi Province of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.D. and Y.K. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuhui Du.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Kong, Y. & He, X. IABC: A Toolbox for Intelligent Analysis of Brain Connectivity. Neuroinform 21, 303–321 (2023). https://doi.org/10.1007/s12021-022-09617-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-022-09617-z

Keywords

Navigation