
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12021-021-09546-3

A Modular Workflow for Model Building, Analysis, and Parameter
Estimation in Systems Biology and Neuroscience

João P. G. Santos1,2,3  · Kadri Pajo2  · Daniel Trpevski1  · Andrey Stepaniuk4  · Olivia Eriksson1  ·
Anu G. Nair2,5  · Daniel Keller4  · Jeanette Hellgren Kotaleski1,2  · Andrei Kramer1 

Accepted: 3 September 2021
© The Author(s) 2021, corrected publication 2022

Abstract
Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Mod-
eling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and
researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale
of biochemical pathways, which is one of the main objects of study in systems biology. While systems biology is among
the more standardized fields, conversion between different model formats and interoperability between various tools is still
somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, acces-
sibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical
pathway models, using pre-existing tools that could be utilized for the storage and refinement of models in all phases of
development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a
single file and provides a human readable set of syntax rules. Next, we implemented custom-made MATLAB® scripts to
perform parameter estimation and global sensitivity analysis used in model refinement. Additionally, we have developed a
web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers
and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed
single neuron model by running multiscale simulations in NEURON. Using this workflow, we can simulate the same model
in three different simulators, with a smooth conversion between the different model formats, enhancing the characterization
of different aspects of the model.

Keywords  Interoperability · Multiscale modeling · SBtab · Global sensitivity analysis · Parameter estimation · Systems
biology

Introduction

Computational systems biology is a data-driven field
concerned with building models of biological systems.
Methods from systems biology have proven valuable in

neuroscience, particularly when studying the composition
of synapses, molecular mechanisms of plasticity, learning
and various other neuronal processes (Bhalla & Iyengar,
1999; Hellgren Kotaleski & Blackwell, 2010; Li et al.,
2012). A wide variety of different software and toolboxes,
each with their own strengths and weaknesses, are available

João P. G. Santos and Kadri Pajo contributed equally to this work

 *	 Jeanette Hellgren Kotaleski
	 jeanette@kth.se

 *	 Andrei Kramer
	 andreikr@kth.se

1	 Science for Life Laboratory, School of Electrical
Engineering and Computer Science, KTH Royal Institute
of Technology, 10044 Stockholm, Sweden

2	 Department of Neuroscience, Karolinska Institute,
17165 Stockholm, Sweden

3	 Graduate Program in Areas of Basic and Applied Biology,
Abel Salazar Institute of Biomedical Sciences, University
of Porto, Rua Jorge de Viterbo Ferreira 228, 4050‑313 Porto,
Portugal

4	 Blue Brain Project, École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland

5	 Department of Molecular Life Sciences, University
of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

/ Published online: 28 October 2021

Neuroinformatics (2022) 20:241–259

ORIGINAL ARTICLE

http://orcid.org/0000-0002-0395-039X
http://orcid.org/0000-0003-2110-7889
http://orcid.org/0000-0001-9068-6744
http://orcid.org/0000-0002-2543-4820
http://orcid.org/0000-0003-0740-4318
http://orcid.org/0000-0002-1952-9583
http://orcid.org/0000-0003-3280-6255
http://orcid.org/0000-0002-0550-0739
http://orcid.org/0000-0002-3828-6978
http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-021-09546-3&domain=pdf

1 3

within the field. This diversity, however, can obstruct model
reuse as interoperability between the different software
packages and the convertibility between various file types
is only solved in part. Interoperability can either mean that
the model built in one simulator can be run in another or
that both simulators interoperate at run-time either at the
same or different scales (Cannon et al., 2007). The former
is addressed by standardizing model descriptions for which
notable examples in systems biology include the standard
machine-readable model formats, such as XML-based
SBML (Systems Biology Markup Language; Hucka et al.,
2003) and CellML (Hedley et al., 2001), and human readable
format, such as SBtab (Lubitz et al., 2016). An analogous
model description language for neurons and networks is the
NeuroML (Neural Open Markup Language; Gleeson et al.
2010, 2012).

We start by providing examples of available systems
biology tools, for model building, parameter estimation and
model analysis. We then proceed to describe our approach
in developing a modular workflow to address some of the
interoperability issues and present simulation results of an
example use case in various simulators and frameworks,
with further examples provided in Supplementary Materi-
als. Our workflow starts with a human-readable representa-
tion of the model that is easily accessible to everyone and
proceeds through various conversions into different simula-
tion environments: MATLAB®, COPASI, NEURON, and
STEPS (STochastic Engine for Pathway Simulation). Spe-
cifically, we will describe the conversion tools we created
for this purpose.

Examples of Software and Toolboxes used
in Systems Biology

No software package is perfectly suited for every task, some
have programmable interfaces with scripting languages, like
the MATLAB® SimBiology® toolbox, some focus on pro-
viding a fixed array of functions that can be run via graphi-
cal user interfaces, like COPASI, although it now offers
a Python toolbox for scripting (Welsh et al., 2018). Most
toolboxes and software packages offer a mixture of the two
approaches: fine-grained programmable interface as well as
fixed high-level operations. At the extremes of this spec-
trum are powerful but inflexible high-level software on one
side, and complex, hard to learn but very flexible libraries or
toolboxes with an API (application programming interface)
on the other. Some examples of general modeling toolboxes
in MATLAB® are the SBPOP/SBToolbox2 (Schmidt &
Jirstrand, 2006), and the PottersWheel Toolbox (Maiwald
& Timmer, 2008). For Bayesian parameter estimation,
there are the MCMCSTAT toolbox (Haario et al., 2006) in
MATLAB®, as well as pyABC (Klinger et al., 2018) and

pyPESTO (Schälte et al., 2020) in Python, and the stan-
dalone Markov Chain Monte Carlo (MCMC) software GNU
MCsim that allows to estimate the posterior distribution by
sampling a high-dimensional probability distribution (Bois,
2009). For global sensitivity analysis, there is the Uncer-
tainpy Python toolbox (Tennøe et al., 2018). For simulations
in neuroscience, some notable examples include NEURON
(Hines & Carnevale, 1997) and STEPS (Hepburn et al.,
2012). Both are used for simulations of neurons and can
include reaction–diffusion systems and electrophysiology.

These software packages do not all use the same model
definition formats. Most have some compatibility with
SBML, others use their own formats (e.g. NEURON uses
MOD files). In some cases, an SBML file exported from one
of these packages cannot be imported into another package
without errors; so manual intervention may be required.1
Given an SBML file, a common task is to translate the con-
tents into code that can be used in model simulations, for
ordinary differential equations this is the right-hand side
vector field function. There are several tools that facilitate
the conversion between formats, e.g. the SBFC (The Sys-
tems Biology Format converter; Rodriguez et al., 2016) as
well as the more general VFGEN (A Vector Field File Gen-
erator; Weckesser, 2008).

All toolboxes and software packages have great strengths
and short-comings, and each programming language has dif-
ferent sets of (freely) available libraries which makes the
development (or use) of numerical methods more or less
feasible than in another language. One such example is the R
package VineCopula for parameter dependency modeling,
which has recently been used for modeling probability densities
(in parameter spaces) between two MCMC runs (Eriksson et al.,
2019). It infers the probability density function from a large
enough sample, another method to do this is kernel density
estimation.2 The VineCopula package implements a much more
advanced and robust method of density estimation based on
vines and copulas and performs well in high dimensional
cases. This package is not easily replaced in many other
languages. The Julia language, on the other hand, has a far
richer set of differential equation solvers than R or MAT-
LAB® and comes with very efficient forward sensitivity
analysis methods.

Each researcher must therefore make decisions that result
in the best compromise for them. If a researcher is famil-
iar with a given set of programming/scripting languages
it is probably not reasonable to expect them to be able to

1  for example: at the time of writing the SimBiology® toolbox (in
MATLAB®) exports the time variable as a normal variable, without
the required definition URL, it must be added manually.
2  Kernel density estimation does not work very well in high dimen-
sional problems.

242 Neuroinformatics (2022) 20:241–259

1 3

collaborate with other groups in languages they do not know.
For this reason, it is our firm opinion that the conversion of
models between different formats is a very important task,
and it is equally important to use formats that people can
pick-up easily. To make format conversion flexible inter-
mediate files are a great benefit which leads to a modular
approach with possible validation between modules.

We also have to consider the FAIR data principles–the
findability, accessibility, interoperability and reusability of
data and associated infrastructure (Wilkinson et al., 2016).
Here, we would like to address the interoperability princi-
ple by having developed a workflow for building biochemi-
cal pathway models using existing tools and custom-made,
short, freely available scripts for the storage and refinement
of models in all phases of development, ensuring inter-
changeability with other formats and toolkits at every step
in the pipeline using standardized intermediate files (Fig. 1
and Table 1).

Figure 1 illustrates the relationship between the tools we
used in this workflow. We created a use case based on a
previously developed model for others to reuse and modify,
and we use it to demonstrate how the depicted parts oper-
ate. In addition, we made two other use cases available for
testing other parts of the workflow. More extensive testing
was done with a model of the mitogen-activated protein
kinase (MAPK) cascade provided by the FindSim workflow
(Viswan et al., 2018) and the results can be found in the Sup-
plementary Materials.

The Workflow

While the standard model storage format in systems biol-
ogy is SBML, it has some drawbacks: it does not lend itself
to manual editing, the math in an SBML file is difficult to
read and write manually, xml parsing is a difficult task that
cannot be undertaken lightly by the novice programmer, spe-
cies entries do not have a concentration unit attribute, time

is handled very differently from any other model variable,
etc. None of these issues are an error of course, but they
are inconvenient for the inexperienced user. Therefore, this
workflow is centered around building an easy-to-use infra-
structure with models and data expressed in a spreadsheet-
based storage format called SBtab (Lubitz et al., 2016). We
chose SBtab as the primary modeling source file because
it is human-readable and writable, it can contain both the
model and the data, and because it is easy to write parsing
scripts for it, such as a converter from SBtab to SBML using
the libSBML3 interface in R. This ease of convertibility is
used in the second focus of the workflow, convertibility
between SBtab and other common formats and simulation
software, since in systems biology and in any other compu-
tational sciences, the lack of compatibility between different
tools and formats can often pose problems. A partially work-
ing conversion tool between SBtab and SBML had already
been developed by the SBtab team. However, it can cur-
rently only read one table at a time and does not produce any
functional SBML files with our model example. To combat
these shortcomings, we wrote scripts to convert the SBtab
into SBML, either using the R language or MATLAB®, and
validating it successfully in COPASI, STEPS and NEURON.

The bulk of our workflow is available as MATLAB®
code, particularly the parameter estimation tools and func-
tions for global sensitivity analysis. Sensitivity analysis can
be used to determine the importance of different parameters
in regulating different outputs. Local sensitivity analysis is
based on partial derivatives and investigates the behavior
of the output when parameters are perturbed in close vicin-
ity to a specific point in parameter space. Global sensitivity
analysis, on the other hand, is based on statistical approaches
and has a much broader range. Global sensitivity analysis

Fig. 1   Simplified scheme of
the workflow. Thick arrows
indicate steps for which we have
developed automated tools. Text
in bold refers to the generic
components of the workflow
and text in grey refers to exist-
ing software and data formats
used in the current version of
the suggested workflow

Simulator descriptor files
SBML, MOD file

Old parameter set

New parameter set

Analysis and
simulation tools

MATLAB® SimBiology

Optimization

Model structure

Experimental data

Model and data
storage

SBtab

Parameter set

Model reduction

Prior parameter

information

Other simulation environments
STEPS, NEURON, COPASI

Sensitivity Analysis

3  A library providing an application programming interface for
SBML.

243Neuroinformatics (2022) 20:241–259

1 3

Table 1   An overview of available software packages and tools used
by the Subcellular Workflow. Sometimes, manual intervention is
needed in between workflow modules. This is especially true when an
input format does not have a feature that an output format has. Addi-

tionally, some software packages have so many functions that it could
be easier to use them interactively (in these cases we also added a yes
in the manual intervention column)

Tool Interface Language Purpose Input Format(s) Output Format(s) Manual Intervention

Pre-existing tools MATLAB® SimBiology® MATLAB® Simulations of biochemical

cascades

m, sbproj, SBML m, sbproj, SBML yes

MATLAB® Optimization

Toolbox™

MATLAB® Parameter estimation none none no

COPASI GUI Simulations of biochemical

cascades

SBML, CPS, SED-ML,

COMBINE

SBML, CPS, SED-ML, C,

COMBINE Archives,

XPPaut, Berkeley

Madonna

yes

NEURON python Simulations of

electrophysiological neuron

models (with a possibility

to include biochemical

cascades)

mod not specific yes

STEPS python Stochastic simulations of

reaction–diffusion models on

tetrahedral meshes

python script not specific yes

NFsim Shell Network-free and hybrid

simulations of rule-based

models

BNGL not specific yes

BioNetGen GUI Environment for rule-based

model setup and simulation

BNGL not specific yes

VFGEN Shell Converts ODE vector field files

(vf) to many other languages/

formats

vf .m,.R,.py,.c, many others no

Conversion Tools

SBML to SBtaba web Conversion from SBML to

SBtab

SBML SBtab Yes

(post-conversion)

Custom-developed tools Diagnostics toolb MATLAB® Runs the model, compares it

to the provided data and

calculates scores

SBtab as Excel mat + figures not if SBtab is correctly

formatted

Parameter estimationb MATLAB® Parameter estimation using

MATLAB® optimization

tools

SBtab as Excel mat + figures not if SBtab is correctly

formatted

GSA analysisb MATLAB® GSA analysis using Sobol-

Saltelli method implemented

in MATLAB®

SBtab as Excel mat + figures not if SBtab is correctly

formatted

Simulation Setup Webappc python Setup and run STEPS,

BioNetGen and NFsim

simulations

SBML, BNGL BNGL, pySB yes, removal of functional

reaction rates and

applying stimuli

get_thermodynamic_

constraints.md

GNU Octave Checks for thermodynamic

constraints between

parameters

m Terminal text yes

Conversion Tools

SBtab to SBML + m + tsvb MATLAB® part of our MATLAB®

toolchain

SBtab as Excel SBML, m, sbproj, tsv no

sbtab_to_vfgen.Re R Convert SBtab files into

VFGENs vf format, but also

produce SBML via libSBML

SBtab as TSV

or ODS

vf no

SBML no

mod yes

a https://​www.​sbtab.​net/​sbtab/​defau​lt/​conve​rter.​html
b https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​blob/1.​0/​Matlab/​Run_​main.m
c https://​subce​llular.​human​brain​proje​ct.​eu/​model/​simul​ations
d https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​blob/1.​0/​Matlab/​Code/​Stand​alone/​get_​therm​odyna​mic_​const​raints.m
e https://​github.​com/a-​kramer/​SBtab​VFGEN

244 Neuroinformatics (2022) 20:241–259

https://www.sbtab.net/sbtab/default/converter.html
https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Run_main.m
https://subcellular.humanbrainproject.eu/model/simulations
https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Code/Standalone/get_thermodynamic_constraints.m
https://github.com/a-kramer/SBtabVFGEN

1 3

is more relevant for models that have a large uncertainty
in their parameter estimates which is common for systems
biology models where many of the parameters have not been
precisely measured and the data are sparse.

A common approach within biochemical modeling is to use
deterministic simulations and ordinary differential equations
(ODE) that follow the law of mass action as it is computationally
efficient and provides accurate (compared to averaged stochastic
simulations) results for sufficiently large well-mixed biological
systems. However, this approach has several restrictions in the
case of neuronal biochemical cascades. First, such cascades
are always subject to stochastic noise, which can be especially
relevant in a compartment as small as a dendritic spine where
the copy number of key molecules are small enough that the
effect of randomness becomes significant (Bhalla, 2004). For
precise simulation of stochasticity in reaction networks several
stochastic solvers are available, e.g. Gillespie’s Stochastic
Simulation Algorithm (SSA) (Gillespie, 1976) and explicit and
implicit tau-leaping algorithms (Gillespie, 2001). Second, the
number of possible states of many biochemical cascades grow
exponentially with the number of simulated molecule types,
such that it becomes difficult to represent all these states in the
model. In this case, for efficient simulation the reactions in the
model could be represented and simulated in a network free form
using rule-based modeling approaches (Chylek et al., 2015).
Third, many biochemical networks are spatially distributed,
this requires simulation of molecule diffusion (Hepburn et al.,
2012). To tackle these problems, we developed the subcellular
simulation setup application, a web-based software component
for model development. It allows the extension and validation

of deterministic chemical reaction network-based models by
simulating them with stochastic solvers for reaction–diffusion
systems (STEPS, Hepburn et al., 2012) and network free solvers
(NFsim, Sneddon et al., 2011).

Regardless of the modeling approach (rule based or
reaction network based ODE), the solvers yield a time-
curve solution: x(t;θ). This means that our workflow can
only accept data that can be represented by one or several
numerical solutions of this type. Time Series data and Dose
Response curves can both be mapped to trajectory solutions.
Dose Response curves are mapped point-by-point to solu-
tions under varying input settings (doses). We have not used
direct solvers to obtain steady states or other limit sets.

Although the workflow is in principle applicable to any
biochemical pathway model our emphasis is on modeling
biochemical signaling in neurons. Therefore, the last chal-
lenge we want to address is an important concept in the
interoperability domain of computational neuroscience
called multiscale modeling which concerns the integration
of subcellular models into electrical models of single cells
or in neuronal microcircuits. This can be achieved either
by run-time interoperability between two simulators of dif-
ferent systems (Djurfeldt et al., 2010) or by expanding the
capabilities of a single simulation platform as has been done
with the NEURON software (McDougal et al., 2013). With
this purpose in mind, we have written a conversion function
from SBtab to the MOD format which is used by NEURON.
As such, the inputs and the outputs of a biochemical cascade
can be linked to any of the biophysiological measures of the
electrical neuron model.

Reactions for CaMKII

autophosphorylation in one compartment

2

1

4

3

k218

k216

k219

k220

k221

k217

BA

C

DA

Ca CaM CaMKII pCaMKII Substrate

PP1PP2BP55

P34PKAcAMPAC5D1R DARPP-32

ARPP-21

Δt (s)

DA

no Da0- 4

E0 E1 E2 E3 E4 E6E5 E7

-2 -1 1 2 3

E9

-3

E8Ca

40 s

Fig. 2   A Simplified schematics of the use case model with relevant
second messengers with calcium and dopamine as inputs and phos-
phorylation of a generic CaMKII substrate (purple; top right) as the
output. Species of the calcium cascade are blue, and species of the
dopamine cascade are red. Lines ending in arrows represent activa-
tion and lines ending in circles represent inhibition. Time courses
of the species with a beige background are later used in parameter
estimation. Readjusted from Nair et al. (2016). B Schematics of the

bimolecular reactions used for CaMKII autophosphorylation with
yellow circles depicting fully activated CaMKII bound to calmodulin
and calcium, and blue circles depicting phosphate groups. Six newly
introduced parameters are shown on the reaction arrows with their
ID’s in the updated model. C Timing (in seconds) of the dopamine
input (Δt = {-4,-3,-2,-1,0,1,2,3,4} corresponding to E0-E8) relative to
the calcium input (zero), and a single experiment without a dopamine
input (E9)

245Neuroinformatics (2022) 20:241–259

1 3

Use Case

As a primary use case to illustrate the workflow we have
chosen a previously developed pathway model of the emer-
gence of eligibility trace observed in reinforcement learning
in striatal direct pathway medium spiny neurons (MSN) that
express the D1 receptor (Nair et al., 2016). Additional use
cases are considered in the Supplementary Materials.

In this model, a synapse that receives excitatory input,
which leads to an increase in calcium concentration, is
potentiated only when the signal is followed by a reinforcing
dopamine input. Figure 2A represents a simplified model
scheme illustrating these two signaling cascades, one
starts with calcium as the input and the other one with
dopamine. In simulation experiments the inputs are
represented as a calcium train and a dopamine transient
(Fig. 3A). Calcium input refers to a burst of 10 spikes at
10 Hz reaching 5 μM. Dopamine input is represented by
a single transient of 1.5 μM. The first cascade (species in
blue) features the calcium-dependent activation of Ca2+/

calmodulin-dependent protein kinase II (CaMKII) and the
subsequent phosphorylation of a generic CaMKII substrate
which serves as a proxy for long term potentiation (LTP) and
is the main output of the model. The second cascade (species
in red) represents a G-protein dependent cascade following
the dopamine input and resulting in the phosphorylation of
the striatal dopamine- and cAMP-regulated phosphoprotein,
32 kDa (DARPP-32) that turns into an inhibitor of protein
phosphatase 1 (PP1) which can dephosphorylate both
CaMKII and its substrate. The phosphorylation of the
substrate is maximal when two constraints are met. First,
the time window between the calcium and dopamine inputs
has to be short, corresponding to the input-interval constraint
which is mediated by DARPP-32 via PP1 inhibition. Second,
intracellular calcium elevation has to be followed by the
dopamine input, corresponding to the input-order constraint
that is mediated by another phosphoprotein, the cyclic AMP-
regulated phosphoprotein, 21 kDa (ARPP-21), thanks to its
ability to sequester calcium/calmodulin if dopamine arrives
first (Fig. 3D).

0 4 5 6 7 20
time (s)

0
1000

3000

5000

na
no

m
ol

e/
lit

er

////

A B

Ca
DA

0 5 10 15 20 25 30
time (s)

0

1

2

3

pS
ub

st
ra

te

C

Ca
Ca + DA (Δ t=1s)

-4 -3 -2 -1 0 1 2 3 4
t (s)

0

2

4

pS
ub

st
ra

te
 a

re
a

D

0

500
pS

ub
st

ra
te

_o
ut

nm
ol

/l

1000

2000

PP
1_

ou
t

nm
ol

/l

0

2000

C
aM

_o
ut

nm
ol

/l

0 5 10 15 20
time (s)

3.5

4

D
32

_o
ut

nm
ol

/l

104

Δ

Fig. 3   A Illustration of the model inputs. Calcium burst (blue) at 4 s
used in all simulations and a dopamine transient (orange) applied at
different timings in eight experiments and one without it. B Four spe-
cies used in parameter estimation corresponding to the input combi-
nation in A. Black traces represent the data produced by simulating
the original model, red traces represent fits with the best new param-
eter sets in the updated model. C, D Comparison of model perfor-
mance with substrate phosphorylation as the main model readout.

Here, 30 s simulations were used for comparison with the original
model behavior. C Normalized time series of substrate phosphoryla-
tion, the main readout, with calcium as an only input or dopamine
following it after 1s. D Normalized area under the curve of substrate
phosphorylation with different calcium and dopamine input intervals.
The simulations performed to obtain these graphs in MATLAB®
took less than 5 min to compute (intel core i9-10980XE)

246 Neuroinformatics (2022) 20:241–259

1 3

In the originally published model, CaMKII is autophos-
phorylated in two compartments, both the cytosol and the
post synaptic density (PSD), with a custom-written MAT-
LAB® rate function that was calculated based on the prob-
ability of two neighboring subunits being fully activated
as described in Li et al. (2012). To make it possible to
run the model in different software we replace the rate
equation of autophosphorylation with a similar set of reac-
tions in both compartments so that the model would only
contain bimolecular reactions. The reactions represent a
simplified version of the autophosphorylation reactions
in Pepke et al. (2010), where in our case only the fully
activated CaMKII can be phosphorylated. The same set of
reactions is used in both compartments and the schemat-
ics is available in Fig. 2B along with the required six new
parameters. We used our parameter estimation script to
find parameter values and bounds that preserved the quali-
tative behavior of the model. In this primary use-case, we
used simulated data (real data is used in the supplementary
materials model) from the original model with different
timings of the dopamine input relative to the calcium input
(Fig. 2C) to obtain a comprehensive picture of its behavior
which we want the updated model to reproduce.

SBtab

As described above we have chosen SBtab as the format at
the root of our workflow for the storage of the model and
associated data. In this section we illustrate how we use this
format. More information, documentation and examples are
available from the authors of SBtab.4 SBtab allows the stor-
age of biochemical models and associated data in a single
file and provides a set of syntax rules and conventions to
structure data in a tabulated form making it easy to write,
modify and share. To ensure interoperability, SBtab provides
an online tool to convert the models into the SBML format.5
SBtab is suitable for storing data that comes in spreadsheet
or table formats, e.g. concentration time series or dose
response curves, but it is likely that any data format that can
be reasonably stored as a table will work well in SBtab. The
SBtab file is intended to be updated manually during the
process of model building. Additional instructions on how
to make SBtab files work well within our toolchain can be
found in the Subcellular Workflow documentation.6 Some
of the columns and sheets that we use should be considered
as extensions to the format and are discussed in the docu-
mentation. SBtab is easy to parse so adjustments to parsers
can be made quickly.

The SBtab file should include separate sheets for com-
partments, compounds, reactions, assignment expressions,
parameters, inputs, outputs, and experiments (as well as
data tables). We illustrate the functionalities of SBtab here
with the use case. The use case model has 99 compounds,
138 reactions and 227 parameters. An example of the SBtab
reaction table can be found in Table 2.

One of our goals with this study was to reproduce the
original model behavior after replacing a single module
inside the model to convert it to bimolecular reactions only.
The data we used therefore represents the simulated time
series (20 s) of the concentrations of four selected species in
response to different input combinations using the original
model. Each individual data sheet (named E0-E9, Fig. 2C) in
SBtab represents the outputs of one experiment. A separate
sheet called Experiments allows to define the input param-
eters differently for each experimental setup. By setting the
initial concentrations of the unused species to zero the data
could be mapped to a specific sub-module of the model (the
remaining species). In this case the initial conditions are
the same for all experiments. The Experiments table can
also support annotations relevant to each dataset. We used
nine different timings (corresponding to E0-E8) between the
calcium and the dopamine signal starting with a dopamine
signal preceding calcium by four seconds and finishing with
dopamine following calcium after four seconds as this cor-
responds to the time frame originally used in model devel-
opment (Δt = {-4,-3,-2,-1,0,1,2,3,4}). Additionally, we used
simulations with calcium as the only input (E9) (Fig. 2). The
time series of the input species are in a separate sheet follow-
ing each experiment sheet. An example of how experimental
data is stored can be found in Table 3.

Model Pre‑Processing Tools

Model building entails frequent changes to the model
structure by adding new species, reactions, and parameters.
This can result in the emergence or disappearance
of Wegscheider cyclicity conditions that refer to the
relationships between reaction rate coefficients arising
from conditions of thermodynamic equilibr ium
(Wegscheider, 1901; Vlad & Ross, 1994). Identified
thermodynamic constraints show parameter dependencies
that follow from physical laws and can reduce the number
of independent parameters. These conditions are frequently
difficult to determine by human inspection, especially for
large systems. Similarly, identifying conserved moieties,
like conserved total concentration of a protein, allows the
reduction of the ODE model size, which leads to increased
performance. In order to address these model pre-processing
needs our toolkit includes scripts in MATLAB®/GNU Octave
that use the stoichiometric matrix of the reaction network
as an input to determine the thermodynamic constraints as

4  https://​sbtab.​net/
5  https://​human​brain​proje​ct.​github.​io/​hbp-​sp6-​guide​book/​online_​
useca​ses/​subce​llular_​level/​subce​llular_​app/​subce​llular_​app.​html
6  https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/​master/​SBtab.​html

247Neuroinformatics (2022) 20:241–259

https://sbtab.net/
https://humanbrainproject.github.io/hbp-sp6-guidebook/online_usecases/subcellular_level/subcellular_app/subcellular_app.html
https://humanbrainproject.github.io/hbp-sp6-guidebook/online_usecases/subcellular_level/subcellular_app/subcellular_app.html
https://subcellular-workflow.readthedocs.io/en/master/SBtab.html

1 3

Ta
bl

e 
2  

N
am

es
 o

f t
he

 sc
rip

ts
 th

at
 ru

n
ou

r t
oo

ls
 a

nd
, u

sa
ge

 in
str

uc
tio

ns
 o

r e
xa

m
pl

e
ut

ili
za

tio
n

a  ht
tp

s:
//​g

ith
ub

.​c
om

/​jp
gs

a​n
to

s/
​Su

bc
e​l

lu
la

r_
​w

or
kf​l

o
w

/​b
lo

b/
1.

​0/
​M

at
la

b/
​Ru

n_
​m

ai
n.

m
b  ht

tp
s:

//​s
ub

ce
​llu

la
r.​h

um
an

​br
ai

n​p
ro

je
​ct

.​e
u/

​m
od

el
/​s

im
ul

​at
io

ns
c  ht

tp
s:

//​g
ith

ub
.​c

om
/​jp

gs
a​n

to
s/

​Su
bc

e​l
lu

la
r_

​w
or

kf​l
o

w
/​b

lo
b/

1.
​0/

​M
at

la
b/

​C
od

e/
​St

an
d​a

lo
ne

/​g
et

_​t
he

rm
​od

yn
a​m

ic
_​c

on
st​r

ai
nt

s.m
d  ht

tp
s:

//​g
ith

ub
.​c

om
/a

-​k
ra

m
er

/​S
B

ta
b​V

FG
EN

To
ol

Sc
rip

t n
am

e
U

sa
ge

 in
str

uc
tio

ns
/E

xa
m

pl
e

D
ia

gn
os

tic
s t

oo
la

Ru
n_

m
ai

n.
m

Ex
ec

ut
e

th
e

Ru
n_

m
ai

n.
m

 sc
rip

t a
nd

 c
ho

os
e

“D
ia

gn
os

tic
s”

 fr
om

th

e
op

tio
ns

 d
is

pl
ay

ed
 in

 th
e

M
A

TL
A

B
®

 te
rm

in
al

Pa
ra

m
et

er
 e

sti
m

at
io

na
“

Ex
ec

ut
e

th
e

Ru
n_

m
ai

n.
m

 sc
rip

t a
nd

 c
ho

os
e

“P
ar

am
et

er

Es
tim

at
io

n”
 fr

om
 th

e
op

tio
ns

 d
is

pl
ay

ed
 in

 th
e

M
A

TL
A

B
®

te

rm
in

al
G

SA
 a

na
ly

si
sa

“
Ex

ec
ut

e
th

e
Ru

n_
m

ai
n.

m
 sc

rip
t a

nd
 c

ho
os

e
“G

lo
ba

l S
en

si
tiv

ity

A
na

ly
si

s”
 fr

om
 th

e
op

tio
ns

 d
is

pl
ay

ed
 in

 th
e

M
A

TL
A

B
®

te

rm
in

al
Si

m
ul

at
io

n
Se

tu
p

W
eb

ap
pb

N
ot

 a
pp

lic
ab

le
Se

e
do

cu
m

en
ta

tio
nc

ge
t_

th
er

m
od

yn
am

ic
_c

on
str

ai
nt

s.m
c

ge
t_

th
er

m
od

yn
am

ic
_c

on
str

ai
nt

s.m
In

 th
e

M
A

TL
A

B
®

 te
rm

in
al

:
ge

t_
th

er
m

od
yn

am
ic

_c
on

st
ra

in
ts

(N
,['

ke
y'

,v
al

ue
,…

]);
w

he
re

 N
 is

 th
e

sto
ic

hi
om

et
ric

 m
at

rix
Ty

pe
 "h

el
p

ge
t_

th
er

m
od

yn
am

ic
_c

on
st

ra
in

ts
" f

or
 m

or
e

in

fo
rm

at
io

n
on

 th
e

op
tio

na
l a

rg
um

en
ts

 (k
ey

s/
va

lu
es

)c

Co
nv

er
sio

n
To

ol
s

Sb
ta

b
to

 S
B

M
L 

+
 m

 +
 ts

va
Ru

n_
m

ai
n.

m
Ex

ec
ut

e
th

e
Ru

n_
m

ai
n.

m
 sc

rip
t a

nd
 c

ho
os

e
“I

m
po

rt
m

od
el

fil

es
”

fro
m

 th
e

op
tio

ns
 d

is
pl

ay
ed

 in
 th

e
M

A
TL

A
B

®
 te

rm
in

al
SB

ta
bV

FG
EN

d
sb

ta
b_

to
_v

fg
en

.R
In

 th
e

R
 te

rm
in

al
:

re
m

ot
es

::i
ns

ta
ll_

gi
th

ub
("

a-
kr

am
er

/S
Bt

ab
V

FG
EN

")
lib

ra
ry

(S
Bt

ab
V

FG
EN

)
m

od
el

.ts
v <

—
di

r(
pa

tte
rn

 =
 "

.*
[.]

ts
v$

")
;

m
od

el
.sb

ta
b 

<
—

sb
ta

b_
fr

om
_t

sv
(m

od
el

.ts
v)

sb
ta

b_
to

_v
fg

en
(m

od
el

.sb
ta

b)

248 Neuroinformatics (2022) 20:241–259

https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Run_main.m
https://subcellular.humanbrainproject.eu/model/simulations
https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Code/Standalone/get_thermodynamic_constraints.m.
https://github.com/a-kramer/SBtabVFGEN

1 3

Ta
bl

e 
3  

A
n

ex
am

pl
e

of
 th

e
ta

bu
la

te
d

re
pr

es
en

ta
tio

n
of

 m
od

el
 r

ea
ct

io
ns

 in
 th

e
SB

ta
b

fo
rm

at
. T

he
 k

in
et

ic
 la

w
 u

se
s

th
e

pa
ra

m
et

er
 n

am
es

 f
ro

m
 th

e
pa

ra
m

et
er

 ta
bl

e
an

d
sp

ec
ie

s
na

m
es

 f
ro

m
 th

e
co

m
po

un
d

ta
bl

e

!I
D

!N
am

e
!K

in
et

ic
La

w
!I

sR
ev

er
si

bl
e

!L
oc

at
io

n
!R

ea
ct

io
nF

or
m

ul
a

R0
Re

ac
tio

nF
lu

x0
kf

_R
0*

G
ao

lfG
TP

FA
LS

E
Sp

in
e

G
ao

lfG
TP

 <
 =

 >
 G

ao
lfG

D
P

R1
Re

ac
tio

nF
lu

x1
kf

_R
1*

D
1R

_G
ol

f_
D

A
FA

LS
E

Sp
in

e
D

1R
_G

ol
f_

D
A

 <
 =

 >
 G

bg
ol

f +
 D

1R
_

D
A

 +
 G

ao
lfG

TP
R2

Re
ac

tio
nF

lu
x2

kf
_R

2*
D

1R
_G

ol
f*

D
A

-k
r_

R
2*

D
1R

_G
ol

f_
D

A
TR

U
E

Sp
in

e
D

1R
_G

ol
f  +

 D
A

 <
 =

 >
 D

1R
_

G
ol

f_
D

A
R3

Re
ac

tio
nF

lu
x3

kf
_R

3*
D

1R
*D

A
-k

r_
R

3*
D

1R
_D

A
TR

U
E

Sp
in

e
D

1R
 +

 D
A

 <
 =

 >
 D

1R
_D

A

R4
Re

ac
tio

nF
lu

x4
kf

_R
4*

A
C

5*
G

ao
lfG

TP
-

kr
_R

4*
A

C
5_

G
ao

lfG
TP

TR
U

E
Sp

in
e

A
C

5 +
 G

ao
lfG

TP
 <

 =
 >

 A
C

5_
G

ao
lfG

TP
R5

Re
ac

tio
nF

lu
x5

kf
_R

5*
C

aM
*C

a-
kr

_
R

5*
C

aM
_C

a2
TR

U
E

Sp
in

e
C

aM
 +

 C
a <

 =
 >

 C
aM

_C
a2

R6
Re

ac
tio

nF
lu

x6
kf

_R
6*

PP
2B

*C
aM

-k
r_

R
6*

PP
2B

_C
aM

TR
U

E
Sp

in
e

PP
2B

 +
 C

aM
 <

 =
 >

 P
P2

B
_C

aM

Ta
bl

e 
4  

 A
n

ex
am

pl
e

of
 th

e
ta

bu
la

te
d

re
pr

es
en

ta
tio

n
of

 e
xp

er
im

en
ta

l t
im

e
se

rie
s

da
ta

 in
 th

e
SB

ta
b

fo
rm

at
. T

he
 ta

bl
e

co
nt

ai
ns

 th
e

da
ta

 fo
r e

xp
er

im
en

t E
0.

 C
ol

um
ns

 ti
tle

d
Y

0-
Y

3
re

fe
r t

o
ea

ch
 o

f
th

e
“m

ea
su

re
d”

 o
ut

pu
t s

pe
ci

es
 fo

llo
w

ed
 b

y
a

st
an

da
rd

 d
ev

ia
tio

n
co

lu
m

n.
 T

he
 ti

m
e

se
rie

s i
n

th
is

 d
at

a
ea

ch
 c

on
ta

in
 2

00
1

da
ta

 p
oi

nt
s

!T
im

eP
oi

nt
!T

im
e

 >
 Y

0
SD

_Y
0

 >
 Y

1
SD

_Y
1

 >
 Y

2
SD

_Y
2

 >
 Y

3
SD

_Y
3

E0
T0

0
84

.4
78

91
1

26
72

.0
89

1
32

00
.5

26
1

36
,8

17
.5

2
1

E0
T1

0.
01

84
.4

78
91

1
26

72
.0

89
1

32
00

.5
26

1
36

,8
17

.5
2

1
E0

T2
0.

02
84

.4
78

91
1

26
72

.0
89

1
32

00
.5

26
1

36
,8

17
.5

2
1

E0
T3

0.
03

84
.4

78
91

1
26

72
.0

89
1

32
00

.5
26

1
36

,8
17

.5
2

1
… E0

T2
00

0
20

97
.7

97
36

1
23

59
.1

01
1

31
92

.5
58

1
37

,4
75

.5
1

1

249Neuroinformatics (2022) 20:241–259

1 3

described in Vlad and Ross (1994), and conservation laws
(Tables 1 and 4). These diagnostic tools output any identified
constraints that, if needed, are to be implemented manually
before the parameter estimation step. It should be noted that
such constraints need to be re-examined after each addition
of new reactions as the structure of the model might change
and make previously true constraints invalid. This is true for
all major changes to the model.

MATLAB® Tools

The bulk of our workflow is developed in MATLAB® as it
provides an easy-to-use biochemical modeling application
with a graphical user interface called SimBiology® along
with a wide range of toolboxes for mathematical analysis.
The workflow is divided into import and analysis scripts. We
have written software for three types of analysis: diagnostics
tools which are used to run the model and visualize how the
model fits the data, parameter estimation, and global sensi-
tivity analysis. To ensure an easy and user-friendly usage,
all operations are controlled by a single settings file where
all specification options needing user input are represented
as modifiable variables. An example settings file of the use
case model along with instructive comments can be found
in the model GitHub repository.7 Only this settings file and
the model in the SBtab format are needed as input from
the user to run all our MATLAB® scripts. After running
the analysis, the inputs and the data points along with the
simulated model fits are plotted and the results are stored
inside the model folder. This process is entirely automatic,
but the user can always explore and retrieve more data from
the created files. For example, after running the parameter
estimation analysis, a plot is generated with the original
parameter set, the prior bounds, and optimized parameters,
but the procedure for retrieving the optimized parameters
and using them to create a new SBtab or a new settings
file for subsequent runs is not yet automated. For additional
explanations of these functionalities please see our GitHub
repository documentation.8

Import from SBtab to MATLAB®

The import tools we have developed generate all the model
and data files that are needed to run any of the analysis
options in MATLAB® that can be found in Table 1. These
files are saved in subfolders of the main model that are cre-
ated at run time. The files include a version of the model
without any inputs in the MATLAB® (.mat) and SimBiol-
ogy® (.sbproj) format, as well as several versions of the

model corresponding to each experiment specified in the
SBtab. The latter includes three versions of the model that
are used for different purposes: equilibration, default and
detailed. Equilibration does not have any inputs and is used
to equilibrate the species, whereas the default and detailed
versions are used for simulation of experiments. They have
all the relevant inputs and outputs that are going to be meas-
ured when simulating an experiment, and only differ in the
step size of the simulations (both of which can be chosen
in the settings file with detailed usually being a smaller
step size). Additionally, while not needed for the rest of our
MATLAB® workflow, these import scripts also generate .tsv
files corresponding to the individual SBtab sheets (useful for
tracking changes in GitHub), and an SBML file using MAT-
LAB® built-in functions (level 2 version 4 encoding as of
MATLAB® 2021a). The latter can be used by any simulator
that can import SBML files but requires further processing
for which an R script can be found in a separate repository.9
Note that we have another converter from SBtab into SBML
that runs in R instead of MATLAB®. We also generate other
helper files that assist in the correct simulation of the MAT-
LAB® model. A description of these and a more detailed
explanation of the organization and of the created files and
folders can be found in our documentation.10

Parameter Estimation

MATLAB® offers a wide range of tools for function opti-
mization. We have developed scripts that transform our
parameter estimation problem into an objective function that
can be optimized by various MATLAB® built-in optimizer
functions. At the time of writing, these include “fmincon”,
simulated annealing (“simulannealbnd”), pattern search
(“patternsearch”), genetic algorithm (“ga”), particle swarm
(“particleswarm”), and surrogate optimization algorithms
(“surrogateopt”), for which MATLAB® provides thorough
documentation. The code is built with flexibility in mind, so
introduction of other MATLAB® built-in or custom optimi-
zation algorithms should be straightforward. The optimiz-
ers used are the ones chosen in the settings file. Our code
supports the use and comparison of multiple optimizers at
the same time, and multiple uses of the same optimization
algorithm are also supported. This is particularly useful for
using optimizers that are inherently single-threaded, e.g.
the simulated annealing algorithm, since multiple simu-
lated annealing optimizations can be performed in multiple
computing cores. After performing the optimization, a file
containing the results is produced from which the optimized
outputs can be retrieved and used to manually update the

8  https://​subce​llular-​workf​low.​readt​hedocs.​io/

9  https://​github.​com/a-​kramer/​simbi​ology-​sbml-​fix
10  https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/​master/​Files.​html

7  https://​github.​com/​jpgsa​ntos/​Model_​Nair_​2016/​tree/1.​0/​Matlab/​
Setti​ngs

250 Neuroinformatics (2022) 20:241–259

https://subcellular-workflow.readthedocs.io/
https://github.com/a-kramer/simbiology-sbml-fix
https://subcellular-workflow.readthedocs.io/en/master/Files.html
https://github.com/jpgsantos/Model_Nair_2016/tree/1.0/Matlab/Settings
https://github.com/jpgsantos/Model_Nair_2016/tree/1.0/Matlab/Settings

1 3

SBtab or SimBiology® model. One of the equations used
to calculate the score for how well the model outputs fit
the experimental data can be found below (Eq. 1). We have
incorporated a few other ways of calculating the score, and
custom scoring methods could also be added depending on
the need (see documentation).

Here, Y represents the data that is going to be used to
constrain the model, sourced either from experiments or
previous models, and y represents the outputs of the model
mapped to the data resulting of the simulation of the model
under parameterization � . The allowed mismatch � between the
two simulation results is analogous to the standard deviation
of a Gaussian noise model in data fitting. The resulting F is
the objective function for optimization. The error is summed
over n , the number of points in each experimental output, m ,
the number of experimental outputs in an experiment (which
is four in our use case, see Fig. 3B), and l , the number of
experiments (E0-E9 in our use case) (see Fig. 2C).

Parameter estimation is generally based on experimental
data. In this use case, however, we used simulated data of the
concentrations of several species using the original version of
the model in SimBiology® (the additional use cases provided
in the Supplementary Materials use actual experimental data).
After modifying the model, we minimized the difference
between the old behavior and the updated model’s response
through optimization. The simulation results from the old model
can be considered as analogous to experimental data in a normal
parameter estimation setting. Here, we merely aim to make an
updated model agree with its earlier iteration, which itself was
adjusted based on experimental data. When changing a module
in a model it is crucial to protect the unchanged parts, which is
why we performed parameter estimation using the key species
that intersect the calcium and dopamine cascades, namely PP1,
calmodulin and DARPP-32 (Fig. 2 and Fig. 3B). In this use
case, the Particle Swarm Algorithm was chosen to perform the
optimization, but all algorithms were capable of reasonable
optimizations. The parameters obtained were then used to
generate all the figures where optimized parameters are referred
to. The choice of total amount of reactions, used to replace the
original function that represented the CaMKII phosphorylation,
were constrained by the optimization. We considered the outputs
that we were measuring (Fig. 3B) and added reactions until the
addition of more did not meaningfully improve the fits.

Validation in MATLAB®

We developed diagnostics scripts that can be used to repro-
duce the various experiments defined in SBtab. These scripts
generate plots of the experimental inputs to the model

(1)F(�;Y , �) =
∑l

k=1

∑m

j=1

1

n

∑n

i=1

(
Yijk − yijk(�)

�ijk

)2

(adapted for Fig. 3A), the provided data and the outputs
measured from model simulation (adapted for Fig. 3B) given
some choice of parameters, and plots of the scores calcu-
lated for the differences between the various experimental
outputs and simulated model outputs. We used these tools
to confirm that our parameter estimation resulted in a good
fit for most of the species and the updated model was able
to closely reproduce the results seen with the original model
(Fig. 3C). In our repository we provide the updated model
in SBtab (.xlxs and.tsv), SBML (.xml) and MATLAB®
SimBiology® (.sbproj and.mat). In addition to the general-
purpose tools, we also wrote a use case-specific script, which
uses data from the original model and reproduces the time-
dependency of the substrate phosphorylation given different
delays of the start of calcium and dopamine stimuli, using
the optimized model (Fig. 3C, D).

Global Sensitivity Analysis

In many cases parameter estimation of biochemical pathway
models does not result in one unique value for a parameter.
Structural and practical unidentifiability (Raue et al., 2009)
results in a large set of parameter values that all correspond
to solutions with a good fit to the data, i.e., there is a large
uncertainty in the parameter estimates (Eriksson et al., 2019).
When this is the case, local sensitivity analysis is not so
informative, since this can be different depending on which
point in parameter space it is performed at. A global sensitivity
analysis (GSA), on the other hand, covers a larger range of
the parameter space. Several methods for GSA exist (Zi,
2011) but we have focused on a method by Sobol and Saltelli
(Saltelli, 2002, 2004; Sobol, 2001) as implemented by Halnes
et al. (2009) which is based on the decomposition of variances
(Saltelli, 2004). Single parameters or subsets of parameters
that have a large effect on the variance of the output get a high
sensitivity score in this method. Intuitively, this method can
be understood as varying all parameters but one (or a small
subset) at the same time within a multivariate distribution to
determine what effect this has on the output variance. If there
is a large reduction in the variance, the parameter that was kept
fixed is important for this output (Saltelli, 2004).

Let the vector Θ denote the parameters of the model, and
y = f(Θ) be a scalar output from the model. In the sensitivity
analysis Θ are stochastic variables, sampled from a multi-
variate distribution, whose variation gives a corresponding
uncertainty of the output, quantified by the variance V(Y).
Note that in the setting and interpretations described here,
the different Θi are assumed to be independent from each
other (for cases with dependent Θi see e.g. (Saltelli, 2004)
and (Eriksson et al., 2019)). We consider two types of sen-
sitivity indices: the first order effects Si and the total order

251Neuroinformatics (2022) 20:241–259

1 3

effects STi. The first order effects describe how the uncer-
tainty in the output depends on the parameter Θi alone, i.e.,
how much of the variance of the output can be explained by
the parameter Θi by itself. As an example, Si = 0.1 means that
10% of the output variance can be explained by Θi alone.
The total order effects give an indication on the interactive
effect the parameter Θi has with the rest of the parameters on
the output. Parameters are said to interact when their effect
on the output cannot be expressed as a sum of their single
effects on the output.

The first order sensitivity index of the parameter Θi is
defined as11

where Θ−i corresponds to all elements of Θ except Θi The
total order sensitivity index of the parameter Θi is defined as

If there is a large difference between Si and STi, this is an
indication that this parameter takes part in interactions. For
a detailed description see chapter 5 of Saltelli (2004).

(2)Si =
VΘi

[
EΘ−i

[
Y|Θi

]]

V[Y]
,

∑
i
Si ≤ 1 ,

(3)STi = 1 −
VΘ−i

[
EΘi

[
Y|Θ−i

]]

V[Y]
,

∑
i
STi ≥ 1 ,

The optimization described earlier takes place on log
transformed space (log10(Θ)). For the sensitivity analysis
we perform the sampling on a lognormal distribution, mean-
ing that log10(Θ) ~ N(μ, σ). Below we use μ = log10(Θ*) and
σ = 0.1, where Θ* correspond to the optimal values received
from the optimization.12 We illustrate this method using only
the six parameters corresponding to the model module that
has been replaced (Fig. 2) and the results can be seen in
Fig. 4 Only four of the parameters (k216-k219/k222-k225;
Fig. 4) seem to be important for the output within the inves-
tigated parameter region, with the parameter k219/k225
dominating in experiments E3 to E9. There also seem to
be some interactive effects between the parameters since
STi is larger than Si, especially for the first four experiments
(Fig. 4A, B).

Compatibility and Validation with Other
Simulation Environments

Conversion to SBML and Simulations in COPASI

COPASI is one of the more commonly used modeling
environments in systems biology and it can read SBML files

A

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9
Outputs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S I

B

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9
Outputs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S T
I

k216, k222
k217, k223
k218, k224
k219, k225
k220, k226
k221, k227

Fig. 4   Stacked bar graphs of the sensitivity indices. The first order,
Si, and total order, STi, sensitivities indices of the six new parameters
(k216-k221 and k222-k227; see Fig. 2) for all ten experiments (E0-
E9) are shown (panel A and B, respectively). The sensitivities indices
are defined in the main text and were calculated based on the scores
used in the optimization for each experiment respectively. The param-
eters, Θ, were sampled independently from a multivariate lognormal
distribution with log10(Θ) ~ N(μ, σ), using μ = log10(Θ*) and σ = 0.1,

where Θ* correspond to the optimal values received from the opti-
mization. A sample size of N = 10,000 was used (corresponding to
80,000 reshuffled samples used in the calculations (Saltelli, 2004)).
The analysis took 3 h 30 min using an intel core i9-10980XE. The
sample size was chosen big enough to make the differences in the
sensitivity scores stemming from different seeds18 small for the pur-
poses of our conclusions

11  Where $$V$$ is the variance operator and $$E$$ (conditional)
expected value. 12  Other distributions can be used as well.

252 Neuroinformatics (2022) 20:241–259

1 3

(Hoops et al., 2006). Our first validation step is to use the SBML
model retrieved from the SBtab model in COPASI. The online
conversion tool from SBtab to SBML did not work for our specific
use case; we wrote a new conversion function that can be found
in a separate GitHub repository.13 It interprets the biological
model and converts it into plain ODEs in VFGEN’s custom
format (.vf), the VFGEN file can then be used to create output
in various languages14 (Weckesser, 2008). The conversion script
(written in R) converts the SBtab saved as a series of .tsv files or
one .ods file into a VFGEN vector field file and as by-products also
the SBML and a MOD file (see chapter Conversion to a MOD
file and simulations in NEURON). To create an SBML model,
libsbml must be installed with R bindings. The SBML file can be
imported directly into COPASI.

Another way to convert the model into SBML is through
a single MATLAB® SimBiology® function. The models,
however, are created with long ID’s that carry no biological
information (the IDs are similar to hexadecimal hashes) for
all model components, the units are not properly recognized,

and some units may just be incorrectly defined in the output.
We, therefore, created a script in R that asks for default units
for the model and replaces the ones in SimBiology's SBML
file. It fixes most issues (units, IDs, and the time variable in
assignments) allowing the model to be properly imported
in COPASI.15 To illustrate that the SBML-converted model
imported into COPASI produces the same results as in Sim-
Biology®, we used a simplified calcium input corresponding
to one double exponential spike analogous to the dopamine
transient and simulated the model with deterministic solv-
ers in both COPASI (LSODA solver) and MATLAB® Sim-
Biology® under similar conditions. Both simulation envi-
ronments produced almost overlapping results (Fig. 5B, C)
validating the converted model in the SBML format.

Simulations in STEPS

The web-based subcellular simulation setup application16
allows importing, combining and simulating models
expressed in the BioNetGen language (BNGL; Harris et al.,

0 4 5 6 7 8 30
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
na

no
m

ol
e/

lit
er

A

////

Ca
DA

0 5 10 15 20 25 30
time (s)

0

0.5

1

1.5

2

2.5

pS
ub

st
ra

te

B

Ca
Ca + DA (t=1s)

-4 -3 -2 -1 0 1 2 3 4
t (s)

0

1

2

3

pS
ub

st
ra

te
 a

re
a

C

Δ

Δ

Fig. 5   Simulations in identical conditions in both MATLAB® Sim-
Biology® and COPASI yielded almost identical results. A Inputs
used in both simulators. The calcium input is kept constant at 4 s for
all simulations and dopamine input time is varied from time 0 to 8 s
at every one second. The difference from the previous simulations is
in the calcium input which, for the sake of simplicity, is represented

by a double exponential spike. B and C show substrate phospho-
rylation curves analogous to Fig. 3, the red line represents results
obtained in MATLAB® and blue line results from simulations in
COPASI. A single 30 s simulation took around 10 s of compute time
within a 1 fl spine volume (Intel® Core™ i7-8750H)

13  Conversion function available in https://​github.​com/a-​kramer/​
SBtab​VFGEN and instructions in https://​github.​com/a-​kramer/​
SBtab​VFGEN/​blob/​master/​README.​md
14  Including, but not limited to: Python (NumPy), C (GNU Scientific
Library (GSL), CVODE), GNU Octave (LSODE), R (deSolve), and
core MATLAB® (e.g. for ode15s).

15  It should be noted that the units may not show up correctly in
COPASI (depending on the version) even if they are correct in the
SBML file itself.
16  The online application for subcellular simulations can be found in
https://​subce​llular.​human​brain​proje​ct.​eu/​model/​simul​ations with the doc-
umentation in https://​human​brain​proje​ct.​github.​io/​hbp-​sp6-​guide​book/​
online_​useca​ses/​subce​llular_​level/​subce​llular_​app/​subce​llular_​app.​html

253Neuroinformatics (2022) 20:241–259

https://github.com/a-kramer/SBtabVFGEN
https://github.com/a-kramer/SBtabVFGEN
https://github.com/a-kramer/SBtabVFGEN/blob/master/README.md
https://github.com/a-kramer/SBtabVFGEN/blob/master/README.md
https://subcellular.humanbrainproject.eu/model/simulations
https://humanbrainproject.github.io/hbp-sp6-guidebook/online_usecases/subcellular_level/subcellular_app/subcellular_app.html
https://humanbrainproject.github.io/hbp-sp6-guidebook/online_usecases/subcellular_level/subcellular_app/subcellular_app.html

1 3

2016). It supports the import of SBML (level 2 version 4)
models and their transformation to rule-based BNGL form
using Atomizer (Tapia & Faeder, 2013). The BioNetGen file
format was extended to provide diffusion parameters, links
to tetrahedral meshes describing the geometry of model
compartments, as well as the additional parameters for solvers
and stimulation protocols required for spatially distributed
models. The subcellular simulation setup application is
integrated with the network free solver NFsim (Sneddon
et al., 2011) and it supports simulations of spatially distributed
systems using STEPS (Hepburn et al., 2012). STEPS provides
spatial stochastic and deterministic solvers for simulations of
reactions and diffusion on tetrahedral meshes. Furthermore,
the subcellular simulation setup application provides a number
of facilities for the visualization of models’ geometries and the
results of simulations.

To demonstrate the compatibility of the subcellular simu-
lation setup application with the workflow for model devel-
opment described above, we imported the SBML version of
the use case model to the setup application and simulated it
with the STEPS TetOpSplit solver. We have used a simple
two-compartmental spine model with a tetrahedral compart-
ment corresponding to the spine compartment of the use
case model. There is also a PSD compartment on one of the

faces. The results of the model simulations with a STEPS
solver were qualitatively similar to the results obtained with
the deterministic model simulated in MATLAB®. Examples
of simulated time courses for molecule concentrations as
shown in Fig. 3 in comparison with corresponding MAT-
LAB® curves are shown in Fig. 6.

Conversion to a MOD File and Simulations
in NEURON

As we suggested before, conversion between different mod-
eling frameworks and formats facilitates collaboration. But
conversion is made harder by the differences in the capa-
bilities of different modeling packages. A model, such as
the one above, could be useful for multiscale simulations
investigating how neuronal network activity shapes synaptic
plasticity. Many cellular level models are built and simulated
in the NEURON environment which also supports simplified
reaction–diffusion systems. It is useful to be able to integrate
a subcellular level model into a cellular level model specified
using NEURON. Models in NEURON are built by adding
features with MOD files that are written in the NMODL pro-
gramming language. A schematic illustration of our use case
set up in NEURON is depicted in Fig. 7. Conversion from

0 5 10 15 20 25 30
time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Su

bs
tr

at
e

ph
os

ph
or

yl
at

io
n

A

Ca MATLAB
Ca STEPS
Ca + DA (t=1s) MATLAB
Ca + DA (t=1s) STEPS

-4 -3 -2 -1 0 1 2 3 4
t (s)

0

1

2

3

4

5

6

7

8

9

Su
bs

tr
at

e
ph

os
ph

or
yl

at
io

n
ar

ea

B

MATLAB
STEPS

Δ

Δ
Δ

Fig. 6   Validation of the model by stochastic STEPS simulation of
substrate phosphorylation in a typical D1 MSN spine. A Normal-
ized time course of substrate phosphorylation in the updated model
run in MATLAB® in comparison with averaged (n = 50) stochas-
tic STEPS simulations (red–calcium and dopamine; blue–calcium
only) for a typical size of D1 MSN synaptic spine (V = 0.02μm3).
The same stimulation protocol as in Fig. 3 was used. Colored areas
around averaged STEPS curves correspond to a range between 10 and
90% confidence intervals. One simulation required less than 1 min of
compute time for 30 s of simulated reactions within a 0.02 µl spine

(~6000 molecules). B Normalized area under the curve of substrate
phosphorylation with different calcium and dopamine input inter-
vals simulated for the MATLAB® version of the updated model
(with MATLAB® ode15s solver, black line) and averaged stochastic
STEPS simulations (n = 30) in the application version of the model.
MATLAB® statistical bar plots were added to the figure to charac-
terize variability of synaptic plasticity between subsequent induction
protocol applications to the same synaptic spine. Note that despite
high variability of synaptic plasticity time courses averaged plastic-
ity dynamics were in a good agreement with the ODE-based solution

254 Neuroinformatics (2022) 20:241–259

1 3

SBML to MOD is already possible via NeuroML (instruc-
tions can be found in Lindroos et al., 2018); however, it is
not an automated or user-friendly approach. We wrote an
R script, which reads an SBtab model17 and writes a MOD
file, as well as VFGEN and an SBML18 file. The script can
optionally perform analysis of conservation laws and output
a model where some of the differential equations for the
state variables are substituted by algebraic equations aris-
ing from the conservation laws, thereby reducing the num-
ber of differential equations to be solved. Instructions on
how to use the SBtab to VFGEN/MOD/SBML converter
in R can be found in a separate GitHub repository19. The
subcellular model in SBtab form is not aware of its cou-
pling to a larger model of the cell and the user must edit the

resulting MOD file manually to use it within a larger scope
and assign a role to this model component. This typically
means assigning input to the model and using the output in
some way. An example is given below with our use case.
Another point to stress is that the script converts the time
unit of the parameters to milliseconds, NEURON’s default
unit for time, but does not change the concentration units.
Thus, when coupling a biochemical cascade to other quanti-
ties in the neuronal model, care must be taken to rescale the
coupled variables so that they match the units in the rest of
the neuronal model. We also illustrate that with one of the
inputs in the use case.

We validate the biochemical cascade model and our
conversion tools in NEURON by qualitatively reproducing
the results obtained in MATLAB® SimBiology®. Our goal
is to show that the cascade model can be integrated into a
single neuron model and bridge spatial and temporal scales
of system behavior by linking the output of the cascade to
changes in the synaptic properties and ultimately to the
electrical behavior of the neuron model. Therefore, the
biochemical model in the MOD format was incorporated
into a single biophysically detailed and compartmentalized
D1 MSN model from Lindroos et al. (2018). To integrate

Fig. 7   Inserting the biochemical signal transduction cascade into an
electrical model in NEURON. A A schematic of the effects of the two
inputs of the model, dopamine and calcium, on a generic substrate,
which in this case is taken to represent the fraction of phosphoryl-
ated AMPA receptors with higher conductance levels. B Examples
of the two inputs, calcium and dopamine. The calcium signal at the
synapse is a result of ten repeats of a synaptic stimulus paired with
three somatic spikes evoked with a current clamp (Yagishita et al.,
2014, Fig. 1). C The simulations in MATLAB and NEURON give the
same results when using the same calcium input from the NEURON

simulation in MATLAB. This simulation in NEURON requires 4 h
on 8 compute nodes on an Intel i7-4700MQ CPU @ 2.40 GHz. and
less than one second in MATLAB® using an intel core i9-10980XE
D, E Predicted EPSP (Excitatory PostSynaptic Potential) following a
single synaptic input in the relevant spine and in the soma. The read-
out of the substrate phosphorylation level was done at 7 s after the
start of the dopamine input. The relative timings of dopamine and
calcium indicated in the figure legends are used, and the results are
compared to the experimental setting without the dopamine input

17  A file given either as a series of tab separated text files or one open
document spreadsheet file. Some content of the SBtab model is man-
datory, some optional.
18  libSBML must installed with R bindings: i.e. SBML output is
optional.
19  Conversion function available in https://​github.​com/a-​kramer/​
SBtab​VFGEN and instructions in https://​github.​com/a-​kramer/​
SBtab​VFGEN/​blob/​master/​README.​md

255Neuroinformatics (2022) 20:241–259

https://github.com/a-kramer/SBtabVFGEN
https://github.com/a-kramer/SBtabVFGEN
https://github.com/a-kramer/SBtabVFGEN/blob/master/README.md
https://github.com/a-kramer/SBtabVFGEN/blob/master/README.md

1 3

the MOD file into single cell models a few user-specific
modifications have to be made to interface this model with
the larger electrochemical system. First, the input is modified
so that the calcium burst is represented by calcium influx
from the cell’s calcium channels and adjusted so that the
overall calcium level would be similar to the input used
in MATLAB® simulations. The calcium in the neuron
model is expressed in millimolar units and when coupling
it to the biochemical cascade we rescale it to nanomolar
units (the units used in the biochemical cascade model).
The dopamine transient is represented by an assignment
expression (available in the Expression table of the SBtab)
that creates its double exponential form (this can be used
in other languages as well). For an adequate comparison
of the substrate phosphorylation curve (shown in Fig. 3D)
obtained from the NEURON and MATLAB simulations it
is necessary to provide the same input in the simulations.
Hence, in the comparison in Fig. 7C we used the calcium
input recorded from the NEURON simulation in the
MATLAB simulation.

In the D1 MSNs this biochemical signaling cascade
causes synaptic strengthening via several mechanisms,
one of which is the phosphorylation of AMPA receptors.
As mentioned above, the model instead includes a generic
substrate whose level of phosphorylation is the output of
the cascade. For the purpose of illustrating the workflow
with a proof-of-concept example, we have here linked
the fraction of phosphorylated substrate to the AMPA
receptor conductance (the conductance is scaled by 1 + f
(where f: fraction of the phosphorylated substrate), i.e.
when there is very little substrate phosphorylation, very
little change in the AMPA conductance is elicited, and
vice versa. Modifying the model to include the reactions
for AMPA receptor phosphorylation will be made in a
future study.

Discussion

In order to address the growing need for interoperabil-
ity in biochemical pathway modeling within the neuro-
science field, we have developed a workflow that can be
used to refine models in all phases of development, keep-
ing in mind the fact that many of the users (including us)
are scientists and not professional programmers. For the
model and data storage we have chosen the SBtab format
which can be easily read and modified by both model-
ers and experimentalists, and can be converted into other
formats, e.g. SBML, MATLAB® SimBiology® or MOD.
Our workflow is modularized into different steps allowing
the use of each step depending on the need and ensuring
interoperability with other tools, such as those described
in a similar endeavor named FindSim (Viswan et al.,

2018). There are distinct advantages to the workflow, by
enforcing a common standard for information exchange,
it inherently makes the models more generalizable and
reduces the likelihood that simulation results are artifacts
of a particular simulator, and nonetheless, it gives users
the flexibility to leverage the strengths of each different
simulation environment and provides distinct stages of
processing that would not be possible in any single simu-
lator. The presented workflow aims to use software com-
ponents that are free (apart from MATLAB®) and solve
incremental sub-tasks within the workflow (with open
standard intermediate files) to make the workflow easy to
branch into scenarios we have not previously considered.
It is also possible to circumvent MATLAB® entirely, if
desired (e.g. conversion from SBtab to a MOD file that is
then used by NEURON).

When deciding which software packages to use we find
that an important aspect that must be considered is the cost
and licensing. For some researchers, price may be a relevant
concern, in other cases a researcher may have to undergo
considerable overhead to make their institution/lab purchase
a license and possibly operate a license server. Other than
MATLAB®, we made the choice to disregard commercial
products, keeping in line with the field’s trend towards open
source platforms. We will also expand our tools to support
the use of models with more complex geometries, with sev-
eral compartments (which is also an SBML feature), and
tetrahedral meshes that can be used with STEPS in the sub-
cellular simulation setup application. Such advanced geom-
etries can in principle be defined within SBtab tables. When
it comes to multiscale simulations, there is the possibility
of using the Reaction–Diffusion module (RXD) in NEU-
RON. Currently, however, it does not support the import of
SBML as it lacks the concept of spatially extended models,
but SBML support might be added to the future versions of
RXD (McDougal et al., 2013).

Another interesting consideration is whether the user
wants to define any model directly using rules (as in rule-
based modeling). This would make the use of Atomizer
unnecessary. The transformation from rules to classical
reactions seems easier than the reverse, so even if a rule-
based simulation is not necessary or too slow, a rule-based
description may be shorter and more fundamental in terms
of model translation.

When it comes to model analysis, we have here imple-
mented a functionality for global sensitivity analysis. This
is a thorough, but computationally demanding approach and
the analysis usually needs to be run in parallel on a high
performance computing environment. There are also faster
but more approximate screening methods that could have
been used (Saltelli, 2004). In the future we also intend to
incorporate uncertainty quantification into the workflow
(Eriksson et al., 2019).

256 Neuroinformatics (2022) 20:241–259

1 3

While the current workflow is standalone, there are
potential alignments to other systems that could assist
adoption by the community. For example, other systems
such as Galaxy are more general in scope focusing on
bioinformatics and are aimed at naive users (Afgan et al.,
2016). The current workflow focuses on neuroscience and
assumes experienced users. While the current version
requires user installation of dependencies, in the future
Dockerised versions could potentially help ease installa-
tion requirements. Similarly, the Common Workflow Lan-
guage (Amstutz et al., 2016) is another recent development
that could facilitate the exchange of workflow information.

In summary, we have here presented a workflow for
biochemical pathway modeling and provided a concrete
use case of reward dependent synaptic plasticity, with two
additional examples in the supplementary material and the
workflow repository. Multiscale models are crucial when
trying to understand the brain using modeling and simulations,
e.g. how network activity shapes synaptic plasticity or how
neuromodulation might affect cellular excitability on sub
second timescales. Structured approaches for bridging from
detailed cellular level neuron models, to more simplified or
abstract cellular-, network-, and even brain region models are
developing (Amsalem et al., 2020; Carlu et al., 2020; Schmutz
et al., 2020). In the currently illustrated workflow, we add to
these efforts by bridging from the subcellular scale to the
cellular level scale. We updated parts of the use case model to
accomplish a model with only bimolecular reactions that are
easier to represent in standards such as SBML. The idea is that
users can look at our model as a concrete test case, rerun the
workflow (or parts thereof) and then replace the current exam-
ple model (Fujita et al., 2010, Hass et al., 2019) with their own
models. In this particular use case, we specifically focused on
creating scripts to achieve interoperability between human read-
able model specification standards and machine- readable stand-
ards, and we also wanted to facilitate how a subcellular signaling
model could be implemented in different solvers with different
strengths, in this case both SimBiology® in MATLAB®, as well
as STEPS and NEURON. NEURON is currently the most used
simulation software for detailed cellular level neuron models,
and STEPS can, as said, simulate signaling cascades in arbitrary
dendritic morphologies both in a deterministic and stochastic
manner. MATLAB® on the other hand has many functions, for
example for parameter estimation and we included an imple-
mentation for global sensitivity analysis. Several other software
is, however, used within the computational neuroscience com-
munity for cellular or subcellular model simulations (Akar et al.,
2019; Oliveira et al., 2010; Ray & Bhalla, 2008; Resasco et al.,
2012). To successively make as many of those tools interoper-
able with standards for both model and data specification, vari-
ous parameter estimation and model analysis methods, visualiza-
tion software, etc., will further facilitate the creation of FAIR
multiscale modeling pipelines in the future.

Information Sharing Statement

Source code of the Subcellular Workflow is available
at https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​
tree/1.0 and licensed under GNU General Public License
v3.0., documentation of the Subcellular Workflow is avail-
able at https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/1.​0/.
We stored the files relevant to each of the models in inde-
pendent repositories, https://​github.​com/​jpgsa​ntos/​Model_​
Nair_​2016/​relea​ses/​tag/1.0 for the main model discussed in
this paper, https://​github.​com/​jpgsa​ntos/​Model_​Viswan_​
2018/​relea​ses/​tag/1.0 for the model discussed in the sup-
plementary material, and https://​github.​com/​jpgsa​ntos/​
Model_​Fujita_​2010/​relea​ses/​tag/1.0 for the model men-
tioned in the supplementary material but mostly defined
in the GitHub. The models are stored in the SBtab format
(Lubitz et al., 2016). Model reduction, parameter estimation
and global sensitivity analysis tools are written in MAT-
LAB® (RRID:SCR_001622) and require the SimBiol-
ogy® toolbox. Conversion script to VFGEN (Weckesser,
2008), MOD and SBML (RRID:SCR_007422) is written
in R (RRID:SCR_001905). Conversion to SBML requires
the use of libSBML (RRID:SCR_014134). Validations are
run in COPASI (RRID:SCR_014260; Hoops et al., 2006),
NEURON (RRID:SCR_005393; Hines & Carnevale,
1997) and with the subcellular simulation setup application
(RRID:SCR_018790; available at https://​subce​llular.
​human​brain​proje​ct.​eu/​model/​simul​ations) that uses a spatial
solver provided by STEPS (RRID:SCR_008742; Hepburn et al.,
2012) and network-free solver NFsim (available at http://​
micha​elsne​ddon.​net/​nfsim/). The medium spiny neuron
model (Lindroos et al., 2018) used in NEURON simulations
is available in ModelDB database (RRID:SCR_007271)
with access code 237,653. The FindSim use case model is
available in https://​github.​com/​Bhall​aLab/​FindS​im (Viswan
et al., 2018).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12021-​021-​09546-3.

Acknowledgements  We thank Pavlo Getta for engineering support,
Geir Halnes for sharing scripts for global sensitivity analysis with us,
and Sahil Moza for helping with the FindSim use case. The simulations
were partly performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at Lunarc.

Funding  Open access funding provided by Royal Institute of Technol-
ogy. The study was supported by the Swedish research council (VR-M-
2017–02806, VR-M-2020–01652), Swedish e-Science Research Centre
(SeRC), EU/Horizon 2020 no. 785907 (HBP SGA2) and no. 945539
(HBP SGA3); EPFL Blue Brain Project Fund and the ETH Board
Funding to the Blue Brain Project; scholarship PD/BD/114180/2016
from FCT Fundação para a Ciência e Tecnologia.

Availability of Data and Material  see Information Sharing Statement.

257Neuroinformatics (2022) 20:241–259

https://github.com/jpgsantos/Subcellular_workflow/tree/1.0
https://github.com/jpgsantos/Subcellular_workflow/tree/1.0
https://subcellular-workflow.readthedocs.io/en/1.0/
https://github.com/jpgsantos/Model_Nair_2016/releases/tag/1.0
https://github.com/jpgsantos/Model_Nair_2016/releases/tag/1.0
https://github.com/jpgsantos/Model_Viswan_2018/releases/tag/1.0
https://github.com/jpgsantos/Model_Viswan_2018/releases/tag/1.0
https://github.com/jpgsantos/Model_Fujita_2010/releases/tag/1.0
https://github.com/jpgsantos/Model_Fujita_2010/releases/tag/1.0
https://subcellular.humanbrainproject.eu/model/simulations
https://subcellular.humanbrainproject.eu/model/simulations
http://michaelsneddon.net/nfsim/
http://michaelsneddon.net/nfsim/
https://github.com/BhallaLab/FindSim
https://doi.org/10.1007/s12021-021-09546-3

1 3

Code Availability  see Information Sharing Statement.

Declarations 

Ethics Approval  not applicable.

Consent to Participate  not applicable.

Consent for Publication  not applicable.

Conflicts of Interest/Competing Interests  The authors declare that
they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier,
D., Čech, M., Chilton, J., Clements, D., Coraor, N., Eberhard, C.,
Grüning, B., Guerler, A., Hillman-Jackson, J., Von Kuster, G.,
Rasche, E., Soranzo, N., Turaga, N., Taylor, J., Nekrutenko, A., &
Goecks, J. (2016). The Galaxy platform for accessible, reproduc-
ible and collaborative biomedical analyses: 2016 update. Nucleic
Acids Research., 44(W1), W3–W10.

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W.,
Peyser, A., & Yates, S. (2019). Arbor – A morphologically-
detailed neural network simulation library for contemporary high-
performance computing architectures. 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based
Processing (PDP), Pavia, Italy, pp. 274–282.

Amsalem, O., Eyal, G., Rogozinski, N., Gevaert, M., Kumbhar, P., Schürmann,
F., & Segev, I. (2020). An efficient analytical reduction of detailed non-
linear neuron models. Nature Communications, 11(1), 288.

Amstutz, P., Crusoe, M., Tijanić, N., Chapman, B., Chilton, J., Heuer,
M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M.,
Scales, M., Soiland-Reyes, S., & Stojanovic, L. (2016): Com-
mon Workflow Language, v1.0. Specification, Common Workflow
Language working group. https://​w3id.​org/​cwl/​v1.0/

Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks
of biological signaling pathways. Science, 283(5400), 381–387.

Bhalla, U. S. (2004). Models of cell signaling pathways. Current Opin-
ion in Genetics & Development, 14, 375–381.

Bois, F. Y. (2009). GNU MCSim: Bayesian statistical inference for SBML-
coded systems biology models. Bioinformatics, 25, 1453–1454.

Cannon, R. C., Gewaltig, M. -O., Gleeson, P., Bhalla, U. S., Cornelis,
H., Hines, M. L., et al. (2007). Interoperability of neuroscience
modeling software: Current status and future directions. Neuro-
informatics, 5(2), 127–138.

Carlu, M., Chehab, O., Dalla Porta, L., Depannemaecker, D., Héricé,
C., Jedynak, M., Köksal Ersöz, E., Muratore, P., Souihel, S.,
Capone, C., Zerlaut, Y., Destexhe, A., & di Volo, M. (2020). A

mean-field approach to the dynamics of networks of complex
neurons, from nonlinear Integrate- and Fire to Hodgkin-Huxley
models. Journal of Neurophysiology, 123(3), 1042–1051.

Chylek, L. A., Harris, L. A., Faeder, J. R., & Hlavacek, W. S. (2015).
Modeling for (physical) biologists: an introduction to rule-based
approach. Physical Biology, 12(4), 045007.

Djurfeldt, M., Hjorth, J., & Eppler, J. M., et al. (2010). Run-Time Inter-
operability Between Neuronal Network Simulators Based on the
MUSIC Framework. Neuroinform, 8, 43–60. https://​doi.​org/​10.​
1007/​s12021-​010-​9064-z.

Eriksson, O., Jauhiainen, A., Maad Sasane, S., Kramer, A., Nair, A. G.,
Sartorius, C., & Hellgren Kotaleski, J. (2019). Uncertainty quantifica-
tion, propagation and characterization by Bayesian analysis combined
with global sensitivity analysis applied to dynamical intracellular
pathway models. Bioinformatics, 35(2), 284–292.

Fujita, K. A., Toyoshima, Y., Uda, S., Ozaki, Y., Kubota, H., & Kuroda,
S. (2010). Decoupling of receptor and downstream signals in the
Akt pathway by its low-pass filter characteristics. Science signaling,
3(132), ra56.

Gillespie, D. T. (1976). A General Method for Numerically Simulating
the Stochastic Time Evolution of Coupled Chemical Reactions.
Journal of Computational Physics, 22(4), 403–434.

Gillespie, D. T. (2001). Approximate accelerated stochastic simula-
tion of chemically reacting systems. Journal of Chemical Physics,
115(4), 1716–1733.

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, et al. (2010)
NeuroML: A Language for Describing Data Driven Models of
Neurons and Networks with a High Degree of Biological Detail.
PLOS Computational Biology 6(6): e1000815. https://​doi.​org/​10.​
1371/​journ​al.​pcbi.​10008​15

Gleeson, P., Steuber, V., Silver, R. A., & Crook, S. (2012). NeuroML.
In: Le Novère N. (eds) Computational Systems Neurobiology.
Springer, Dordrecht.

Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient
adaptive MCMC. Statistics and Computing, 16, 339–354.

Halnes, G., Ulfhielm, E., Eklöf Ljunggren, E., Hellgren Kotaleski, J.,
& Rospars, J. P. (2009). Modelling and sensitivity analysis of the
reactions involving receptor, G-protein and effector in vertebrate
olfactory receptor neurons. Journal of Computational Neurosci-
ence, 27(3), 471–491.

Harris, L. A., Hogg, J. S., Tapia, J. J., Sekar, J. A., Gupta, S., Korsunsky,
I., Arora, A., Baruda, D., Sheehan, R. P., & Faeder, J. R. (2016).
BioNetGen 2.2: advances in rule-based modeling. Bioinformat-
ics, 32(21), 3366–3368.

Hass, H., Loos, C., Raimndez-Alvarez, E., Timmer, J., Hasenauer, J., &
Kreutz, C. (2019). Benchmark problems for dynamic modeling of
intracellular processes. Bioinformatics, 35, 3073–3082.

Hedley, W. J., Nelson, M. R., Bullivant, D. P., & Nielsen, P. F. (2001).
A short introduction to CellML. Philosophical Transactions of the
Royal Society, Series A, 359, 1073–1089.

Hellgren Kotaleski, J., & Blackwell, K. T. (2010). Modelling the
molecular mechanisms of synaptic plasticity using systems biol-
ogy approaches. Nature Reviews Neuroscience, 11, 239–251.

Hepburn, I., Chen, W., Wils, S., & De Schutter, E. (2012). STEPS: Effi-
cient simulation of stochastic reaction-diffusion models in realistic
morphologies. BMC Systems Biology, 6, 36.

Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation
environment. Neural Computation, 9, 1179–1209.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal,
M., Xu, L., Mendes, P., & Kummer, U. (2006). COPASI: A COm-
plex PAthway SImulator. Bioinformatics, 22, 3067–3074.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano,
H., et al. (2003). The systems biology markup language (SBML):
A medium for representation and exchange of biochemical net-
work models. Bioinformatics, 19, 524–531.

258 Neuroinformatics (2022) 20:241–259

http://creativecommons.org/licenses/by/4.0/
https://w3id.org/cwl/v1.0/
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1371/journal.pcbi.1000815

1 3

Klinger, E., Rickert, D., & Hasenauer, J. (2018). pyABC: Distributed,
likelihood-free inference. Bioinformatics, 34(20), 3591–3593.

Li, L., Stefan, M. I., & Le Novere, N. (2012). Calcium input frequency,
duration and amplitude differentially modulate the relative activa-
tion of calcineurin and CaMKII. PLoS One, 7, e43810.

Lindroos, R., Dorst, M. C., Du, K., Filipović, M., Keller, D., Ketzef,
M., Kozlov, A. K., Kumar, A., Lindahl, M., Nair, A. G., Péréz-
Fernandez, J., Grillner, S., Silberberg, G., & Hellgren Kotaleski,
J. (2018). Basal ganglia neuromodulation over multiple temporal
and structural scales-simulations of direct pathway MSNs inves-
tigate the fast onset of dopaminergic effects and predict the role
of Kv4.2. Frontiers in Neural Circuits, 12, 3.

Lubitz, T., Hahn, J., Bergmann, F. T., Noor, E., Klipp, E., & Liebermeister,
W. (2016). SBtab: A flexible table format for data exchange in systems
biology. Bioinformatics, 32(16), 2559–2561.

Maiwald, T., & Timmer, J. (2008). Dynamical modeling and multi-
experiment fitting with PottersWheel. Bioinformatics, 24(18),
2037–2043.

McDougal, R. A., Hines, M. L., & Lytton, W. W. (2013). Reaction-
diffusion in the NEURON simulator. Frontiers in Neuroinformat-
ics, 7, 28.

Nair, A. G., Bhalla, U. S., & Kotaleski J. H. (2016). Role of DARPP-32
and ARPP-21 in the emergence of temporal constraints on striatal
Calcium and Dopamine integration. PLoS Computational Biol-
ogy, 12(9), e1005080.

Oliveira, R. F., Terrin, A., Di Benedetto, G., Cannon, R. C., Koh, W.,
Kim M., Zaccolo, M., & Blackwell K. T. (2010). The role of type
4 phosphodiesterases in generating microdomains of cAMP: large
scale stochastic simulations. PLoS One, 5(7), e11725.

Pepke, S., Kinzer-Ursem, T., Mihalas, S., & Kennedy, M. B. (2010). A
dynamic model of interactions of Ca2+, calmodulin, and catalytic
subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS
Computational Biology, 6(2), e1000675.

Raue, A., Kreutz, C., Maiwald, T., Bachman, J., Schilling, M., Klingmüller,
U., & Timer, J. (2009). Structural and practical identifiability analysis
of partially observed dynamical models by exploiting the profile likeli-
hood. Bioinformatics, 25(15), 1923–1929.

Ray, S., & Bhalla, U. S. (2008). PyMOOSE: Interoperable scripting in
Python and MOOSE. Frontiers in Neuroinformatics, 2, 6.

Resasco, D. C., Gao, F., Morgan, F., Novak, I. L., Schaff, J. C., &
Slepchenko, B. M. (2012). Virtual Cell: Computational tools for
modeling in cell biology. Wiley Interdisciplinary Reviews: Sys-
tems Biology and Medicine, 4(2), 129–140.

Rodriguez, N., Pettit, J. -B., Dalle Pezze, P., Li, L., Henry, A., van Iersel,
M. P., et al. (2016). The systems biology format converter. BMC Bio-
informatics, 17, 154.

Saltelli, A. (2002). Making best use of model evaluations to compute
sensitivity indices. Computer Physics Communications, 145,
280–297.

Saltelli, A. (2004). Sensitivity analysis in practice: A guide to assessing
scientific models. Wiley.

Schmidt, H., & Jirstrand, M. (2006). Systems Biology Toolbox for
MATLAB: A computational platform for research in systems biol-
ogy. Bioinformatics, 22(4), 514–515.

Schmutz, V., Gerstner, W., & Schwalger, T. (2020). Mesoscopic popu-
lation equations for spiking neural networks with synaptic short-
term plasticity. The Journal of Mathematical Neuroscience, 10(1),
5.

Schälte, Y., Fröhlich, F., Stapor, P., Wang, D., Vanhoefer, J., Weindl,
D., et al. (2020). ICB-DCM/pyPESTO: pyPESTO 0.2.0 (Version
v0.2.0). Zenodo.

Sneddon, M. W., Faeder, J. R., & Emonet, T. (2011). Efficient mod-
eling, simulation and coarse-graining of biological complexity
with NFsim. Nature Methods, 8(2), 177–183.

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathemati-
cal models and their Monte Carlo estimates. Mathematics and
Computers in Simulation, 55(1–3), 271–280.

Tapia, J. J., & Faeder, J. R. (2013). The Atomizer: extracting implicit
molecular structure from reaction network models. In: Proceed-
ings of the International Conference on Bioinformatics, Compu-
tational Biology and Biomedical Informatics (BCB’13), ACM,
New York, NY, pp. 726–727.

Tennøe, S., Halnes, G., & Einevoll, G. T. (2018). Uncertainpy: A
python toolbox for uncertainty quantification and sensitivity
analysis in computational neuroscience. Frontiers in Neuroinfor-
matics, 14(12), 49.

Viswan, N. A., HarshaRani, G. V., Stefan, M. I., & Bhalla, U. S. (2018).
FindSim: A framework for integrating neuronal data and signaling
models. Frontiers in Neuroinformatics, 12, 38.

Vlad, M. O., & Ross, J. (1994). Thermodynamic approach to non-
equilibrium chemical fluctuations. Journal of Chemical Physics,
100(10), 7295–7309.

Weckesser, W. (2008). VFGEN: A code generation tool. Journal of
Numerical Analysis, Industrial and Applied Mathematics, 3(1–2),
151–165.

Wegscheider, R. (1901). Über simultane Gleichgewichte und die Bezie-
hungen zwischen Thermodynamik und Reactionskinetik homoge-
ner Systeme. Monatshefte Für Chemie, 22, 849–906.

Welsh, C. M., Fullard, N., Proctor, C. J., Martinez-Guimera, A., Isfort,
R. J., Bascom, C. C., Tasseff, R., Przyborski, S. A., & Shanley, D.
P. (2018). PyCoTools: A Python toolbox for COPASI. Bioinfor-
matics, 34(21), 3702–3710.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., ... & Mons, B. (2016). The FAIR Guiding
Principles for scientific data management and stewardship. Sci-
entific data, 3(1), 1-9.

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H.,
Ishii, S., & Kasai, H. (2014). A critical time window for dopamine
actions on the structural plasticity of dendritic spines. Science,
345(6204), 1616–1620. https://​doi.​org/​10.​1126/​scien​ce.​12555​14

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biol-
ogy models. IET Systems Biology, 5(6), 336–346.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

259Neuroinformatics (2022) 20:241–259

https://doi.org/10.1126/science.1255514

	A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience
	Abstract
	Introduction
	Examples of Software and Toolboxes used in Systems Biology
	The Workflow
	Use Case
	SBtab
	Model Pre-Processing Tools
	MATLAB® Tools
	Import from SBtab to MATLAB®
	Parameter Estimation
	Validation in MATLAB®
	Global Sensitivity Analysis

	Compatibility and Validation with Other Simulation Environments
	Conversion to SBML and Simulations in COPASI
	Simulations in STEPS
	Conversion to a MOD File and Simulations in NEURON

	Discussion
	Information Sharing Statement
	Acknowledgements
	References

