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Abstract
Microscopic images of neuronal cells provide essential structural information about the key constituents of the brain
and form the basis of many neuroscientific studies. Computational analyses of the morphological properties of the
captured neurons require first converting the structural information into digital tree-like reconstructions. Many dedicated
computational methods and corresponding software tools have been and are continuously being developed with the aim to
automate this step while achieving human-comparable reconstruction accuracy. This pursuit is hampered by the immense
diversity and intricacy of neuronal morphologies as well as the often low quality and ambiguity of the images. Here
we present a novel method we developed in an effort to improve the robustness of digital reconstruction against these
complicating factors. The method is based on probabilistic filtering by sequential Monte Carlo estimation and uses prediction
and update models designed specifically for tracing neuronal branches in microscopic image stacks. Moreover, it uses
multiple probabilistic traces to arrive at a more robust, ensemble reconstruction. The proposed method was evaluated on
fluorescence microscopy image stacks of single neurons and dense neuronal networks with expert manual annotations
serving as the gold standard, as well as on synthetic images with known ground truth. The results indicate that our method
performs well under varying experimental conditions and compares favorably to state-of-the-art alternative methods.

Keywords Neuron reconstruction · Bayesian filtering · Sequential Monte Carlo estimation · Particle filtering ·
Fluorescence microscopy

Introduction

The brain is regarded as one of the most complex and enig-
matic biological structures. Composed of an intricate net-
work of tree-shaped neuronal cells (Ascoli 2015), together
forming a powerful information processing unit, it performs
a myriad of functions that are essential to living organisms
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(Kandel et al. 2012). Obtaining a blue print of the architec-
ture of this network, including the morphologies and inter-
connectivities of the neurons in various subunits, helps to
understand how the brain works (Ascoli 2002; Donohue and
Ascoli 2008; Cuntz et al. 2010), including how neurodegen-
erative disease processes alter its function. A key instrument
in this endeavor is microscopic imaging, as it allows detailed
visualization of neuronal cells in isolation and in tissue,
thus providing the means to study their structural properties
quantitatively (Senft 2011).

Quantitative measurement and statistical analysis of
neuronal cell and network properties from microscopic data
rely on the ability to obtain accurate digital reconstructions
of the branching structures (Halavi et al. 2012) in the form
of a directional tree of connected nodes (Ascoli et al. 2007).
The ever increasing amount of available image data calls
for automated computational methods and software tools for
this purpose, as manual delineation of neurons is extremely
cumbersome even in single image stacks, and is downright
infeasible in processing large numbers of images (Svoboda
2011; Senft 2011). Automating neuron reconstruction
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requires solving fundamental computer vision problems
such as detecting and segmenting tree-like image structures
(Meijering 2010; Donohue and Ascoli 2011; Acciai et al.
2016). This is complicated by the large diversity of neuron
types, imperfections in cell staining, optical distortions,
inevitable image noise, and other causes of ambiguity in
the image data. Consequently, with the current state-of-the-
art, manual proof-editing of automatically obtained digital
reconstructions is often necessary (Peng et al. 2011b).
Recent international initiatives such as the DIADEM chal-
lenge (Gillette et al. 2011) and the BigNeuron project (Peng
et al. 2015a, b) have catalyzed research in automated neu-
ron reconstruction but have also clearly revealed that further
improvement is still very much needed before computers
can fully replace manual labor in performing this task.

With this paper we aim to contribute to the develop-
ments in the field by proposing a novel fully automated neu-
ron reconstruction method based on probabilistic filtering
techniques. Starting from seed points that have a high prob-
ability of being centered at neuronal branches, our method
recursively traces these branches by sequential Monte Carlo
estimation, using state transition and measurement mod-
els designed specifically for this purpose. This results in
a series of possibly overlapping but probabilistically inde-
pendent estimates of the branches, which are subsequently
combined into a refined estimate of the actual branch cen-
terlines using mean-shifting. We presented early versions of
the method at conferences (Radojević et al. 2015; Radojević
and Meijering 2017b) and donated one implementation of
it (named Advantra) for inclusion in the BigNeuron bench-
marking study (Peng et al. 2015a, b). Since then we have
improved the method and its software implementation and
have significantly extended its experimental evaluation.
Here we provide a detailed description of the method, its
implementation, and the experimental results, and show that
it performs favorably compared to several state-of-the-art
neuron reconstruction methods from the BigNeuron project
as well as an alternative probabilistic method (Radojević
and Meijering 2017a). The source code of our software
implementation will be released along with this paper.

RelatedWork

Early methods and tools for digital neuron reconstruction
were semi-automatic and required extensive manual inter-
vention for their initialization and operation or the curation
of faulty results (Glaser and Van der Loos 1965; Capowski
and Sedivec 1981; Glaser and Glaser 1990; Masseroli et al.
1993). With the increasing capabilities of computers it
became possible to store and process 3D images of neu-
rons (Cohen et al. 1994; Belichenko and Dahlström 1995).
More recently, the state-of-the-art in the field has moved

towards full automation of neuron reconstruction, and
various freely available software tools are now available for
this purpose (Peng et al. 2010; Longair et al. 2011; Peng
et al. 2014a, b), though the need for flexible editing tools has
remained unabated (Luisi et al. 2011; Dercksen et al. 2014).

Neuron reconstruction methods typically have a modular
design where each module or stage of the processing
pipeline deals with different structural objects. Depending
on the subproblems being solved, modules can operate
independently, or work together for example to combine
local and global processing, possibly requiring multiple
iterations. Several subproblems that can be identified in
the literature include image prefiltering and segmentation
(Zhou et al. 2015; Türetken et al. 2011; Sironi et al. 2016;
Mukherjee and Acton 2013), soma (cell body) detection and
segmentation (Quan et al. 2013), landmark points extraction
(Al-Kofahi et al. 2008; Wang et al. 2011; Choromanska
et al. 2012; Baboiu and Hamarneh 2012; Su et al. 2012;
Radojević et al. 2016), neuron arbor tracing (Zhao et al.
2011; Liu et al. 2016; Leandro et al. 2009; Radojević and
Meijering 2017a; Xiao and Peng 2013), and assembling the
final tree-like graph structure (Zhou et al. 2016; Türetken
et al. 2011; Yuan et al. 2009). In the remainder of this
section we briefly review techniques for solving each of
these subproblems. Since our primary goal in this paper is
to present a new method, the review is not meant to be
exhaustive, but to put our method into context.

The pool of neuron reconstruction methods is very
diverse (Meijering 2010; Donohue and Ascoli 2011; Acciai
et al. 2016; Peng et al. 2015a) but there are also many
commonalities. For example, image prefiltering to enhance
tubular structures is typically carried out using Hessian or
Jacobian based processing (Xiong et al. 2006; Al-Kofahi
et al. 2008; Yuan et al. 2009; Wang et al. 2011). And to cope
with uneven staining, adaptive thresholding (Zhou et al.
2015), perceptual grouping (Narayanaswamy et al. 2011),
and vector field convolution (Mukherjee et al. 2015) have
been used. For image segmentation (separating foreground
from background), a wide variety of methods has been
proposed, including the use of feature-based classifiers
(Türetken et al. 2011; Chen et al. 2015; Jiménez et al.
2015), tubularity based supervised regression (Sironi et al.
2016), and even deep learning (Li et al. 2017). The general
difficulty of supervised methods, however, is their need for
extensive manual annotation for training to arrive at usable
segmentation models. In our proposed method we have
chosen to avoid this by using carefully designed explicit
models.

For the detection and segmentation of the neuronal
somas, which typically have a much larger diameter than
the dendritic and axonal branches, a simple and efficient
solution is to apply morphological closing and adaptive
thresholding (Yan et al. 2013). An alternative is to use shape
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fitting approaches (Quan et al. 2013). Next, to initialize
and/or guide the segmentation of the arbor, landmark points
are often extracted using image filters that specifically
enhance tubular structures (Wang et al. 2011; Türetken et al.
2011; Choromanska et al. 2012; Su et al. 2012; Radojević
et al. 2016), a popular one being the so-called “vesselness
filter” (Frangi et al. 1998). In our proposed method we
have adopted classical approaches for soma and seed point
detection as detailed in the next section.

Segmentation or tracing of all branches of the dendritic
and axonal trees is the main challenge of the reconstruction
problem. A widely used approach to overcome the
difficulties caused by imperfect staining and image noise is
to use techniques that find globally optimal paths between
seed points by minimizing a predefined cost function
(Meijering et al. 2004; Peng et al. 2011a; Longair et al.
2011; Quan et al. 2016). But many other concepts have been
proposed as well, including model fitting (Schmitt et al.
2004; Zhao et al. 2011), contour extraction (Leandro et al.
2009), active contour segmentation (Wang et al. 2011; Luo
et al. 2015), level-set or fast-marching approaches (Xiao and
Peng 2013; Basu and Racoceanu 2014), path-pruning from
oversegmentation (Peng et al. 2011a), distance field tracing
(Yang et al. 2013), marching rayburst sampling (Ming
et al. 2013), marked point processing (Basu et al. 2016),
iterative back-tracking (Liu et al. 2016), and learning based
approaches (Chen et al. 2015; Gala et al. 2014; Santamarı́a-
Pang et al. 2015). In recent works we have shown the
great potential of probabilistic approaches to neuron tracing
(Radojević et al. 2015; Radojević and Meijering 2017a, b)
which formed the basis for the new fully automated neuron
reconstruction method presented and evaluated in the next
sections.

The final aspect of neuron reconstruction is the
assembling of the complete neuronal tree structure from
possibly many partial or overlapping traces and putting it
into a format that is both representative and suitable for
further automated analysis. This is typically solved by graph
optimization strategies such as the minimum spanning
tree (MST), the alternative K-MST (Türetken et al. 2011;
González et al. 2010), or integer programming (Türetken

et al. 2013). To deal with very large data sets it has also
been proposed to assemble the 3D graph representation
through tracing in 2D projections and applying reverse
mapping (Zhou et al. 2016). However, with the advent of
sophisticated assemblers such as UltraTracer (Peng et al.
2017), it is possible to extend any base tracing algorithm to
deal with arbitrarily large volumes of neuronal image data
(Peng et al. 2017). Therefore, in our proposed method, we
do not use projections but perform the tracing in the original
image (sub)volumes. And to obtain the graph representation
we propose a new approach to refining and grouping the
individual traces.

ProposedMethod

The pipeline of our proposed method consists of six steps
(Fig. 1) described in detail in the following subsections.
We assume that image stacks contain a single neuron (one
soma) or just an arbor (no soma) as in the DIADEM
(Brown et al. 2011) and BigNeuron data (Peng et al. 2015a).
In short, we first extract the soma and a set of seeds,
which serve to initialize our probabilistic branch tracing
scheme. The resulting traces are iteratively refined and their
corresponding nodes spatially grouped into a representative
node set that is traversed to form the final reconstruction.

Soma Extraction

The soma typically has a considerably larger diameter than
the individual branches of the neuronal arbor (Fig. 1a).
Thus it can be easily extracted using morphological filtering
operations (Yan et al. 2013). Specifically, in our method,
we apply grayscale erosion to remove all branches and
leave only the (eroded) soma. To this end, the radius rs of
the structuring element needs to be larger than the largest
expected branch radius in a given data set, and smaller
than the expected soma radius. The resulting image is then
smoothed using a Gaussian filter with standard deviation
equal to rs and segmented using max-entropy thresholding
(Radojević et al. 2016) to obtain a blob corresponding to the

a b c d e f

Fig. 1 Schematic overview of the six main steps of the proposed method: a soma extraction, b seed extraction, c branch tracing, d trace refinement,
e node grouping, f tree construction
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soma. For computational efficiency both the erosion and the
Gaussian smoothing operation are carried out by separable
filtering. In this paper we model the soma in the final graph
representation of the neuron as a single spherical node with
position equal to the centroid of the segmented blob and
radius equal to the average distance of the blob voxels to the
centroid. Alternatively, we could model the soma with a set
of nodes that together represent the blob as accurately as we
like, but in our applications this is not needed.

Seed Extraction

To initialize the branch tracing we extract a set of seed
points (Fig. 1b). These seeds are points with very high
likelihood of being centered on a branch. In our method we
estimate this likelihood using a Hessian-based multiscale
tubularity filter (Frangi et al. 1998).1 It computes for every
voxel in an image I the Gaussian-smoothed second-order
derivatives:

Hσ =
⎡
⎣
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ =

⎡
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(1)

where ∗ denotes convolution, Gσ the Gaussian filter at scale
σ , and Hσ the resulting local Hessian matrix at that scale.
The eigenvalues |λ1| ≤ |λ2| ≤ |λ3| of Hσ are indicative of
the geometry of the local image structure and are used to
quantify its tubularity as (Frangi et al. 1998):

υ =

⎧⎪⎨
⎪⎩

0 if λ2 > 0 or λ3 > 0(
1−e

−R2
a

2α2

)
e
−R2

b

2β2

(
1−e
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2c2

)
otherwise

(2)

with the free parameters typically set to α = β = 0.5 and c

to half the maximum Hessian norm and where

Ra = |λ2|
|λ3| Rb = |λ1|√|λ2λ3| S =

√
λ2

1 + λ2
2 (3)

For each voxel location p = [x, y, z] the spatial scale of
the local image structure is taken to be the Gaussian σ

at which the filter yields the highest tubularity value υ.
And the orientation of the structure is then taken to be the
eigenvector v = [vx, vy, vz] corresponding to the smallest
absolute eigenvalue λ1 of the Hessian matrix Hσ .

From the resulting tubularity map, initial seed points
si = [pi , vi , σi] are selected whose tubularity value is the
highest in a cylindrical neighborhood with radius 3σi and
length σi , centered at pi , and oriented along vi . For this

1http://bitbucket.org/miroslavradojevic/vess

purpose we use a find-maxima function ported from ImageJ,
which applies a noise tolerance τ to prune insignificant local
maxima (Ferreira and Rasband 2012). The final set of seeds
is subsequently obtained by excluding the maxima where
the correlation of the image with a cylindrical template
model is too low, using exactly the same criterion as for
termination of branch tracing, described next.

Branch Tracing

For each seed si , our method traces the local image structure
in two directions, +vi and −vi , producing a pair of local
traces (Fig. 1c). A trace is considered to consist of a
sequence of hidden states, x0:L = (x0, . . . , xL), where x0

is the initial state extrapolated from the seed si , and xL is
the last state of the trace. Similar to the seeds, the states
xi = [

pi , vi , σi

]
contain estimates of the position pi =

[xi, yi, zi], the direction vi = [
vxi

, vyi
, vzi

]
, and the scale

σi of the underlying neuron branch. The states are estimated
sequentially in a probabilistic fashion using Bayes’ rule:

p(xi |z0:i ) ∝ p(zi |xi )

∫
p(xi |xi−1)p(xi−1|z0:i−1)dxi−1 (4)

where p(xi |z0:i ) is the posterior probability distribution
of the state xi given measurements z0:i from the first
to the current iteration, p(xi |xi−1) is the state transition
prior, and p(zi |xi ) is the likelihood of measuring zi

given state xi . It is assumed that the state transition is a
Markovian process and the measurements are independent.
To allow for nonlinearities in the process, we solve
the estimation problem (4) using sequential Monte Carlo
(SMC) filtering (Doucet et al. 2001), also known as
particle filtering (Arulampalam et al. 2002). Here the
posterior is approximated using a set of N samples xk

i with
corresponding weights wk

i as:

p(xi |z0:i ) ≈
N∑

k=1

wk
i δ(xi − xk

i ) (5)

where the weights are normalized so that
∑

k wk
i = 1 and

δ(x) =
{

∞ if x = 0

0 otherwise
with

∫ ∞

−∞
δ(x)dx = 1 (6)

Each iteration in SMC filtering consists of a prediction
step and an update step. In the prediction step, given the
samples xk

i−1 from the previous iteration, N new samples
xk
i are drawn using the state transition prior. The importance

sampling distribution that we use for this is (Fig. 2a):

p(xi |xk
i−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
κ vi ·vk

i−1− (di−d)2

2(d/3)2
− (σi−σk

i−1)2

2ζ2

2πI0(κ)η

for di ≤ 2d ∧ σi ≤ 3ζ

0 otherwise

(7)
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Fig. 2 Functions used in the
prediction and update steps of
the SMC filtering: a the
prediction importance sampling
distribution (for ease of
visualization a 2D example is
given) and b the measurement
likelihood function for different
values of K . Reprinted with
permission from Radojević and
Meijering (2017b)
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where I0 denotes the zero-order Bessel function of the
first kind, κ is the circular variance parameter, η is a
normalization factor that makes the prediction over all
N samples integrate to unity, di = ||pi − pk

i−1|| is the
Euclidean distance between the predicted position and the
sample position in the previous iteration, d is the tracing
step size, and ζ the scale variance parameter. Each predicted
state is assigned a unit direction vi = (pi − pk

i−1)/||pi −
pk
i−1|| defined by two consecutive positions. And σi − σk

i−1
represents the difference in scales, which contributes to the
importance sampling function by a Gaussian component,
giving a higher value to state samples that retain the scale.

In the update step, the newly drawn samples are updated
using the following likelihood function (Fig. 2b):

p(z|x) = eKcx (8)

where K determines the sensitivity to the normalized cross-
correlation cx ∈ [−1, 1], which quantifies the similarity
of the underlying image structure for x = [

p, v, σ
]

to a
cylindrical template model with Gaussian profile (Fig. 3):

cx =
∑

k,l,m

(
I (p′) − Ī

) (
Gσ − Ḡ

)
√∑

k,l,m

(
I (p′) − Ī

)2 ∑
k,l,m

(
Gσ − Ḡ

)2
(9)

p′ = p′(k, l, m) = p + ku + lw + mv (10)

Gσ = Gσ (k, l, m) = Gσ (k, l) = e−(
k2+l2

)
/2σ 2

(11)

where (k, l, m) are the template coordinates, which trans-
form to p′ in image coordinates since the template is cen-
tered at p and is oriented in the direction v and has scale σ of
x, and by definition u⊥v, w⊥v, and u⊥w. The summation
is limited to �−3σ ≤ k, l ≤ �3σ� and �σ ≤ m ≤ �σ�
which corresponds to the spatial extent of the template. Ī

and Ḡ denote the mean of the image intensities and of the
template intensities, respectively, within the mentioned lim-
its. The value of cx is independent of intensity scalings
and offsets and thus provides us with a robust measure of

structural resemblance, which may range from −1 (inverse
correlation), to 0 (no correlation), to +1 (full correlation).
The weights of the samples are updated accordingly as:

wk
i ∝ wk

i−1p
(

xk
i |xk

i−1

)
e
Kc

xk
i (12)

and renormalized so that
∑

k wk
i = 1. To avoid weight

deterioration, systematic resampling (Kitagawa 1996) is
performed each time the effective sample size Neff (Kong
et al. 1994) falls below 80% of N . The final state estimate
after each iteration i, which constitutes a node of the trace,
is computed from the weighted samples as the centroid:

x̂i =
∑

k

wk
i xk

i (13)

Filtering is terminated if the average correlation value∑
k cxk

i
/N drops below the threshold cmin, indicating the

end of the underlying neuron branch in the image, or if
the iteration limit L is reached. Since the filtering is done
for each seed, and in both (opposite) directions, the same
neuron branch may be traced many times over, but in a
probabilistically independent way, providing accumulating
evidence about the presence and location of the branches.
However, to avoid excessive over-tracing and to reduce the
computation time, we also monitor the node density Dn per
image volume unit of n voxels and terminate the tracing if
the density in the current position exceeds the limit δn. In
principle n can be any number, but in our work we typically
consider n = 1 (single voxel), n = 5 (4-connected in 3D),
and n = 9 (8-connected in 3D), which is sufficient given
that the image stacks often have a large voxel anisotropy.

Trace Refinement

After the tracing step, each neuron branch may have
multiple corresponding traces, and each trace node has
bidirectional links to neighboring nodes (Figs. 1d and 4a)
to allow trace traversal in any of the possible directions in
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Fig. 3 Cylindrical template
intensity model Gσ . The model
has a Gaussian profile in
coordinates k and l and is
constant in coordinate m. Both
the 3D (a) and the 2D (b)
version is shown
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the final tree construction step. Denoting the total number
of traces by T , and the nodes of any given trace t by nt

i ,
i = 1, . . . , Mt , we may write the complete set of nodes as:

N =
{{

n1
1, . . . , n

1
M1

}
, . . . ,

{
nT

1 , . . . , nT
MT

}}
(14)

but in the sequel we write the elements of N more
generally as nk , k = 1, . . . , M , where M = ∑T

t=1 Mt .
Each node nk contains an estimate of the center position
p = (x, y, z) and the cross-sectional radius (r) of the
underlying branch structure, as well as the cross-correlation
(c) with the cylindrical Gaussian template model, and a set
(I) containing the indices in N of the neighboring nodes:

nk = {pk, rk, ck, Ik} (15)

where Ik has either two elements (in the case of a body
node) or just one (in the case of a terminal node).

The goal of the trace refinement step is to exploit the
cumulative evidence provided by the over-tracing in the
previous step to improve the individual node estimates.
Specifically, we update each node nk to:

n̄k = {
p̄k, r̄k, c̄k, Īk

}
(16)

by applying mean-shifting (Cheng 1995), resulting in an
updated node set N̄ . Mean-shifting iteratively moves each
node element to the local mean of the nodes in its vicinity:

n̄k =
∑

n∈N �(n − nk) · n∑
n∈N �(n − nk)

(17)

�(n − nk) =
{

1 if ‖p − pk‖ ≤ rk
0 otherwise

(18)

This reduces the variance of the estimates but preserves the
linking of the nodes: Ī = I. In practice, five iterations
are sufficient to reach satisfactory radial trace alignment

Fig. 4 Trace merging: a
accumulated traces, b trace
refinement, c node grouping, d
tree traversal

a b c d
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(Fig. 4b). The kernel size used in the mean-shifting process
is taken to be the initial radius of each node. In our
implementation, prior to mean-shifting, we resample all
traces with a step size of one voxel to get a more fine-
grained result.

Node Grouping

Although the previous step results in refined node estimates,
it keeps the total number of nodes and corresponding multi-
ple traces. The next step is to merge overlapping traces and
obtain a single trace for each neuron branch. In our method
this is accomplished by the process of node grouping
(Figs. 1e and 4c) as detailed in Algorithm 1. It iteratively

takes from the refined set N̄ an as-yet ungrouped node
with the highest cross-correlation value, finds all its neigh-
boring nodes within the predefined Euclidean distance rg ,
and groups them by calculating the mean value of each
element. In our implementation we use unweighted aver-
aging for this. Alternatively, weighted averaging could be
used, based on the cross-correlation scores. The node links
within a group are accumulated and their indexes mapped
to the group node index list. This results in a new set N̂ =
{n̂1, . . . , n̂P }, P ≤ M , of group nodes:

n̂k =
{

p̂k, r̂k, ĉk, Îk

}
(19)

n̂k =
∑

n∈N̄ �(n − n̄k) · n∑
n∈N̄ �(n − n̄k)

(20)

and any two n̂i and n̂j are connected if there exists a
link between any of the refined nodes captured by these
two, as revealed by the accumulated index sets Îi and Îj .
Thus, all existing inter-node connections Ī are preserved,
and are projected into the inter-group connections Î (see
Supplementary Fig. S13 for an example case).

Tree Construction

The final step of our method is the construction of a graph
representing the complete neuronal arbor. This is facilitated
by the bidirectional connectivity of the group nodes in N̂ .
However, similar to a real neuron, the final graph must be a
tree, in which the nodes are unidirectionally linked (Figs. 1f
and 4d), as also required by the SWC file format for storing
digital neuron reconstructions (Stockley et al. 1993; Cannon
et al. 1998). Starting from the soma node, or from the group
node with the highest cross-correlation value if no soma
was found in the image, the nodes in N̂ are iteratively
traversed using a breadth-first search (BFS) algorithm. In
this process it is possible to discard any isolated branches
and single-node terminal branches (false positives).

Implementation Details

Our method, which we call Probabilistic Neuron Recon-
structor (PNR), was implemented in C++ as a plugin for the
freely available and extendable bioimage visualization and
analysis tool Vaa3D (Peng et al. 2010, 2014a).2 The source
code of PNR is freely available for non-commercial use.3 As
mentioned in the preceding sections, the method has a num-
ber of free parameters, which are summarized in Table 1,
where we also list default values.

2http://vaa3d.org
3https://bitbucket.org/miroslavradojevic/pnr
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Table 1 Parameters of our method and their default values and grid search values used for each data set in the experiments

Parameter Value Description

Default OPF NCL1A BGN Synthetic

rs 6 0 0 0, 4, 8, 12 0, 4 Erosion radius [voxels]

σ {2, 4, 6} {2}, {2, 4}, {2, 4, 6} {2}, {2, 4}, {2, 4, 6} {2}, {2, 4}, {2, 4, 6} {2, 4, 6} Scale combinations [voxels]

τ 10 4, 6, 8, 10, 12 6, 8, 10 6, 8, 10 6, 8, 10 Local maxima tolerance [8-bit scale]

N 20 20 20 20 20 Number of samples

κ 3 3 3 3 3 Circular variance [voxels]

d 3 3 3 3 3 Tracing step size [voxels]

ζ 1 1 1 1 1 Scale variance [voxels]

K 20 20, 50 20, 50 20 20, 50 Likelihood sensitivity

cmin 0.5 0.4, 0.5 0.3, 0.4, 0.5 0.3, 0.4, 0.5 0.3, 0.4, 0.5 Correlation threshold

L 200 200 200 200 200 Iteration limit

δn δ9 = 4 δ9 = 4 δ9 = 4 δ1 = 3, δ9 = 4 δ1 = 3, δ9 = 4 Node density limit [count/volume]

rg 2 2 2 2 2 Grouping radius [voxels]

The ordering is according to first mention in the main text

Experimental Results

The performance of our PNR method was evaluated using
both synthetic and real fluorescence microscopy image
stacks of single neurons and was compared to several
alternative 3D neuron reconstruction methods that yielded
favorable performance in the BigNeuron project (Peng
et al. 2015a). These included the second all-path pruning
method (APP2) (Xiao and Peng 2013), NeuroGPS-Tree
(GPS) (Quan et al. 2016), BigNeuron’s minimum span-
ning tree (MST) method, and we also added our recently
published alternative probabilistic method based on prob-
ability hypothesis density filtering (PHD) (Radojević and
Meijering 2017a).

To quantify performance we adopted the commonly used
measures of distance and overlap of neuron reconstructions
with respect to the ground truth (in the case of synthetic
images) or the gold-standard reconstructions obtained by
manual annotation (in the case of real images). The distance
measures were the average minimal reciprocal spatial
distance (SD) between nodes in the reconstructions being
compared, the substantial spatial distance (SSD) using only
the nodes with a spatial distance larger than a threshold
S, and the percentage of these substantially distant nodes
(%SSD), all computed after densely resampling each
reconstruction to reduce the distance between its adjacent
nodes to one voxel (see Peng et al. 2010 for details). The
overlap measures were precision (P), recall (R), and the F
score (Powers 2011), computed from the numbers of true-
positive (TP), false-positive (FP) and false-negative (FN)
nodes according to the spatial distance threshold S.

All experiments were performed on a MacBook Pro with
2.2 GHz Intel Core i7 processor and 16 GB RAM memory

to test the practicality of the methods on a typical computer
system. For each method we optimized the score for
each performance measure by exploring a grid of possible
parameter values around the default ones (see Table 1 for
our method and the cited papers for the other methods). To
keep the experiments feasible, we set the maximum allowed
processing time per stack and method to 2 hours. In the
sequel, to save space, we show only the F scores (higher
is better) and SSD scores (lower is better), while the P, R,
SD, and %SSD scores are given in the supplement. Our
conclusions are based on the complete body of results.

Experiments on Synthetic Neuron Images

Prior to evaluating how well our method emulates expert
manual reconstruction in real neuron images, we first per-
formed a controlled experiment using synthetic neuron
images, with known ground-truth reconstructions and pre-
defined levels of signal-to-noise ratio (SNR) and inter-voxel
correlation (COR). This allowed us to study the robust-
ness of our method compared to the others as a function of
these image quality factors. For this experiment we selected
10 neurons from the BigNeuron training data set (Peng
et al. 2015a), representative of the range of morphological
complexities in the data set, and for which node radius infor-
mation (non-default) was available in the corresponding
gold-standard reconstructions in SWC format.

We developed a plugin for ImageJ (Schneider et al. 2012)
called SWC2IMG,4 which takes any SWC file as input and
simulates fluorescence microscopy imaging of all neuronal
branches in the file at a specified SNR and COR level,

4https://github.com/imagescience/SWC2IMG
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a b

Fig. 5 Illustration of the synthetic neuron data set used in the presented
experiments. a Example images of the 10 selected neurons simulated
at SNR = 4 and COR = 0.0. b Different simulations of the neuron
indicated by the red outline in (a) for SNR = 2, 3, 4, 5, and 10 (from

left to right) and COR = 0.0, 1.0, and 2.0 (from top to bottom). The
marked image in (b) is the same as the marked image in (a). All exam-
ples shown here are maximum intensity projections of the 3D synthetic
images with inverted intensities for better visualization

producing an image stack whose true digital reconstruction
is the very input. It assumes that in practice, because of the
relatively large spatial extent of even a single neuron with
its complete arbor, the combination of optical magnification
factor and digital image matrix size in real neuron images
is typically such that the voxel size is larger than the point
spread function (PSF), implying that the partial-volume
effect of digitization is more prominent than the optical
blurring by the microscope. Based on this, the plugin
simulates the imaging simply by estimating for each voxel
which fraction of its volume is occupied by the neuron.
Next, it simulates noise by using the Poisson noise model
representative of optical imaging, which defines SNR as the
image intensity inside the neuron above the background,
divided by the standard deviation of the noise inside
(Sheppard et al. 2006). And finally, to allow for correlated
signal and noise, which we found to improve the visual
realism of the simulated images, the plugin also offers the
possibility to apply Gaussian smoothing at a specified scale,
being the COR parameter, while preserving the SNR level.
Generally, the lower the SNR and/or the higher the COR
level, the more challenging the data and the reconstruction
problem.

Using this plugin we created a synthetic data set
containing image stacks for a range of SNR and COR
values for each neuron (Fig. 5). Specifically, we considered
SNR = 1, 2, 3, 4, 5, 10, 20, and COR = 0, 0.5,
1, 1.5, 2. Thus, our synthetic data set consisted of
10 (neurons) × 7 (SNR levels) × 5 (COR levels) =
350 image stacks,5 which we attempted to reconstruct
optimally using the five considered methods (APP2, GPS,
MST, PHD, PNR) and a parameter grid-search approach.
However, some of the images were very challenging,
especially the ones with many branches and low SNR
or high COR values, causing the methods to sometimes

5https://bitbucket.org/miroslavradojevic/pnr

require excessive computation times or even to get stuck
altogether. Because of the mentioned time constraint, not
all methods were able to complete all the reconstructions,
and it turned out that only 7 out of the 10 neurons could
be reconstructed by all the methods for all SNR and
COR values. Therefore we present the results only for those.

From the average F and SSD scores of the methods
as a function of SNR for a few sample values of COR
and S (Figs. 6 and 7) we generally observe that, as
expected, increasing the SNR improves the performance
of all methods (increasing F and decreasing SSD scores).
We also note that the two probabilistic methods (PHD and
PNR) are more robust against noise (especially according
to F) and that our proposed method (PNR) is often superior
overall. The results also show that, as expected, increasing
the value of COR (which yields more difficult images)
has a strong negative impact on the performance of all
methods (lower F and higher SSD scores for the same
SNR). This is confirmed when looking more in-depth at the
results as a function of COR (Figs. 8 and 9). Additionally,
again as expected, in all cases we observe that increasing
the value of S (meaning being more lenient in matching
reconstructions to the ground truth) may also strongly affect
the scores of all methods (meaning higher F scores, but
in this case also higher SSD scores, as the latter includes
only node distances larger than S). This is confirmed when
looking explicitly at the performance of the methods as a
function of S (Figs. 10 and 11). These results reveal that
both the absolute and the relative performance of different
methods being compared may depend on S. This is an
important observation, since in all studies we are aware of,
the somewhat arbitrary value of S = 2 is taken for granted
in calculating performance and ranking the methods. Our
results (Figs. 10 and 11) show that taking other values
of S may yield a different ranking. Notwithstanding this
finding, our results also show that under most experimental
conditions (SNR, COR, S), the proposed method (PNR)
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Fig. 6 Average F score of the
methods for the synthetic images
as a function of SNR. Examples
are shown for COR = 0 (top)
and 1 (bottom) in combination
with S = 2 (left) and 3 (right)
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Fig. 7 Average SSD score of the
methods for the synthetic images
as a function of SNR. Examples
are shown for COR = 0 (top)
and 1 (bottom) in combination
with S = 2 (left) and 3 (right)
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Fig. 8 Average F score of the methods for the synthetic images as a function of COR. Examples are shown for S = 2 (top) and 3 (bottom) in
combination with SNR = 2, 4, 5, 10 (left to right)

yields superior results. While our previous probabilistic
neuron tracing method (PHD) (Radojević and Meijering
2017a) is often a strong competitor, the results indicate that
our new method is more favorable, which we believe can

be ascribed to its better model for seed point extraction and
branch tracing.

Together, the results of our experiments on synthetic
neuron images suggest that tracing the image structures
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Fig. 9 Average SSD score of the methods for the synthetic images as a function of COR. Examples are shown for S = 2 (top) and 3 (bottom) in
combination with SNR = 2, 4, 5, 10 (left to right)
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Fig. 10 Average F score of the methods for the synthetic images as a function of S. Examples are shown for COR = 0 (top) and 1 (bottom) in
combination with SNR = 2, 4, 5, 10 (left to right)

repeatedly and in a statistically independently way, indeed
yields more evidence about the underlying neuron branches
and leads to better reconstructions. This also follows
from a visual comparison of the reconstructions (Fig. 12).

Especially at low SNRs, pruning and fast-marching
based methods tend to oversegment the images, while
our probabilistic methods still perform relatively well
regardless. Even at high SNRs, when most of the methods
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Fig. 11 Average SSD score of the methods for the synthetic images as a function of S. Examples are shown for COR = 0 (top) and 1 (bottom) in
combination with SNR = 2, 4, 5, 10 (left to right)
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Fig. 12 Visual comparison of
neuron reconstructions produced
by the considered methods from
synthetic image stacks of a
single neuron at different SNR
levels. The image stacks
(generated used COR = 0) are
shown as inverted maximum
intensity projections (left
column) and the reconstructions
of the different methods
(remaining columns) are shown
in red as surface renderings

perform comparably, our proposed method follows the
branch structures more closely (see zooms in the last row of
Fig. 12).

Experiments on Real Neuron Images

In addition to synthetic data we also used three real
neuron image data sets to evaluate the absolute and relative
performance of our method. The first two are the olfactory
projection fibers (OPF) data set (9 image stacks) and
neocortical layer-1 axons (NCL1A) data set (16 image
stacks) from the DIADEM challenge (Brown et al. 2011),
and the third is part of the BigNeuron (BGN) training

data set (76 image stacks) (Peng et al. 2015a), all imaged
with fluorescence microscopy (confocal or two-photon) and
manually annotated as described in detail in the cited works
and corresponding resources. Being the smallest of the
three, in terms of both neuronal volume and complexity,
OPF is probably the most often used data set in the field.
NCL1A is often used as it contains neuronal network-like
structures and no clear somas. And BGN is the largest, most
diverse, and thus most challenging data set for evaluating
neuron reconstruction methods. Together, the 100+ image
stacks in these data sets have a wide variety of image
qualities and volumes (10 MB to 2 GB per stack) and
portray a wide range of neuronal shapes and complexities
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a b

c

Fig. 13 Illustration of the real neuron image data sets used in the pre-
sented experiments. Examples are shown of a the OPF data set (4 of
9 stacks), b the NCL1A data set (6 of 16 stacks), and c the BGN data
set (13 of 76 stacks). Each example shows the maximum intensity

projection of the image stack (left panel) but with inverted intensities
for better visualization, and the corresponding manual reconstruction
(right panel) as a surface rendering (in red), both generated using
Vaa3D (Peng et al. 2010)

Fig. 14 Performance
comparison for the OPF data set.
Results are shown for the F
measure (left column) and SSD
measure (right column) and in
the form of distributions for S =
2 (standard R box plots in top
row) and averages as a function
of S (bottom row)
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Fig. 15 Performance
comparison for the NCL1A data
set. Results are shown for the F
measure (left column) and SSD
measure (right column) and in
the form of distributions for S =
2 (standard R box plots in top
row) and averages as a function
of S (bottom row)
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Fig. 16 Performance
comparison for the BGN data
set. Results are shown for the F
measure (left column) and SSD
measure (right column) and in
the form of distributions for S =
2 (standard R box plots in top
row) and averages as a function
of S (bottom row)
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Fig. 17 Example neuron reconstructions of an image stack from the
OPF data set. Shown are the original arbor (volume rendering on the
left) and the reconstructions (overlaid surface renderings in red) of the

different methods (indicated at the top) corresponding to the best F
score (given below each reconstruction) for S = 2 with respect to the
available manual reconstruction

(Fig. 13), representative of many studies. For some stacks
in the BGN data set, the voxel size was unknown, and in
these cases we used a default x:y:z voxel aspect ratio of
1:1:2, reflecting the typically lower resolution in the depth
dimension. Also, because of the mentioned processing
time constraint, 3 of the 76 image stacks could not be
reconstructed by all methods (see Supplementary Fig. S14
for these and other hard cases), so the presented results are
based on the remaining 73.

From the results of the experiments on these three real
data sets (Figs. 14, 15 and 16) we observe that, as in the
experiments on synthetic data, the probabilistic methods
PHD and PNR typically show superior performance in
terms of both F and SSD score. Of these two methods,
our proposed PNR method consistently shows the smallest
performance spread, indicating it is more robust than our
previously published PHD method. For the BGN data set,
being the most diverse of the three, the performance spread
(including outliers) of all methods is the largest, and the
increase in performance as a function of S is the smallest,
as expected. Nevertheless, the PNR method consistently
shows the best overall performance especially for this data
set. In other words, for any given data set similar to those
considered in this study, PNR is the favorable method
a priori. Obviously this does not necessarily mean that
PNR will give the best reconstruction for each and every
image stack in the data set, but simply that the chances are

higher. This is confirmed when we look at a few example
image stacks from the three data sets and the corresponding
best reconstructions produced by the different methods
by maximizing the F score in the parameter grid search
(Figs. 17, 18 and 19). As these examples show, although
PNR often outperforms the other methods, in specific cases
one of the other methods may give better results.

Finally we investigated the sensitivity of PNR with
respect to two of its parameters that one might suspect to
be rather critical. The first is the noise tolerance parameter
τ used to prune insignificant local maxima in the seed
extraction (Seed Extraction). To obtain the best possible
results while keeping the computation times manageable,
we considered different sets of values for this parameter,
depending on the data set (Table 1). For example, in the case
of the relatively small-sized OPF data set we considered
values τ = 4, 6, 8, 10, 12, while for the larger NCL1A and
BGN data sets and the synthetic images we examined τ =
6, 8, 10. The results (Supplementary Figs. S15-S18) show
that τ is in fact not a very sensitive parameter of the method
and that the suggested default value is a suitable choice.
The second parameter is the node density limit δn used
to terminate the tracing (Branch Tracing). Here, too, we
considered different sets of values depending on the data set,
for n = 5 and n = 9. The results (Supplementary Fig. S19)
show that the method is also not very sensitive to this para-
meter and its default value is suitable. Notice that due to the

Fig. 18 Example neuron reconstructions of an image stack from the
NCL1A data set. Shown are the original arbor (volume rendering on
the left) and the reconstructions (overlaid surface renderings in red) of

the different methods (indicated at the top) corresponding to the best
F score (given below each reconstruction) for S = 2 with respect to the
available manual reconstruction
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Fig. 19 Example neuron reconstructions of four image stacks from the
BGN data set. Shown are the original arbors (volume renderings on
the left) and the reconstructions (overlaid surface renderings in red) of

the different methods (indicated at the top) corresponding to the best
F score (given below each reconstruction) for S = 2 with respect to the
available manual reconstruction

probabilistic nature of the method there is inherently some
randomness in the results. But altogether we believe the re-
sults justify the conclusion that PNR is a robust method and
a valuable addition to the neuron reconstruction toolbox.

Conclusions

We have presented a new fully automated probabilistic
neuron reconstruction method (PNR) based on sequential

Monte Carlo filtering. It traces individual neuron branches
from automatically detected seed points repeatedly but
statistically independently to acquire more evidence and
to be more robust to noise and other artifacts. The traces
are subsequently refined, merged, and put into a tree
representation for further analysis. We evaluated the method
on both synthetic and real neuron images and compared
it to various other state-of-the-art neuron reconstruction
methods (APP2, GPS, MST, PHD) using commonly used
quantitative performance measures (we presented F and
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SSD scores). To obtain realistic synthetic data we developed
a novel simulator (SWC2IMG) that can turn any given
SWC file into an image stack of specified quality whose
ground truth reconstruction is the input. For the evaluation
on real data we used about 100 single-neuron fluorescence
microscopy image stacks of widely varying quality and
complexity, with corresponding manual reconstructions
serving as the gold standard, from three different data sets
used in the DIADEM and BigNeuron studies. The results
show conclusively that the proposed method is generally
favorable and also outperforms our own alternative neuron
reconstruction method based on probability hypothesis
density (PHD) filtering we presented recently. Nevertheless,
there still remains much room for further improvement, as
none of the quantitative scores were near perfect for any of
the considered methods even for high SNR levels and very
lenient distance thresholds. Possible directions for future
work within the presented probabilistic framework would be
to explore other state transition and measurement models.
Alternatively, since no single method always performs
best on all images of a given data set, and the results
of different methods are likely complementary, another
possible direction could be to combine multiple methods
either during tracing or in a post-processing step. The
latter approach is already being explored in the BigNeuron
project. But regardless of the outcome of this effort we
conclude that the method proposed in this paper may
already prove to be of great use in many cases. Our software
implementation of the method will be made freely available
for non-commercial use upon publication.
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