
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12021-021-09546-3

A Modular Workflow for Model Building, Analysis, and Parameter 
Estimation in Systems Biology and Neuroscience

João P. G. Santos1,2,3   · Kadri Pajo2   · Daniel Trpevski1   · Andrey Stepaniuk4   · Olivia Eriksson1   · 
Anu G. Nair2,5   · Daniel Keller4   · Jeanette Hellgren Kotaleski1,2   · Andrei Kramer1 

Accepted: 3 September 2021 
© The Author(s) 2021, corrected publication 2022

Abstract
Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Mod-
eling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and 
researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale 
of biochemical pathways, which is one of the main objects of study in systems biology. While systems biology is among 
the more standardized fields, conversion between different model formats and interoperability between various tools is still 
somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, acces-
sibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical 
pathway models, using pre-existing tools that could be utilized for the storage and refinement of models in all phases of 
development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a 
single file and provides a human readable set of syntax rules. Next, we implemented custom-made MATLAB®  scripts to 
perform parameter estimation and global sensitivity analysis used in model refinement. Additionally, we have developed a 
web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers 
and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed 
single neuron model by running multiscale simulations in NEURON. Using this workflow, we can simulate the same model 
in three different simulators, with a smooth conversion between the different model formats, enhancing the characterization 
of different aspects of the model.

Keywords  Interoperability · Multiscale modeling · SBtab · Global sensitivity analysis · Parameter estimation · Systems 
biology

Introduction

Computational systems biology is a data-driven field 
concerned with building models of biological systems. 
Methods from systems biology have proven valuable in 

neuroscience, particularly when studying the composition 
of synapses, molecular mechanisms of plasticity, learning 
and various other neuronal processes (Bhalla & Iyengar, 
1999; Hellgren Kotaleski & Blackwell, 2010; Li et al., 
2012). A wide variety of different software and toolboxes, 
each with their own strengths and weaknesses, are available  
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within the field. This diversity, however, can obstruct model 
reuse as interoperability between the different software 
packages and the convertibility between various file types 
is only solved in part. Interoperability can either mean that 
the model built in one simulator can be run in another or 
that both simulators interoperate at run-time either at the 
same or different scales (Cannon et al., 2007). The former 
is addressed by standardizing model descriptions for which 
notable examples in systems biology include the standard 
machine-readable model formats, such as XML-based 
SBML (Systems Biology Markup Language; Hucka et al., 
2003) and CellML (Hedley et al., 2001), and human readable  
format, such as SBtab (Lubitz et al., 2016). An analogous 
model description language for neurons and networks is the 
NeuroML (Neural Open Markup Language; Gleeson et al. 
2010, 2012).

We start by providing examples of available systems 
biology tools, for model building, parameter estimation and 
model analysis. We then proceed to describe our approach 
in developing a modular workflow to address some of the 
interoperability issues and present simulation results of an 
example use case in various simulators and frameworks, 
with further examples provided in Supplementary Materi-
als. Our workflow starts with a human-readable representa-
tion of the model that is easily accessible to everyone and 
proceeds through various conversions into different simula-
tion environments: MATLAB®, COPASI, NEURON, and 
STEPS (STochastic Engine for Pathway Simulation). Spe-
cifically, we will describe the conversion tools we created 
for this purpose.

Examples of Software and Toolboxes used 
in Systems Biology

No software package is perfectly suited for every task, some 
have programmable interfaces with scripting languages, like 
the MATLAB® SimBiology® toolbox, some focus on pro-
viding a fixed array of functions that can be run via graphi-
cal user interfaces, like COPASI, although it now offers 
a Python toolbox for scripting (Welsh et al., 2018). Most 
toolboxes and software packages offer a mixture of the two 
approaches: fine-grained programmable interface as well as 
fixed high-level operations. At the extremes of this spec-
trum are powerful but inflexible high-level software on one 
side, and complex, hard to learn but very flexible libraries or 
toolboxes with an API (application programming interface) 
on the other. Some examples of general modeling toolboxes 
in MATLAB® are the SBPOP/SBToolbox2 (Schmidt & 
Jirstrand, 2006), and the PottersWheel Toolbox (Maiwald 
& Timmer, 2008). For Bayesian parameter estimation, 
there are the MCMCSTAT toolbox (Haario et al., 2006) in 
MATLAB®, as well as pyABC (Klinger et al., 2018) and 

pyPESTO (Schälte et al., 2020) in Python, and the stan-
dalone Markov Chain Monte Carlo (MCMC) software GNU 
MCsim that allows to estimate the posterior distribution by 
sampling a high-dimensional probability distribution (Bois, 
2009). For global sensitivity analysis, there is the Uncer-
tainpy Python toolbox (Tennøe et al., 2018). For simulations 
in neuroscience, some notable examples include NEURON 
(Hines & Carnevale, 1997) and STEPS (Hepburn et al., 
2012). Both are used for simulations of neurons and can 
include reaction–diffusion systems and electrophysiology.

These software packages do not all use the same model 
definition formats. Most have some compatibility with 
SBML, others use their own formats (e.g. NEURON uses 
MOD files). In some cases, an SBML file exported from one 
of these packages cannot be imported into another package 
without errors; so manual intervention may be required.1 
Given an SBML file, a common task is to translate the con-
tents into code that can be used in model simulations, for 
ordinary differential equations this is the right-hand side 
vector field function. There are several tools that facilitate 
the conversion between formats, e.g. the SBFC (The Sys-
tems Biology Format converter; Rodriguez et al., 2016) as 
well as the more general VFGEN (A Vector Field File Gen-
erator; Weckesser, 2008).

All toolboxes and software packages have great strengths 
and short-comings, and each programming language has dif-
ferent sets of (freely) available libraries which makes the 
development (or use) of numerical methods more or less 
feasible than in another language. One such example is the R 
package VineCopula for parameter dependency modeling, 
which has recently been used for modeling probability densities 
(in parameter spaces) between two MCMC runs (Eriksson et al.,  
2019). It infers the probability density function from a large  
enough sample, another method to do this is kernel density  
estimation.2 The VineCopula package implements a much more  
advanced and robust method of density estimation based on 
vines and copulas and performs well in high dimensional 
cases. This package is not easily replaced in many other 
languages. The Julia language, on the other hand, has a far 
richer set of differential equation solvers than R or MAT-
LAB® and comes with very efficient forward sensitivity 
analysis methods.

Each researcher must therefore make decisions that result 
in the best compromise for them. If a researcher is famil-
iar with a given set of programming/scripting languages 
it is probably not reasonable to expect them to be able to 

1  for example: at the time of writing the SimBiology® toolbox (in 
MATLAB®) exports the time variable as a normal variable, without 
the required definition URL, it must be added manually.
2  Kernel density estimation does not work very well in high dimen-
sional problems.
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collaborate with other groups in languages they do not know. 
For this reason, it is our firm opinion that the conversion of 
models between different formats is a very important task, 
and it is equally important to use formats that people can 
pick-up easily. To make format conversion flexible inter-
mediate files are a great benefit which leads to a modular 
approach with possible validation between modules.

We also have to consider the FAIR data principles–the 
findability, accessibility, interoperability and reusability of 
data and associated infrastructure (Wilkinson et al., 2016). 
Here, we would like to address the interoperability princi-
ple by having developed a workflow for building biochemi-
cal pathway models using existing tools and custom-made, 
short, freely available scripts for the storage and refinement 
of models in all phases of development, ensuring inter-
changeability with other formats and toolkits at every step 
in the pipeline using standardized intermediate files (Fig. 1 
and Table 1).

Figure 1 illustrates the relationship between the tools we 
used in this workflow. We created a use case based on a 
previously developed model for others to reuse and modify, 
and we use it to demonstrate how the depicted parts oper-
ate. In addition, we made two other use cases available for 
testing other parts of the workflow. More extensive testing 
was done with a model of the mitogen-activated protein 
kinase (MAPK) cascade provided by the FindSim workflow 
(Viswan et al., 2018) and the results can be found in the Sup-
plementary Materials.

The Workflow

While the standard model storage format in systems biol-
ogy is SBML, it has some drawbacks: it does not lend itself 
to manual editing, the math in an SBML file is difficult to 
read and write manually, xml parsing is a difficult task that 
cannot be undertaken lightly by the novice programmer, spe-
cies entries do not have a concentration unit attribute, time 

is handled very differently from any other model variable, 
etc. None of these issues are an error of course, but they 
are inconvenient for the inexperienced user. Therefore, this 
workflow is centered around building an easy-to-use infra-
structure with models and data expressed in a spreadsheet-
based storage format called SBtab (Lubitz et al., 2016). We 
chose SBtab as the primary modeling source file because 
it is human-readable and writable, it can contain both the 
model and the data, and because it is easy to write parsing 
scripts for it, such as a converter from SBtab to SBML using 
the libSBML3 interface in R. This ease of convertibility is 
used in the second focus of the workflow, convertibility 
between SBtab and other common formats and simulation 
software, since in systems biology and in any other compu-
tational sciences, the lack of compatibility between different 
tools and formats can often pose problems. A partially work-
ing conversion tool between SBtab and SBML had already 
been developed by the SBtab team. However, it can cur-
rently only read one table at a time and does not produce any 
functional SBML files with our model example. To combat 
these shortcomings, we wrote scripts to convert the SBtab 
into SBML, either using the R language or MATLAB®, and 
validating it successfully in COPASI, STEPS and NEURON.

The bulk of our workflow is available as MATLAB® 
code, particularly the parameter estimation tools and func-
tions for global sensitivity analysis. Sensitivity analysis can 
be used to determine the importance of different parameters 
in regulating different outputs. Local sensitivity analysis is 
based on partial derivatives and investigates the behavior 
of the output when parameters are perturbed in close vicin-
ity to a specific point in parameter space. Global sensitivity 
analysis, on the other hand, is based on statistical approaches 
and has a much broader range. Global sensitivity analysis 

Fig. 1   Simplified scheme of 
the workflow. Thick arrows 
indicate steps for which we have 
developed automated tools. Text 
in bold refers to the generic 
components of the workflow 
and text in grey refers to exist-
ing software and data formats 
used in the current version of 
the suggested workflow

Simulator descriptor files
SBML, MOD file

Old parameter set

New parameter set

Analysis and
simulation tools

MATLAB® SimBiology

Optimization
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Model and data 
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information

Other simulation environments
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3  A library providing an application programming interface for 
SBML.
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Table 1   An overview of available software packages and tools used 
by the Subcellular Workflow. Sometimes, manual intervention is 
needed in between workflow modules. This is especially true when an 
input format does not have a feature that an output format has. Addi-

tionally, some software packages have so many functions that it could 
be easier to use them interactively (in these cases we also added a yes 
in the manual intervention column)

Tool Interface Language Purpose Input Format(s) Output Format(s) Manual Intervention

Pre-existing tools MATLAB® SimBiology® MATLAB® Simulations of biochemical 

cascades

m, sbproj, SBML m, sbproj, SBML yes

MATLAB® Optimization 

Toolbox™

MATLAB® Parameter estimation none none no

COPASI GUI Simulations of biochemical 

cascades

SBML, CPS, SED-ML, 

COMBINE

SBML, CPS, SED-ML, C, 

COMBINE Archives, 

XPPaut, Berkeley 

Madonna

yes

NEURON python Simulations of  

electrophysiological neuron 

models (with a possibility 

to include biochemical 

cascades)

mod not specific yes

STEPS python Stochastic simulations of 

reaction–diffusion models on 

tetrahedral meshes

python script not specific yes

NFsim Shell Network-free and hybrid 

simulations of rule-based 

models

BNGL not specific yes

BioNetGen GUI Environment for rule-based 

model setup and simulation

BNGL not specific yes

VFGEN Shell Converts ODE vector field files 

(vf) to many other languages/

formats

vf .m,.R,.py,.c, many others no

Conversion Tools

SBML to SBtaba web Conversion from SBML to 

SBtab

SBML SBtab Yes

(post-conversion)

Custom-developed tools Diagnostics toolb MATLAB® Runs the model, compares it 

to the provided data and 

calculates scores

SBtab as Excel mat + figures not if SBtab is correctly 

formatted

Parameter estimationb MATLAB® Parameter estimation using 

MATLAB® optimization 

tools

SBtab as Excel mat + figures not if SBtab is correctly 

formatted

GSA analysisb MATLAB® GSA analysis using Sobol- 

Saltelli method implemented 

in MATLAB®

SBtab as Excel mat + figures not if SBtab is correctly 

formatted

Simulation Setup Webappc python Setup and run STEPS,  

BioNetGen and NFsim 

simulations

SBML, BNGL BNGL, pySB yes, removal of functional 

reaction rates and  

applying stimuli

get_thermodynamic_ 

constraints.md

GNU Octave Checks for thermodynamic 

constraints between 

parameters

m Terminal text yes

Conversion Tools

SBtab to SBML + m + tsvb MATLAB® part of our MATLAB® 

toolchain

SBtab as Excel SBML, m, sbproj, tsv no

sbtab_to_vfgen.Re R Convert SBtab files into 

VFGENs vf format, but also 

produce SBML via libSBML

SBtab as TSV

or ODS

vf no

SBML no

mod yes

a https://​www.​sbtab.​net/​sbtab/​defau​lt/​conve​rter.​html
b https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​blob/1.​0/​Matlab/​Run_​main.m
c https://​subce​llular.​human​brain​proje​ct.​eu/​model/​simul​ations
d https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​blob/1.​0/​Matlab/​Code/​Stand​alone/​get_​therm​odyna​mic_​const​raints.m
e https://​github.​com/a-​kramer/​SBtab​VFGEN

244 Neuroinformatics (2022) 20:241–259

https://www.sbtab.net/sbtab/default/converter.html
https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Run_main.m
https://subcellular.humanbrainproject.eu/model/simulations
https://github.com/jpgsantos/Subcellular_workflow/blob/1.0/Matlab/Code/Standalone/get_thermodynamic_constraints.m
https://github.com/a-kramer/SBtabVFGEN


1 3

is more relevant for models that have a large uncertainty 
in their parameter estimates which is common for systems 
biology models where many of the parameters have not been 
precisely measured and the data are sparse.

A common approach within biochemical modeling is to use 
deterministic simulations and ordinary differential equations 
(ODE) that follow the law of mass action as it is computationally 
efficient and provides accurate (compared to averaged stochastic 
simulations) results for sufficiently large well-mixed biological 
systems. However, this approach has several restrictions in the 
case of neuronal biochemical cascades. First, such cascades  
are always subject to stochastic noise, which can be especially 
relevant in a compartment as small as a dendritic spine where 
the copy number of key molecules are small enough that the 
effect of randomness becomes significant (Bhalla, 2004). For 
precise simulation of stochasticity in reaction networks several  
stochastic solvers are available, e.g. Gillespie’s Stochastic 
Simulation Algorithm (SSA) (Gillespie, 1976) and explicit and 
implicit tau-leaping algorithms (Gillespie, 2001). Second, the 
number of possible states of many biochemical cascades grow 
exponentially with the number of simulated molecule types, 
such that it becomes difficult to represent all these states in the 
model. In this case, for efficient simulation the reactions in the 
model could be represented and simulated in a network free form 
using rule-based modeling approaches (Chylek et al., 2015). 
Third, many biochemical networks are spatially distributed, 
this requires simulation of molecule diffusion (Hepburn et al., 
2012). To tackle these problems, we developed the subcellular 
simulation setup application, a web-based software component 
for model development. It allows the extension and validation  

of deterministic chemical reaction network-based models by 
simulating them with stochastic solvers for reaction–diffusion 
systems (STEPS, Hepburn et al., 2012) and network free solvers 
(NFsim, Sneddon et al., 2011).

Regardless of the modeling approach (rule based or 
reaction network based ODE), the solvers yield a time-
curve solution: x(t;θ). This means that our workflow can 
only accept data that can be represented by one or several 
numerical solutions of this type. Time Series data and Dose 
Response curves can both be mapped to trajectory solutions. 
Dose Response curves are mapped point-by-point to solu-
tions under varying input settings (doses). We have not used 
direct solvers to obtain steady states or other limit sets.

Although the workflow is in principle applicable to any 
biochemical pathway model our emphasis is on modeling 
biochemical signaling in neurons. Therefore, the last chal-
lenge we want to address is an important concept in the 
interoperability domain of computational neuroscience 
called multiscale modeling which concerns the integration 
of subcellular models into electrical models of single cells 
or in neuronal microcircuits. This can be achieved either 
by run-time interoperability between two simulators of dif-
ferent systems (Djurfeldt et al., 2010) or by expanding the 
capabilities of a single simulation platform as has been done 
with the NEURON software (McDougal et al., 2013). With 
this purpose in mind, we have written a conversion function 
from SBtab to the MOD format which is used by NEURON. 
As such, the inputs and the outputs of a biochemical cascade 
can be linked to any of the biophysiological measures of the 
electrical neuron model.

Reactions for CaMKII

autophosphorylation in one compartment
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Fig. 2   A  Simplified schematics of the use case model with relevant 
second messengers with calcium and dopamine as inputs and phos-
phorylation of a generic CaMKII substrate (purple; top right) as the 
output. Species of the calcium cascade are blue, and species of the 
dopamine cascade are red. Lines ending in arrows represent activa-
tion and lines ending in circles represent inhibition. Time courses 
of the species with a beige background are later used in parameter 
estimation. Readjusted from Nair et  al. (2016). B Schematics of the 

bimolecular reactions used for CaMKII autophosphorylation with 
yellow circles depicting fully activated CaMKII bound to calmodulin 
and calcium, and blue circles depicting phosphate groups. Six newly 
introduced parameters are shown on the reaction arrows with their 
ID’s in the updated model. C Timing (in seconds) of the dopamine 
input (Δt = {-4,-3,-2,-1,0,1,2,3,4} corresponding to E0-E8) relative to 
the calcium input (zero), and a single experiment without a dopamine 
input (E9)
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Use Case

As a primary use case to illustrate the workflow we have 
chosen a previously developed pathway model of the emer-
gence of eligibility trace observed in reinforcement learning 
in striatal direct pathway medium spiny neurons (MSN) that 
express the D1 receptor (Nair et al., 2016). Additional use 
cases are considered in the Supplementary Materials.

In this model, a synapse that receives excitatory input, 
which leads to an increase in calcium concentration, is 
potentiated only when the signal is followed by a reinforcing  
dopamine input. Figure 2A represents a simplified model 
scheme illustrating these two signaling cascades, one  
starts with calcium as the input and the other one with 
dopamine. In simulation experiments the inputs are  
represented as a calcium train and a dopamine transient 
(Fig. 3A). Calcium input refers to a burst of 10 spikes at 
10 Hz reaching 5 μM. Dopamine input is represented by 
a single transient of 1.5 μM. The first cascade (species in 
blue) features the calcium-dependent activation of Ca2+/

calmodulin-dependent protein kinase II (CaMKII) and the 
subsequent phosphorylation of a generic CaMKII substrate 
which serves as a proxy for long term potentiation (LTP) and 
is the main output of the model. The second cascade (species 
in red) represents a G-protein dependent cascade following  
the dopamine input and resulting in the phosphorylation of 
the striatal dopamine- and cAMP-regulated phosphoprotein,  
32 kDa (DARPP-32) that turns into an inhibitor of protein  
phosphatase 1 (PP1) which can dephosphorylate both  
CaMKII and its substrate. The phosphorylation of the  
substrate is maximal when two constraints are met. First,  
the time window between the calcium and dopamine inputs 
has to be short, corresponding to the input-interval constraint 
which is mediated by DARPP-32 via PP1 inhibition. Second,  
intracellular calcium elevation has to be followed by the 
dopamine input, corresponding to the input-order constraint 
that is mediated by another phosphoprotein, the cyclic AMP-
regulated phosphoprotein, 21 kDa (ARPP-21), thanks to its 
ability to sequester calcium/calmodulin if dopamine arrives 
first (Fig. 3D).
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Fig. 3   A Illustration of the model inputs. Calcium burst (blue) at 4 s 
used in all simulations and a dopamine transient (orange) applied at 
different timings in eight experiments and one without it. B Four spe-
cies used in parameter estimation corresponding to the input combi-
nation in A. Black traces represent the data produced by simulating 
the original model, red traces represent fits with the best new param-
eter sets in the updated model. C, D  Comparison of model perfor-
mance with substrate phosphorylation as the main model readout. 

Here, 30  s simulations were used for comparison with the original 
model behavior. C Normalized time series of substrate phosphoryla-
tion, the main readout, with calcium as an only input or dopamine 
following it after 1s. D Normalized area under the curve of substrate 
phosphorylation with different calcium and dopamine input intervals. 
The simulations performed to obtain these graphs in MATLAB® 
took less than 5 min to compute (intel core i9-10980XE)
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In the originally published model, CaMKII is autophos-
phorylated in two compartments, both the cytosol and the 
post synaptic density (PSD), with a custom-written MAT-
LAB® rate function that was calculated based on the prob-
ability of two neighboring subunits being fully activated 
as described in Li et al. (2012). To make it possible to 
run the model in different software we replace the rate 
equation of autophosphorylation with a similar set of reac-
tions in both compartments so that the model would only 
contain bimolecular reactions. The reactions represent a 
simplified version of the autophosphorylation reactions 
in Pepke et al. (2010), where in our case only the fully 
activated CaMKII can be phosphorylated. The same set of 
reactions is used in both compartments and the schemat-
ics is available in Fig. 2B along with the required six new 
parameters. We used our parameter estimation script to 
find parameter values and bounds that preserved the quali-
tative behavior of the model. In this primary use-case, we 
used simulated data (real data is used in the supplementary 
materials model) from the original model with different 
timings of the dopamine input relative to the calcium input 
(Fig. 2C) to obtain a comprehensive picture of its behavior 
which we want the updated model to reproduce.

SBtab

As described above we have chosen SBtab as the format at 
the root of our workflow for the storage of the model and 
associated data. In this section we illustrate how we use this 
format. More information, documentation and examples are 
available from the authors of SBtab.4 SBtab allows the stor-
age of biochemical models and associated data in a single 
file and provides a set of syntax rules and conventions to 
structure data in a tabulated form making it easy to write, 
modify and share. To ensure interoperability, SBtab provides 
an online tool to convert the models into the SBML format.5 
SBtab is suitable for storing data that comes in spreadsheet 
or table formats, e.g. concentration time series or dose 
response curves, but it is likely that any data format that can 
be reasonably stored as a table will work well in SBtab. The 
SBtab file is intended to be updated manually during the 
process of model building. Additional instructions on how 
to make SBtab files work well within our toolchain can be 
found in the Subcellular Workflow documentation.6 Some 
of the columns and sheets that we use should be considered 
as extensions to the format and are discussed in the docu-
mentation. SBtab is easy to parse so adjustments to parsers 
can be made quickly.

The SBtab file should include separate sheets for com-
partments, compounds, reactions, assignment expressions, 
parameters, inputs, outputs, and experiments (as well as 
data tables). We illustrate the functionalities of SBtab here 
with the use case. The use case model has 99 compounds, 
138 reactions and 227 parameters. An example of the SBtab 
reaction table can be found in Table 2.

One of our goals with this study was to reproduce the 
original model behavior after replacing a single module 
inside the model to convert it to bimolecular reactions only. 
The data we used therefore represents the simulated time 
series (20 s) of the concentrations of four selected species in 
response to different input combinations using the original 
model. Each individual data sheet (named E0-E9, Fig. 2C) in 
SBtab represents the outputs of one experiment. A separate 
sheet called Experiments allows to define the input param-
eters differently for each experimental setup. By setting the 
initial concentrations of the unused species to zero the data 
could be mapped to a specific sub-module of the model (the 
remaining species). In this case the initial conditions are 
the same for all experiments. The Experiments table can 
also support annotations relevant to each dataset. We used 
nine different timings (corresponding to E0-E8) between the 
calcium and the dopamine signal starting with a dopamine 
signal preceding calcium by four seconds and finishing with 
dopamine following calcium after four seconds as this cor-
responds to the time frame originally used in model devel-
opment (Δt = {-4,-3,-2,-1,0,1,2,3,4}). Additionally, we used 
simulations with calcium as the only input (E9) (Fig. 2). The 
time series of the input species are in a separate sheet follow-
ing each experiment sheet. An example of how experimental 
data is stored can be found in Table 3.

Model Pre‑Processing Tools

Model building entails frequent changes to the model  
structure by adding new species, reactions, and parameters.  
This can result in the emergence or disappearance  
of Wegscheider cyclicity conditions that refer to the 
relationships between reaction rate coefficients arising  
from conditions of thermodynamic equilibr ium  
(Wegscheider,  1901; Vlad & Ross,  1994). Identified  
thermodynamic constraints show parameter dependencies 
that follow from physical laws and can reduce the number  
of independent parameters. These conditions are frequently  
difficult to determine by human inspection, especially for 
large systems. Similarly, identifying conserved moieties, 
like conserved total concentration of a protein, allows the 
reduction of the ODE model size, which leads to increased 
performance. In order to address these model pre-processing  
needs our toolkit includes scripts in MATLAB®/GNU Octave 
that use the stoichiometric matrix of the reaction network  
as an input to determine the thermodynamic constraints as 

4  https://​sbtab.​net/
5  https://​human​brain​proje​ct.​github.​io/​hbp-​sp6-​guide​book/​online_​
useca​ses/​subce​llular_​level/​subce​llular_​app/​subce​llular_​app.​html
6  https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/​master/​SBtab.​html
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described in Vlad and Ross (1994), and conservation laws 
(Tables 1 and 4). These diagnostic tools output any identified  
constraints that, if needed, are to be implemented manually  
before the parameter estimation step. It should be noted that  
such constraints need to be re-examined after each addition  
of new reactions as the structure of the model might change 
and make previously true constraints invalid. This is true for  
all major changes to the model.

MATLAB® Tools

The bulk of our workflow is developed in MATLAB® as it 
provides an easy-to-use biochemical modeling application 
with a graphical user interface called SimBiology® along 
with a wide range of toolboxes for mathematical analysis. 
The workflow is divided into import and analysis scripts. We 
have written software for three types of analysis: diagnostics 
tools which are used to run the model and visualize how the 
model fits the data, parameter estimation, and global sensi-
tivity analysis. To ensure an easy and user-friendly usage, 
all operations are controlled by a single settings file where 
all specification options needing user input are represented 
as modifiable variables. An example settings file of the use 
case model along with instructive comments can be found 
in the model GitHub repository.7 Only this settings file and 
the model in the SBtab format are needed as input from 
the user to run all our MATLAB® scripts. After running 
the analysis, the inputs and the data points along with the 
simulated model fits are plotted and the results are stored 
inside the model folder. This process is entirely automatic, 
but the user can always explore and retrieve more data from 
the created files. For example, after running the parameter 
estimation analysis, a plot is generated with the original 
parameter set, the prior bounds, and optimized parameters, 
but the procedure for retrieving the optimized parameters 
and using them to create a new SBtab or a new settings 
file for subsequent runs is not yet automated. For additional 
explanations of these functionalities please see our GitHub 
repository documentation.8

Import from SBtab to MATLAB®

The import tools we have developed generate all the model 
and data files that are needed to run any of the analysis 
options in MATLAB® that can be found in Table 1. These 
files are saved in subfolders of the main model that are cre-
ated at run time. The files include a version of the model 
without any inputs in the MATLAB® (.mat) and SimBiol-
ogy® (.sbproj) format, as well as several versions of the 

model corresponding to each experiment specified in the 
SBtab. The latter includes three versions of the model that 
are used for different purposes: equilibration, default and 
detailed. Equilibration does not have any inputs and is used 
to equilibrate the species, whereas the default and detailed 
versions are used for simulation of experiments. They have 
all the relevant inputs and outputs that are going to be meas-
ured when simulating an experiment, and only differ in the 
step size of the simulations (both of which can be chosen 
in the settings file with detailed usually being a smaller 
step size). Additionally, while not needed for the rest of our 
MATLAB® workflow, these import scripts also generate .tsv 
files corresponding to the individual SBtab sheets (useful for 
tracking changes in GitHub), and an SBML file using MAT-
LAB® built-in functions (level 2 version 4 encoding as of 
MATLAB® 2021a). The latter can be used by any simulator 
that can import SBML files but requires further processing 
for which an R script can be found in a separate repository.9 
Note that we have another converter from SBtab into SBML 
that runs in R instead of MATLAB®. We also generate other 
helper files that assist in the correct simulation of the MAT-
LAB® model. A description of these and a more detailed 
explanation of the organization and of the created files and 
folders can be found in our documentation.10

Parameter Estimation

MATLAB® offers a wide range of tools for function opti-
mization. We have developed scripts that transform our 
parameter estimation problem into an objective function that 
can be optimized by various MATLAB® built-in optimizer 
functions. At the time of writing, these include “fmincon”, 
simulated annealing (“simulannealbnd”), pattern search 
(“patternsearch”), genetic algorithm (“ga”), particle swarm 
(“particleswarm”), and surrogate optimization algorithms 
(“surrogateopt”), for which MATLAB® provides thorough 
documentation. The code is built with flexibility in mind, so 
introduction of other MATLAB® built-in or custom optimi-
zation algorithms should be straightforward. The optimiz-
ers used are the ones chosen in the settings file. Our code 
supports the use and comparison of multiple optimizers at 
the same time, and multiple uses of the same optimization 
algorithm are also supported. This is particularly useful for 
using optimizers that are inherently single-threaded, e.g. 
the simulated annealing algorithm, since multiple simu-
lated annealing optimizations can be performed in multiple 
computing cores. After performing the optimization, a file 
containing the results is produced from which the optimized 
outputs can be retrieved and used to manually update the 

8  https://​subce​llular-​workf​low.​readt​hedocs.​io/

9  https://​github.​com/a-​kramer/​simbi​ology-​sbml-​fix
10  https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/​master/​Files.​html

7  https://​github.​com/​jpgsa​ntos/​Model_​Nair_​2016/​tree/1.​0/​Matlab/​
Setti​ngs
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SBtab or SimBiology® model. One of the equations used 
to calculate the score for how well the model outputs fit 
the experimental data can be found below (Eq. 1). We have 
incorporated a few other ways of calculating the score, and 
custom scoring methods could also be added depending on 
the need (see documentation).

Here, Y  represents the data that is going to be used to  
constrain the model, sourced either from experiments or  
previous models, and y represents the outputs of the model 
mapped to the data resulting of the simulation of the model 
under parameterization � . The allowed mismatch � between the 
two simulation results is analogous to the standard deviation 
of a Gaussian noise model in data fitting. The resulting F is 
the objective function for optimization. The error is summed 
over n , the number of points in each experimental output, m , 
the number of experimental outputs in an experiment (which  
is four in our use case, see Fig. 3B), and l , the number of 
experiments (E0-E9 in our use case) (see Fig. 2C).

Parameter estimation is generally based on experimental  
data. In this use case, however, we used simulated data of the 
concentrations of several species using the original version of 
the model in SimBiology® (the additional use cases provided  
in the Supplementary Materials use actual experimental data). 
After modifying the model, we minimized the difference 
between the old behavior and the updated model’s response 
through optimization. The simulation results from the old model 
can be considered as analogous to experimental data in a normal 
parameter estimation setting. Here, we merely aim to make an 
updated model agree with its earlier iteration, which itself was 
adjusted based on experimental data. When changing a module 
in a model it is crucial to protect the unchanged parts, which is 
why we performed parameter estimation using the key species 
that intersect the calcium and dopamine cascades, namely PP1, 
calmodulin and DARPP-32 (Fig. 2 and Fig. 3B). In this use 
case, the Particle Swarm Algorithm was chosen to perform the  
optimization, but all algorithms were capable of reasonable  
optimizations. The parameters obtained were then used to  
generate all the figures where optimized parameters are referred 
to. The choice of total amount of reactions, used to replace the 
original function that represented the CaMKII phosphorylation, 
were constrained by the optimization. We considered the outputs 
that we were measuring (Fig. 3B) and added reactions until the 
addition of more did not meaningfully improve the fits.

Validation in MATLAB®

We developed diagnostics scripts that can be used to repro-
duce the various experiments defined in SBtab. These scripts 
generate plots of the experimental inputs to the model 

(1)F(�;Y , �) =
∑l

k=1

∑m

j=1

1

n

∑n

i=1

(
Yijk − yijk(�)

�ijk

)2

(adapted for Fig. 3A), the provided data and the outputs 
measured from model simulation (adapted for Fig. 3B) given 
some choice of parameters, and plots of the scores calcu-
lated for the differences between the various experimental 
outputs and simulated model outputs. We used these tools 
to confirm that our parameter estimation resulted in a good 
fit for most of the species and the updated model was able 
to closely reproduce the results seen with the original model 
(Fig. 3C). In our repository we provide the updated model 
in SBtab (.xlxs and.tsv), SBML (.xml) and MATLAB® 
SimBiology® (.sbproj and.mat). In addition to the general-
purpose tools, we also wrote a use case-specific script, which 
uses data from the original model and reproduces the time-
dependency of the substrate phosphorylation given different 
delays of the start of calcium and dopamine stimuli, using 
the optimized model (Fig. 3C, D).

Global Sensitivity Analysis

In many cases parameter estimation of biochemical pathway 
models does not result in one unique value for a parameter. 
Structural and practical unidentifiability (Raue et al., 2009) 
results in a large set of parameter values that all correspond  
to solutions with a good fit to the data, i.e., there is a large 
uncertainty in the parameter estimates (Eriksson et al., 2019). 
When this is the case, local sensitivity analysis is not so 
informative, since this can be different depending on which 
point in parameter space it is performed at. A global sensitivity  
analysis (GSA), on the other hand, covers a larger range of  
the parameter space. Several methods for GSA exist (Zi,  
2011) but we have focused on a method by Sobol and Saltelli 
(Saltelli, 2002, 2004; Sobol, 2001) as implemented by Halnes 
et al. (2009) which is based on the decomposition of variances 
(Saltelli, 2004). Single parameters or subsets of parameters 
that have a large effect on the variance of the output get a high 
sensitivity score in this method. Intuitively, this method can 
be understood as varying all parameters but one (or a small 
subset) at the same time within a multivariate distribution to 
determine what effect this has on the output variance. If there 
is a large reduction in the variance, the parameter that was kept 
fixed is important for this output (Saltelli, 2004).

Let the vector Θ denote the parameters of the model, and 
y = f(Θ) be a scalar output from the model. In the sensitivity 
analysis Θ are stochastic variables, sampled from a multi-
variate distribution, whose variation gives a corresponding 
uncertainty of the output, quantified by the variance V(Y). 
Note that in the setting and interpretations described here, 
the different Θi are assumed to be independent from each 
other (for cases with dependent Θi see e.g. (Saltelli, 2004) 
and (Eriksson et al., 2019)). We consider two types of sen-
sitivity indices: the first order effects Si and the total order 
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effects STi. The first order effects describe how the uncer-
tainty in the output depends on the parameter Θi alone, i.e., 
how much of the variance of the output can be explained by 
the parameter Θi by itself. As an example, Si = 0.1 means that 
10% of the output variance can be explained by Θi alone. 
The total order effects give an indication on the interactive 
effect the parameter Θi has with the rest of the parameters on 
the output. Parameters are said to interact when their effect 
on the output cannot be expressed as a sum of their single 
effects on the output.

The first order sensitivity index of the parameter Θi is 
defined as11 

where Θ−i corresponds to all elements of Θ except Θi The 
total order sensitivity index of the parameter Θi is defined as 

If there is a large difference between Si and STi, this is an 
indication that this parameter takes part in interactions. For 
a detailed description see chapter 5 of Saltelli (2004).

(2)Si =
VΘi

[
EΘ−i

[
Y|Θi

]]

V[Y]
,

∑
i
Si ≤ 1 ,

(3)STi = 1 −
VΘ−i

[
EΘi

[
Y|Θ−i

]]

V[Y]
,

∑
i
STi ≥ 1 ,

The optimization described earlier takes place on log 
transformed space (log10(Θ)). For the sensitivity analysis 
we perform the sampling on a lognormal distribution, mean-
ing that log10(Θ) ~ N(μ, σ). Below we use μ = log10(Θ*) and 
σ = 0.1, where Θ* correspond to the optimal values received 
from the optimization.12 We illustrate this method using only 
the six parameters corresponding to the model module that 
has been replaced (Fig. 2) and the results can be seen in 
Fig. 4 Only four of the parameters (k216-k219/k222-k225; 
Fig. 4) seem to be important for the output within the inves-
tigated parameter region, with the parameter k219/k225 
dominating in experiments E3 to E9. There also seem to 
be some interactive effects between the parameters since 
STi is larger than Si, especially for the first four experiments 
(Fig. 4A, B).

Compatibility and Validation with Other 
Simulation Environments

Conversion to SBML and Simulations in COPASI

COPASI is one of the more commonly used modeling  
environments in systems biology and it can read SBML files 
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Fig. 4   Stacked bar graphs of the sensitivity indices. The first order, 
Si, and total order, STi, sensitivities indices of the six new parameters 
(k216-k221 and k222-k227; see Fig. 2) for all ten experiments (E0-
E9) are shown (panel A and B, respectively). The sensitivities indices 
are defined in the main text and were calculated based on the scores 
used in the optimization for each experiment respectively. The param-
eters, Θ, were sampled independently from a multivariate lognormal 
distribution with log10(Θ) ~ N(μ, σ), using μ = log10(Θ*) and σ = 0.1, 

where Θ* correspond to the optimal values received from the opti-
mization. A sample size of N = 10,000 was used (corresponding to 
80,000 reshuffled samples used in the calculations (Saltelli, 2004)). 
The analysis took 3  h 30  min using an intel core i9-10980XE. The 
sample size was chosen big enough to make the differences in the 
sensitivity scores stemming from different seeds18 small for the pur-
poses of our conclusions

11  Where $$V$$ is the variance operator and $$E$$ (conditional) 
expected value. 12  Other distributions can be used as well.
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(Hoops et al., 2006). Our first validation step is to use the SBML 
model retrieved from the SBtab model in COPASI. The online 
conversion tool from SBtab to SBML did not work for our specific 
use case; we wrote a new conversion function that can be found  
in a separate GitHub repository.13 It interprets the biological 
model and converts it into plain ODEs in VFGEN’s custom  
format (.vf), the VFGEN file can then be used to create output 
in various languages14 (Weckesser, 2008). The conversion script 
(written in R) converts the SBtab saved as a series of .tsv files or 
one .ods file into a VFGEN vector field file and as by-products also 
the SBML and a MOD file (see chapter Conversion to a MOD 
file and simulations in NEURON). To create an SBML model,  
libsbml must be installed with R bindings. The SBML file can be 
imported directly into COPASI.

Another way to convert the model into SBML is through 
a single MATLAB® SimBiology® function. The models, 
however, are created with long ID’s that carry no biological 
information (the IDs are similar to hexadecimal hashes) for 
all model components, the units are not properly recognized, 

and some units may just be incorrectly defined in the output. 
We, therefore, created a script in R that asks for default units 
for the model and replaces the ones in SimBiology's SBML 
file. It fixes most issues (units, IDs, and the time variable in 
assignments) allowing the model to be properly imported 
in COPASI.15 To illustrate that the SBML-converted model 
imported into COPASI produces the same results as in Sim-
Biology®, we used a simplified calcium input corresponding 
to one double exponential spike analogous to the dopamine 
transient and simulated the model with deterministic solv-
ers in both COPASI (LSODA solver) and MATLAB® Sim-
Biology® under similar conditions. Both simulation envi-
ronments produced almost overlapping results (Fig. 5B, C) 
validating the converted model in the SBML format.

Simulations in STEPS

The web-based subcellular simulation setup application16  
allows importing, combining and simulating models 
expressed in the BioNetGen language (BNGL; Harris et al., 
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Fig. 5   Simulations in identical conditions in both MATLAB® Sim-
Biology® and COPASI yielded almost identical results. A  Inputs 
used in both simulators. The calcium input is kept constant at 4 s for 
all simulations and dopamine input time is varied from time 0 to 8 s 
at every one second. The difference from the previous simulations is 
in the calcium input which, for the sake of simplicity, is represented 

by a double exponential spike. B  and C  show substrate phospho-
rylation curves analogous to Fig.  3, the red line represents results 
obtained in MATLAB® and blue line results from simulations in 
COPASI. A single 30 s simulation took around 10 s of compute time 
within a 1 fl spine volume (Intel® Core™ i7-8750H)

13  Conversion function available in https://​github.​com/a-​kramer/​
SBtab​VFGEN and instructions in https://​github.​com/a-​kramer/​ 
SBtab​VFGEN/​blob/​master/​README.​md
14  Including, but not limited to: Python (NumPy), C (GNU Scientific 
Library (GSL), CVODE), GNU Octave (LSODE), R (deSolve), and 
core MATLAB® (e.g. for ode15s).

15  It should be noted that the units may not show up correctly in 
COPASI (depending on the version) even if they are correct in the 
SBML file itself.
16  The online application for subcellular simulations can be found in 
https://​subce​llular.​human​brain​proje​ct.​eu/​model/​simul​ations with the doc-
umentation in https://​human​brain​proje​ct.​github.​io/​hbp-​sp6-​guide​book/​
online_​useca​ses/​subce​llular_​level/​subce​llular_​app/​subce​llular_​app.​html
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2016). It supports the import of SBML (level 2 version 4) 
models and their transformation to rule-based BNGL form 
using Atomizer (Tapia & Faeder, 2013). The BioNetGen file 
format was extended to provide diffusion parameters, links 
to tetrahedral meshes describing the geometry of model  
compartments, as well as the additional parameters for solvers  
and stimulation protocols required for spatially distributed 
models. The subcellular simulation setup application is  
integrated with the network free solver NFsim (Sneddon  
et al., 2011) and it supports simulations of spatially distributed 
systems using STEPS (Hepburn et al., 2012). STEPS provides 
spatial stochastic and deterministic solvers for simulations of 
reactions and diffusion on tetrahedral meshes. Furthermore, 
the subcellular simulation setup application provides a number  
of facilities for the visualization of models’ geometries and the  
results of simulations.

To demonstrate the compatibility of the subcellular simu-
lation setup application with the workflow for model devel-
opment described above, we imported the SBML version of 
the use case model to the setup application and simulated it 
with the STEPS TetOpSplit solver. We have used a simple 
two-compartmental spine model with a tetrahedral compart-
ment corresponding to the spine compartment of the use 
case model. There is also a PSD compartment on one of the 

faces. The results of the model simulations with a STEPS 
solver were qualitatively similar to the results obtained with 
the deterministic model simulated in MATLAB®. Examples 
of simulated time courses for molecule concentrations as 
shown in Fig. 3 in comparison with corresponding MAT-
LAB® curves are shown in Fig. 6.

Conversion to a MOD File and Simulations 
in NEURON

As we suggested before, conversion between different mod-
eling frameworks and formats facilitates collaboration. But 
conversion is made harder by the differences in the capa-
bilities of different modeling packages. A model, such as 
the one above, could be useful for multiscale simulations 
investigating how neuronal network activity shapes synaptic 
plasticity. Many cellular level models are built and simulated 
in the NEURON environment which also supports simplified 
reaction–diffusion systems. It is useful to be able to integrate 
a subcellular level model into a cellular level model specified 
using NEURON. Models in NEURON are built by adding 
features with MOD files that are written in the NMODL pro-
gramming language. A schematic illustration of our use case 
set up in NEURON is depicted in Fig. 7. Conversion from 
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Fig. 6   Validation of the model by stochastic STEPS simulation of 
substrate phosphorylation in a typical D1 MSN spine. A Normal-
ized time course of substrate phosphorylation in the updated model 
run in MATLAB® in comparison with averaged (n = 50) stochas-
tic STEPS simulations (red–calcium and dopamine; blue–calcium 
only) for a typical size of D1 MSN synaptic spine (V = 0.02μm3). 
The same stimulation protocol as in Fig. 3 was used. Colored areas 
around averaged STEPS curves correspond to a range between 10 and 
90% confidence intervals. One simulation required less than 1 min of 
compute time for 30 s of simulated reactions within a 0.02 µl spine 

(~6000 molecules). B Normalized area under the curve of substrate 
phosphorylation with different calcium and dopamine input inter-
vals simulated for the MATLAB® version of the updated model 
(with MATLAB® ode15s solver, black line) and averaged stochastic 
STEPS simulations (n = 30) in the application version of the model. 
MATLAB® statistical bar plots were added to the figure to charac-
terize variability of synaptic plasticity between subsequent induction 
protocol applications to the same synaptic spine. Note that despite 
high variability of synaptic plasticity time courses averaged plastic-
ity dynamics were in a good agreement with the ODE-based solution
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SBML to MOD is already possible via NeuroML (instruc-
tions can be found in Lindroos et al., 2018); however, it is 
not an automated or user-friendly approach. We wrote an 
R script, which reads an SBtab model17 and writes a MOD 
file, as well as VFGEN and an SBML18 file. The script can 
optionally perform analysis of conservation laws and output 
a model where some of the differential equations for the 
state variables are substituted by algebraic equations aris-
ing from the conservation laws, thereby reducing the num-
ber of differential equations to be solved. Instructions on 
how to use the SBtab to VFGEN/MOD/SBML converter 
in R can be found in a separate GitHub repository19. The 
subcellular model in SBtab form is not aware of its cou-
pling to a larger model of the cell and the user must edit the 

resulting MOD file manually to use it within a larger scope 
and assign a role to this model component. This typically 
means assigning input to the model and using the output in 
some way. An example is given below with our use case. 
Another point to stress is that the script converts the time 
unit of the parameters to milliseconds, NEURON’s default 
unit for time, but does not change the concentration units. 
Thus, when coupling a biochemical cascade to other quanti-
ties in the neuronal model, care must be taken to rescale the 
coupled variables so that they match the units in the rest of 
the neuronal model. We also illustrate that with one of the 
inputs in the use case.

We validate the biochemical cascade model and our  
conversion tools in NEURON by qualitatively reproducing  
the results obtained in MATLAB® SimBiology®. Our goal 
is to show that the cascade model can be integrated into a 
single neuron model and bridge spatial and temporal scales 
of system behavior by linking the output of the cascade to 
changes in the synaptic properties and ultimately to the  
electrical behavior of the neuron model. Therefore, the  
biochemical model in the MOD format was incorporated 
into a single biophysically detailed and compartmentalized 
D1 MSN model from Lindroos et al. (2018). To integrate 

Fig. 7   Inserting the biochemical signal transduction cascade into an 
electrical model in NEURON. A A schematic of the effects of the two 
inputs of the model, dopamine and calcium, on a generic substrate, 
which in this case is taken to represent the fraction of phosphoryl-
ated AMPA receptors with higher conductance levels. B  Examples 
of the two inputs, calcium and dopamine. The calcium signal at the 
synapse is a result of ten repeats of a synaptic stimulus paired with 
three somatic spikes evoked with a current clamp (Yagishita et  al., 
2014, Fig. 1). C The simulations in MATLAB and NEURON give the 
same results when using the same calcium input from the NEURON 

simulation in MATLAB. This simulation in NEURON requires 4  h 
on 8 compute nodes on an Intel i7-4700MQ CPU @ 2.40 GHz. and 
less than one second in MATLAB® using an intel core i9-10980XE 
D, E Predicted EPSP (Excitatory PostSynaptic Potential) following a 
single synaptic input in the relevant spine and in the soma. The read-
out of the substrate phosphorylation level was done at 7  s after the 
start of the dopamine input. The relative timings of dopamine and 
calcium indicated in the figure legends are used, and the results are 
compared to the experimental setting without the dopamine input

17  A file given either as a series of tab separated text files or one open 
document spreadsheet file. Some content of the SBtab model is man-
datory, some optional.
18  libSBML must installed with R bindings: i.e. SBML output is 
optional.
19  Conversion function available in https://​github.​com/a-​kramer/​
SBtab​VFGEN and instructions in https://​github.​com/a-​kramer/​
SBtab​VFGEN/​blob/​master/​README.​md
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the MOD file into single cell models a few user-specific 
modifications have to be made to interface this model with 
the larger electrochemical system. First, the input is modified 
so that the calcium burst is represented by calcium influx 
from the cell’s calcium channels and adjusted so that the 
overall calcium level would be similar to the input used  
in MATLAB® simulations. The calcium in the neuron 
model is expressed in millimolar units and when coupling 
it to the biochemical cascade we rescale it to nanomolar 
units (the units used in the biochemical cascade model). 
The dopamine transient is represented by an assignment 
expression (available in the Expression table of the SBtab) 
that creates its double exponential form (this can be used 
in other languages as well). For an adequate comparison 
of the substrate phosphorylation curve (shown in Fig. 3D) 
obtained from the NEURON and MATLAB simulations it 
is necessary to provide the same input in the simulations. 
Hence, in the comparison in Fig. 7C we used the calcium  
input recorded from the NEURON simulation in the  
MATLAB simulation.

In the D1 MSNs this biochemical signaling cascade 
causes synaptic strengthening via several mechanisms, 
one of which is the phosphorylation of AMPA receptors. 
As mentioned above, the model instead includes a generic 
substrate whose level of phosphorylation is the output of 
the cascade. For the purpose of illustrating the workflow 
with a proof-of-concept example, we have here linked 
the fraction of phosphorylated substrate to the AMPA 
receptor conductance (the conductance is scaled by 1 + f 
(where f: fraction of the phosphorylated substrate), i.e. 
when there is very little substrate phosphorylation, very 
little change in the AMPA conductance is elicited, and 
vice versa. Modifying the model to include the reactions 
for AMPA receptor phosphorylation will be made in a 
future study.

Discussion

In order to address the growing need for interoperabil-
ity in biochemical pathway modeling within the neuro-
science field, we have developed a workflow that can be 
used to refine models in all phases of development, keep-
ing in mind the fact that many of the users (including us) 
are scientists and not professional programmers. For the 
model and data storage we have chosen the SBtab format 
which can be easily read and modified by both model-
ers and experimentalists, and can be converted into other 
formats, e.g. SBML, MATLAB® SimBiology® or MOD. 
Our workflow is modularized into different steps allowing 
the use of each step depending on the need and ensuring 
interoperability with other tools, such as those described 
in a similar endeavor named FindSim (Viswan et  al., 

2018). There are distinct advantages to the workflow, by 
enforcing a common standard for information exchange, 
it inherently makes the models more generalizable and 
reduces the likelihood that simulation results are artifacts 
of a particular simulator, and nonetheless, it gives users 
the flexibility to leverage the strengths of each different 
simulation environment and provides distinct stages of 
processing that would not be possible in any single simu-
lator. The presented workflow aims to use software com-
ponents that are free (apart from MATLAB®) and solve 
incremental sub-tasks within the workflow (with open 
standard intermediate files) to make the workflow easy to 
branch into scenarios we have not previously considered. 
It is also possible to circumvent MATLAB® entirely, if 
desired (e.g. conversion from SBtab to a MOD file that is 
then used by NEURON).

When deciding which software packages to use we find 
that an important aspect that must be considered is the cost 
and licensing. For some researchers, price may be a relevant 
concern, in other cases a researcher may have to undergo 
considerable overhead to make their institution/lab purchase 
a license and possibly operate a license server. Other than 
MATLAB®, we made the choice to disregard commercial 
products, keeping in line with the field’s trend towards open 
source platforms. We will also expand our tools to support 
the use of models with more complex geometries, with sev-
eral compartments (which is also an SBML feature), and 
tetrahedral meshes that can be used with STEPS in the sub-
cellular simulation setup application. Such advanced geom-
etries can in principle be defined within SBtab tables. When 
it comes to multiscale simulations, there is the possibility 
of using the Reaction–Diffusion module (RXD) in NEU-
RON. Currently, however, it does not support the import of 
SBML as it lacks the concept of spatially extended models, 
but SBML support might be added to the future versions of 
RXD (McDougal et al., 2013).

Another interesting consideration is whether the user 
wants to define any model directly using rules (as in rule-
based modeling). This would make the use of Atomizer 
unnecessary. The transformation from rules to classical 
reactions seems easier than the reverse, so even if a rule-
based simulation is not necessary or too slow, a rule-based 
description may be shorter and more fundamental in terms 
of model translation.

When it comes to model analysis, we have here imple-
mented a functionality for global sensitivity analysis. This 
is a thorough, but computationally demanding approach and 
the analysis usually needs to be run in parallel on a high 
performance computing environment. There are also faster 
but more approximate screening methods that could have 
been used (Saltelli, 2004). In the future we also intend to 
incorporate uncertainty quantification into the workflow 
(Eriksson et al., 2019).
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While the current workflow is standalone, there are 
potential alignments to other systems that could assist 
adoption by the community. For example, other systems 
such as Galaxy are more general in scope focusing on 
bioinformatics and are aimed at naive users (Afgan et al., 
2016). The current workflow focuses on neuroscience and 
assumes experienced users. While the current version 
requires user installation of dependencies, in the future 
Dockerised versions could potentially help ease installa-
tion requirements. Similarly, the Common Workflow Lan-
guage (Amstutz et al., 2016) is another recent development 
that could facilitate the exchange of workflow information.

In summary, we have here presented a workflow for  
biochemical pathway modeling and provided a concrete  
use case of reward dependent synaptic plasticity, with two 
additional examples in the supplementary material and the 
workflow repository. Multiscale models are crucial when  
trying to understand the brain using modeling and simulations,  
e.g. how network activity shapes synaptic plasticity or how 
neuromodulation might affect cellular excitability on sub 
second timescales. Structured approaches for bridging from 
detailed cellular level neuron models, to more simplified or 
abstract cellular-, network-, and even brain region models are 
developing (Amsalem et al., 2020; Carlu et al., 2020; Schmutz 
et al., 2020). In the currently illustrated workflow, we add to 
these efforts by bridging from the subcellular scale to the  
cellular level scale. We updated parts of the use case model to 
accomplish a model with only bimolecular reactions that are 
easier to represent in standards such as SBML. The idea is that 
users can look at our model as a concrete test case, rerun the 
workflow (or parts thereof) and then replace the current exam-
ple model (Fujita et al., 2010, Hass et al., 2019) with their own 
models. In this particular use case, we specifically focused on 
creating scripts to achieve interoperability between human read-
able model specification standards and machine- readable stand-
ards, and we also wanted to facilitate how a subcellular signaling 
model could be implemented in different solvers with different 
strengths, in this case both SimBiology® in MATLAB®, as well 
as STEPS and NEURON. NEURON is currently the most used 
simulation software for detailed cellular level neuron models, 
and STEPS can, as said, simulate signaling cascades in arbitrary 
dendritic morphologies both in a deterministic and stochastic 
manner. MATLAB® on the other hand has many functions, for 
example for parameter estimation and we included an imple-
mentation for global sensitivity analysis. Several other software 
is, however, used within the computational neuroscience com-
munity for cellular or subcellular model simulations (Akar et al., 
2019; Oliveira et al., 2010; Ray & Bhalla, 2008; Resasco et al., 
2012). To successively make as many of those tools interoper-
able with standards for both model and data specification, vari-
ous parameter estimation and model analysis methods, visualiza-
tion software, etc., will further facilitate the creation of FAIR 
multiscale modeling pipelines in the future.

Information Sharing Statement

Source code of the Subcellular Workflow is available 
at https://​github.​com/​jpgsa​ntos/​Subce​llular_​workf​low/​
tree/1.0 and licensed under GNU General Public License 
v3.0., documentation of the Subcellular Workflow is avail-
able at https://​subce​llular-​workf​low.​readt​hedocs.​io/​en/1.​0/. 
We stored the files relevant to each of the models in inde-
pendent repositories, https://​github.​com/​jpgsa​ntos/​Model_​
Nair_​2016/​relea​ses/​tag/1.0 for the main model discussed in 
this paper, https://​github.​com/​jpgsa​ntos/​Model_​Viswan_​
2018/​relea​ses/​tag/1.0 for the model discussed in the sup-
plementary material, and https://​github.​com/​jpgsa​ntos/​
Model_​Fujita_​2010/​relea​ses/​tag/1.0 for the model men-
tioned in the supplementary material but mostly defined 
in the GitHub. The models are stored in the SBtab format 
(Lubitz et al., 2016). Model reduction, parameter estimation 
and global sensitivity analysis tools are written in MAT-
LAB® (RRID:SCR_001622) and require the SimBiol-
ogy® toolbox. Conversion script to VFGEN (Weckesser, 
2008), MOD and SBML (RRID:SCR_007422) is written 
in R (RRID:SCR_001905). Conversion to SBML requires 
the use of libSBML (RRID:SCR_014134). Validations are 
run in COPASI (RRID:SCR_014260; Hoops et al., 2006), 
NEURON (RRID:SCR_005393; Hines & Carnevale, 
1997) and with the subcellular simulation setup application  
(RRID:SCR_018790; available at https://​subce​llular. 
​human​brain​proje​ct.​eu/​model/​simul​ations) that uses a spatial 
solver provided by STEPS (RRID:SCR_008742; Hepburn et al.,  
2012) and network-free solver NFsim (available at http://​
micha​elsne​ddon.​net/​nfsim/). The medium spiny neuron 
model (Lindroos et al., 2018) used in NEURON simulations 
is available in ModelDB database (RRID:SCR_007271) 
with access code 237,653. The FindSim use case model is 
available in https://​github.​com/​Bhall​aLab/​FindS​im (Viswan 
et al., 2018).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12021-​021-​09546-3.
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