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Abstract Pattern recognition models have been increasingly
applied to neuroimaging data over the last two decades. These
applications have ranged from cognitive neuroscience to clin-
ical problems. A common limitation of these approaches is
that they do not incorporate previous knowledge about the
brain structure and function into the models. Previous knowl-
edge can be embedded into pattern recognition models by
imposing a grouping structure based on anatomically or func-
tionally defined brain regions. In this work, we present a novel
approach that uses group sparsity to model the whole brain
multivariate pattern as a combination of regional patterns.
More specifically, we use a sparse version of Multiple
Kernel Learning (MKL) to simultaneously learn the contribu-
tion of each brain region, previously defined by an atlas, to the
decision function. Our application of MKL provides two ben-
eficial features: (1) it can lead to improved overall generalisa-
tion performance when the grouping structure imposed by the
atlas is consistent with the data; (2) it can identify a subset of

relevant brain regions for the predictive model. In order to
investigate the effect of the grouping in the proposed MKL
approach we compared the results of three different atlases
using three different datasets. The method has been imple-
mented in the new version of the open-source Pattern
Recognition for Neuroimaging Toolbox (PRoNTo).
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Introduction

During the last years there has been a substantial increase in
the application of machine learning models to analyse neuro-
imaging data (please see Pereira et al. 2009 and Haynes 2015
for overviews). In cognitive neuroscience, applications of
these models -also known as brain decoding or mind
reading- aim at associating a particular cognitive, behavioural
or perceptual state to specific patterns of brain activity. In the
context of clinical neuroscience, machine learning analyses
usually focus on predicting a group membership (e.g. patients
vs. healthy subjects) from patterns of brain activation/anatomy
over a set of voxels. Due to their multivariate properties, these
approaches can achieve relatively greater sensitivity and are
therefore able to detect subtle and spatially distributed effects.
Recent applications of machine learning models to neuroim-
aging data include predicting, from individual brain activity,
the patterns of perceived objects (Haynes and Rees 2005;
Ramirez et al. 2014), mental states related to memory retrieval
(Polyn et al. 2005) and consolidation (Tambini and Davachi
2013), hidden intentions (Haynes et al. 2007) and semi-
constrained brain activity (Schrouff et al. 2012). These tech-
niques also showed promising results in clinical applications
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(see e.g. Klöppel et al. 2012), providing potential means of
computer-aided diagnostic tools for Alzheimer’s disease
(Klöppel et al. 2008), Parkinson’s disease (e.g. Orrù et al.
2012; Garraux et al. 2013) or depression (Fu et al. 2008).
Accordingly, various software packages have been implement-
ed to ease the application of machine learning techniques to
neuroimaging data. To cite a few: The Decoding Toolbox
(Hebart et al. 2015), MVPA toolbox, PyMVPA (Hanke et al.
2009a, b), Nilearn (Abraham et al. 2014), Representational
Similarity Analysis (Kriegeskorte et al. 2008), CoSMoMVPA
(Oosterhof et al. 2016), Searchmight (Pereira and Botvinick
2011), 3Dsvm (LaConte et al. 2005), Probid, Mania
(Grotegerd et al. 2014), PETRA or our own work PRoNTo
(Schrouff et al. 2013a).

When applying machine learning predictive models to
whole brain neuroimaging data a researcher often wants to be
able to answer two questions: (1) Which brain regions are in-
formative for the prediction? (2) Why are these regions infor-
mative? Considering the first question, although linear models
generate weights for each voxel, the model predictions are
based on the whole pattern and therefore one cannot arbitrarily
threshold the weights to identify a set of informative features (or
voxels). Indeed, if one were to threshold a weight map (e.g. by
removing voxels/regions with low contribution), the result
would be a new predictive function that has not been evaluated.
In order to identify which features have predictive information
one can use feature selection approaches or sparse models. One
limitation of these approaches is that often they do not take into
account our previous knowledge about the brain. We know that
the brain is organised in regions and the signal within these
regions are expected to vary smoothly. One way to incorporate
this knowledge into the models is to use structured or group
sparsity. A number of studies have shown the benefits of using
structured sparse approaches in neuroimaging applications (e.g.
Baldassarre et al. 2012, Grosenick et al. 2011). However, these
models are computationally expensive and it is difficult to de-
sign a structured sparsity that incorporates all characteristics of
the neuroimaging data. An alternative way to incorporate
knowledge about the data into the models is to use group spar-
sity. For example, there is evidence that group sparse regulari-
zation (i.e. group lasso) can improve recovery of the model’s
coefficients/weights in comparison with the lasso when the
grouping structure is consistent with the data (Huang and
Zhang 2010). Here, we used anatomical/functional information
to define the grouping structure and a sparse version ofMultiple
Kernel Learning (MKL) to simultaneously learn the contribu-
tion of each brain region to the predictive model.

The question of why a set of regions carries predictive
information is more difficult to answer and has been previously
discussed in the literature (e.g. Haufe et al. 2014; Weichwald
et al. 2015; Kia et al. 2016). Basically, weights of linear predic-
tive models show the relative contribution of the features for
prediction, but do not disentangle potential causes for the

contribution. For example, as shown by Haufe and collaborators
(Haufe et al. 2014), a feature might have a high weight (or a high
contribution) due to an association with the labels or a high
weight to cancel correlated noise between the features.
Therefore, we argue that additional analysis needs to be done
(e.g. univariate statistical tests) to understand why a specific
feature (or region) has a high contribution to a predictivemodel.

In this work, we propose an approach that is able to select a
subset of informative regions for prediction based on an ana-
tomical/functional atlas, thereby addressing the first question.
However, we do not attempt to address the second question, as
we believe multivariate predictive models cannot provide a clear
answer to why a specific feature/region has a high contribution to
the model (Weichwald et al. 2015). In the present work, we will
refer to the ‘interpretability’ of a predictive model as its ability to
identify a subset of informative features/regions.

Related Approaches

Different solutions have been proposed to identify which fea-
tures contribute to the model’s prediction1: Kriegeskorte et al.
(2006) proposed a locally multivariate approach, known as
Bsearchlight^, whereby only one voxel and its direct neigh-
bours (within a sphere which radius is defined a priori) are
selected to build the machine learning model. This operation
is then repeated for all voxels, leading to a map of perfor-
mance (e.g. accuracy for classification and mean squared er-
ror, MSE, for regression). Based on the significance of model
performance in each sphere, the resulting maps can be
thresholded. While this approach can provide insights on
which regions in the brain have a local informative pattern,
it presents the disadvantage of considering each sphere inde-
pendently. The brain is therefore not considered as a whole
anymore, but as a collection of partially overlapping spheres,
which reduces the multivariate power of machine learning
models by focusing only on local patterns. The interested
reader can refer to Etzel et al. 2013 for a discussion on the
promise, pitfalls and potential of this technique.

Another approach that has been used to threshold weight
maps is to perform a permutation test at each voxel to generate
a map of p-values (e.g. Mourão-Miranda et al. 2005, Klöppel
et al. 2008, Marquand et al. 2012, 2014). In this case the labels
of the training data are randomly shuffled p times and the
model is trained using the shuffled labels to generate a null
distribution of the models’ weight for each voxel. The voxels
with a statistically high contribution (positive or negative) to
the model compared to its null distribution can then be
highlighted. The resulting statistical maps can be thresholded,
using the p-values obtained for each voxel. The correction
for multiple comparisons should be performed with care,

1 Please note that this introduction discusses the most used approaches, but
does not represent an exhaustive list.
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as detailed in (Gaonkar and Davatzikos 2012). In addition,
this approach is computationally expensive.

Some authors have proposed the use of sparse models,
like LASSO (Tibshirani 1996) or Elastic-net (Zou and
Hastie 2005), as they are able to estimate solutions for which
only few voxels are considered relevant. Structured sparse
models, such as sparse Total Variation (TV, Baldassarre et al.
2012) and Graph Laplacian Elastic Net (GraphNET, Grosenick
et al. 2011), allow incorporation of domain knowledge through
additional spatial and temporal constraints and carry the prom-
ise of being more interpretable than non-structured sparse
methods, such as LASSO or Elastic Net methods. A drawback
of the sparse models is that the solution is highly dependent on
the way the prior or regularization term is specified. Often
models with different regularization terms (e.g. LASSO,
Elastic-net, Total Variation) achieve similar accuracies for dif-
ferent solutions (Baldassarre et al. 2012). In this sense, some
authors have argued that the quality of spatial patterns extracted
from sparse models cannot be assessed purely by focusing on
prediction accuracy (Rasmussen et al. 2012).

Feature selection based on stability theory (Meinshausen
and Bühlmann 2010) has also been proposed as a mapping
approach by identifying a subset of stable features that are
relevant to the predictive model (Rondina et al. 2014). This
approach relies on the idea of choosing relevant features that
are stable under data perturbation. Data are perturbed by iter-
atively sub-sampling both features and examples. For each
perturbation, a sparse method (e.g. LASSO) is applied to a
sub-sample of the data. After a large number of iterations, all
features that were selected in a large fraction of the perturba-
tions are selected. Although this approach has the potential to
identify reliable relevant features for the predictive models, it
does not account for prior knowledge about brain anatomy
neither for the spatial correlation among the voxels.

Another approach to tackle the interpretability of machine
learning models is to use previous knowledge about brain
anatomy to segment the whole brain multivariate pattern into
regional patterns. This strategy was used in (Schrouff et al.
2013b): the authors proposed local averages of the model
weights according to regions defined by the Automated
Anatomical Labelling (AAL, Tzourio-Mazoyer et al. 2002)
atlas. Regions were then sorted according to their proportional
contribution to the weight vector or decision function, thereby
providing a ranking of the regions. Even though the results of
this study showed that regions ranked in the top 10 (arbitrarily
fixed threshold) were in line with previous univariate studies,
this approach does not solve the issue of thresholding since for
non-sparse machine learning models2 (e.g. Support Vector
Machines, Kernel RidgeRegression) all brain regions considered

will have some contribution to the model’s predictions.
Investigating regional contribution through post-hoc summariza-
tion was also performed in Hanke et al. 2009a. In their work, the
authors matched probabilistic weight maps with anatomical in-
formation to derive a ‘specificity’ measure for each region of
interest. This approach however suffers from the same limitation,
i.e. regions with low sensitivity are part of the decision function
and cannot be pruned.

Multiple Kernel Learning (MKL, Bach et al. 2004) ap-
proaches have been previously applied in the context of neuro-
imaging to e.g. perform multi-modal diagnosis of Alzheimer
disorders (Hinrichs et al. 2011; Zhang et al. 2011), attention
deficit hyperactivity disorder (ADHD) children (Dai et al.
2012), predict cognitive decline in older adults (Filipovych
et al. 2011) and discriminate three Parkinsonian neurological
disorders (Filippone et al. 2012). In (Filippone et al. 2012), each
kernel corresponded to either an image modality or an anatom-
ically labelled region. The authors used the kernel weights to
analyze the relative informativeness of different image modal-
ities and brain regions. However, the considered algorithm was
not sparse in the kernel combination, making it difficult to
determine a subset of regions with highest contribution to the
model. Our work differs from Filippone et al. 2012 as we use
MKL as an exploratory approach to find a (sparse) subset of
informative regions for a predictive model, considering all brain
regions a priori defined by a whole brain template.

Proposed Approach

The proposed framework combines anatomical/functional
parcellations of the brain, MKL and sparsity. More specifically,
we use a sparse version of theMKL algorithm to simultaneously
learn the contribution of each brain region, previously defined by
an atlas, to the decision function. As the considered technique is
sparse, some kernels (here corresponding to brain regions) will
have a perfectly null contribution to the final decision function.
The resulting weight maps at the voxel and region levels will
hence be sparse and do not need to be thresholded. In summary,
here we investigate the introduction of anatomical or functional a
priori knowledge in a MKLwhole brain model and compare the
results when using different atlases, both in terms of model per-
formance and obtainedweight maps. The proposed approach has
two potential benefits: (1) it can lead to improved overall gener-
alisation performance when the grouping structure imposed by
the atlas is consistent with the data; (2) it can identify a subset of
relevant brain regions for the predictive model. It is important to
note that our approach does not provide information about why a
specific feature has a high weight (or contribution) to the model
(Haufe et al. 2014, Weichwald et al. 2015) but rather aims at
identifying a (sparse) list of regions that contribute to the model’s
predictive function. The approach is illustrated using three differ-
ent atlases (described in the methods section) and three
public datasets: the functional MRI (fMRI) Haxby dataset

2 Note that by sparsemachine learningmodels wemean models that are sparse
in the feature space (e.g. LASSO, Elastic Net) and not models that are sparse in
the kernel space (e.g. Support Vector Machine).
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(Haxby et al. 2001) which investigates the differences in brain
activity when viewing different types of visual stimuli, the fMRI
‘face’ data set (Henson et al. 2002) which studies changes in
brain activity when looking at images of faces (famous, non-
famous and scrambled), and the structural MRI (sMRI) OASIS
dataset (Open-Access Series of Studies, oasis-brains.org; Marcus
et al. 2007), which consists of structural images obtained from
non-demented and demented older adults. The method was im-
plemented in PRoNTo (http://www.mlnl.cs.ucl.ac.uk/pronto/).

Materials and Methods

Datasets and Pre-Processing

Three public datasets were used to illustrate the proposed ap-
proach. The first one has been previously used in pattern rec-
ognition for neuroimaging studies (Haxby et al. 2001; Hanson
et al. 2004; O’Toole et al. 2005) and for describing the func-
tionalities of different software toolboxes (Hanke et al. 2009a,
b; Schrouff et al. 2013a). The data consist of a block design
fMRI experiment acquired using a visual paradigm, where the
participants passively viewed grey scale images of eight cate-
gories: pictures of faces, cats, houses, chairs, scissors, shoes,
bottles, and control, non-sense images. As an illustrative ex-
ample, we chose to analyse the data from a single subject
(participant 1), consisting of 12 runs, each comprising eight
blocks of 24 s showing one of the eight different object types
and separated by periods of rest. Each image was shown for
500 ms followed by a 1500 ms inter-stimulus interval. Full-
brain fMRI data were recorded with a volume repetition time
of 2.5 s. Each category block therefore corresponds approxi-
mately to nine scans, separated by six scans of rest. For further
information on the acquisition parameters, please consult the
original reference (Haxby et al. 2001). The data were pre-
processed using SPM8 (http://www. Fil.ion.ucl.ac.uk/spm/
software/). We motion corrected, segmented and normalized
the scans according to the MNI template. No smoothing was
applied to the data.3 For proof of concept, we chose to focus
the analysis on the comparison between viewing ‘faces’ and
viewing ‘houses’, since it was reported as leading to high
accuracy values and precise anatomical localization of the
most discriminative regions (Schrouff et al. 2013a).
Therefore we expected visual areas to have a high contribution
to the predictive model.

The second dataset consisted of a single subject event-
related fMRI data freely available from the SPMwebsite com-
prising a repetition priming experiment, where two sets of 26
familiar (famous) and unfamiliar (non-famous) faces were
presented against a checkerboard baseline. A random

sequence of two presentations of each face was created from
each set. The faces were presented for 500 ms with a stochastic
distribution of stimulus onset asynchrony (SOA) determined by
a minimal SOA of 4.5 s and 52 randomly interspersed null
events. The subject was asked to make fame judgments by
making key presses. Whole brain fMRI data were recorded
with a volume repetition time of 2 s. For further information
on the acquisition parameters, please consult the original work
(Henson et al. 2002). The data were pre-processed using SPM8.
This included motion correction, segmentation, normalization
to the MNI template and smoothing ([8 8 8] mm). To classify
famous versus non-famous faces we first fitted a GLM to all
voxels within the brain, using SPM8. The design matrix com-
prised as many columns as events (all famous and non-famous
faces presented, in order to obtain one beta image per event)
plus the movement parameters and the mean regressor. The
betas corresponding to the second repetition of famous and
non-famous faces were used for classification.

The third dataset, the Open-Access Series of Studies
(OASIS, oasis-brains.org; Marcus et al. 2007), illustrates
the potential of the proposed methodologies in clinical
settings. It consists of structural MRI images from non-
demented and demented older adults. In the OASIS
dataset, patients were diagnosed with dementia using the
Clinical Dementia Rating (CDR) scale as either non-
demented or with very mild to mild Alzheimer’s disease
(Morris 1993). A global CDR of 0 indicates no dementia
(healthy subjects) and a CDR of 0.5, 1, 2 and 3 represent
very mild, mild, moderate and severe dementia respective-
ly. The patients were age and gender matched with the
controls, such that our analysis comprises the structural
MRI images from fifty patients diagnosed with very mild
and mild dementia (M = 75.3, SD = 6.8, 28 females) and
fifty healthy controls (M = 75, SD = 6.7, 28 females). The
OASIS data were also pre-processed using SPM8. The
first step was to average all the repeats for each session
followed by a grey matter segmentation, then, the seg-
mented images were normalized and smoothed with a
Gaussian kernel with a full width at half maximum
(FWHM) of [8 8 8] mm.

Additional pre-processing was applied before the machine
learning modelling. The data were linearly detrended (fMRI
data only, polynomial detrend of order 1). In order to ensure
that the MKL and SVMmodels were based on the same set of
voxels we built one binarymask from each atlas. In the case of
the fMRI data, the mask defined by the considered atlas, was
applied to each image to select the voxels used as a feature in
the modelling. In the case of the structural MRI data, we first
selected voxels that had a probability of being located in grey
matter equal or above 30% in all subjects and then applied a
mask defined by the considered atlas to select the voxels. For
all datasets a linear kernel was built for each region as defined
by the considered atlas.

3 As this is a single subject data set, co-registration, normalization and smooth-
ing are not a necessary step.
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Three atlases were used to investigate the effect of using
different anatomical or functional priors in the MKL model
(Fig. 1):

(1) The Automated Anatomical Labeling (AAL, Tzourio-
Mazoyer et al., 2002) atlas, built using the WFU-
PickUp Atlas toolbox of SPM and consisting of 116
brain regions. This atlas is a widely used manual
macroanatomical parcellation of the single subject
MNI-space template brain.

(2) The Brodmann + atlas, built using the WFU-PickUp
Atlas toolbox of SPM and consisting of 75 regions.
This atlas includes 47 out of the 52 areas defined by K.
Brodmann, based on cytoarchitecture or histological
structure, as well as other structures and nuclei.

(3) The atlas built from the Human Connectome Project
(HCP, Glasser et al. 2016). This multi-modal parcellation
(atlas) is probably the most detailed cortical in-vivo
parcellation available to date. The HCP MMP 1.0 has
been built using surface-based registrations of multimod-
al MR acquisitions and an objective semi-automated
neuroanatomical approach to delineate 180 areas per
hemisphere bounded by sharp changes in cortical archi-
tecture, function, connectivity, and/or topography in a
group average of 210 healthy young adults from the
HCP cohort. It comprises 180 bilateral regions.

In all MKL models, the kernels were mean centred and
normalized before classification, taking the training set/test
set split into account. Mean centring the kernel corresponds
to mean centre the features across samples (i.e. it is equivalent
to subtracting the mean of each feature/voxel, computing the
mean based on the training data), while normalizing the kernel
corresponds to dividing each feature vector (i.e. each sample)
by its norm. The later operation is particularly important when
using MKL approaches to compensate for the fact that the
different kernels might be computed from different numbers
of features (i.e. different region sizes). This operation can hence
be seen as giving an equal chance to all regions, independently
of their sizes. Both operations were considered as pre-
processing steps and can affect the model performance and

obtained weight maps. For single kernel modelling (i.e. SVM
models), the kernels were first added to provide the whole brain
feature set, then mean centred. It should be noted that adding
linear kernels is equivalent to concatenating the features/voxels.
The resulting kernel is not normalized as this is not a common
operation for single kernel modeling and often leads to de-
creases in model performance (unpublished results).

Machine Learning, Modelling

The two classifiers considered in the present work are
based on binary SVM machines (Boser et al., 1992).
More specifically, single kernel analyses were conducted
using the LIBSVM implementation of SVM (Chang and
Lin 2011), while multi-kernel learning was performed
using the SimpleMKL package (Rakotomamonjy et al.,
2008), which resorts to the SimpleSVM algorithm
(Canu et al., 2003). The framework of those two proce-
dures is described below:

Single Kernel Modelling

Mathematically, let X∈Rn,l, the data matrix of samples (n) by
features (l) and y∈Rn the corresponding labels, where each
row xi corresponds to a feature vector and yi corresponds to
its respective label. Supervised learning approaches for binary
classification, such as the SVM, estimate a decision function f,
which separates the data into different classes defined by the
labels. In a linear model, f is of the form (Eq. 2.1):

f xið Þ ¼ w; xið Þ þ b ð2:1Þ

With <,> representing the dot product between the weight
vector w ∈ Rl and a feature vector xi, and b being a bias term.

The decision function f of an SVM is obtained by solving
the following optimisation problem (Boser et al., 1992):

minimize 1
2 ∥w∥

2 þ C
X
i

ξisubject to yi 〈w; xi〉þ bð Þ≥1 − ξi ∀iξi≥0 ∀i ð2:2Þ

Fig. 1 Illustration of the three atlases used, color-coded according to region numbers. The AAL atlas is displayed on the left, the Brodmann atlas in the
middle and the HCP atlas on the right. Each atlas includes a different number of voxels and regions. Cross-hair positioned at [0,0,0]
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Where i indexes the samples, from 1 to n, C corresponds to
the soft-margin parameter, ∑iξi is an upper-bound on the
number of training errors and b is a bias term. The solution
of the optimisation problem can be written as (please see
appendix A1 for details):

w ¼ ∑n
i¼1yiαixi ð2:3Þ

Substituting w into Eq. 2.1 and considering the linear ker-
nel definition K(x, xi) = x, xi , we can re-write the decision
function in its dual form as

f xið Þ ¼ ∑n
i¼1αiK x; xið Þ þ b ð2:4Þ

Where αi and b represent the coefficients to be
learned from the examples and K(x, xi), the kernel, is
a function characterising the similarity between samples
x and xi.

An illustration of whole brain single kernel modelling is
presented in Fig. 2.

Multiple Kernel Learning

In multiple kernel learning, the kernel K(x, x′) can be consid-
ered as a linear combination of M Bbasis^ kernels (Lanckriet
et al. 2004), i.e.:
K x; x

0
� �

¼ ∑M
m¼1dmKm x; x

0
� �

; with dm≥0;∑M
m¼1dm ¼ 1 ð2:5Þ

Therefore, the decision function of an MKL problem can
be expressed in the form:

f xið Þ ¼ ∑m wm; xið Þ þ b ð2:6Þ

The considered multiple kernel learning approach is based
on the primal formulation of an SVM binary classifier
(Rakotomamonjy et al., 2008) and the solution can be obtain-
ed by solving the following optimisation problem:

minimize
1

2

X
m

1

dm
∥wm∥2 þ C

X
i

ξi subject to

yi
X
m

wm; xi þ b

 !
≥1−ξi ∀iξi≥0 ∀i

X
m

dm ¼ 1; dm≥0 ∀m

ð2:7Þ

Fig. 2 Illustration of the single kernel SVM classification procedure. For
each image i, the signal in each voxel is extracted and concatenated in the
feature vector xm,i according to the M different regions defined by the
AAL atlas. Each vector is associated to a label yi (+1 or −1 in the case of
binary classification). A linear kernel Km is then built from the feature

vectors for each region m (m = 1, …, M). The computed kernels Km are
added to obtain a whole brain linear kernel K. The kernel and its
associated labels are used to train the model and estimate the model
parameters w. The model can then be applied to new/unseen data x* to
obtain an associated predicted label
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With dm representing the contribution of each kernelKm to the
model. Therefore, both dmand wm have to be learned simulta-
neously. In this formulation, proposed by (Rakotomamonjy et al.,
2008), the L1 constraint on dm enforces sparsity on the kernels
with a contribution to the model. Furthermore, it results in a
convex optimisation problem that can be solved using a simple
SVMmachine onK and gradient descents to find dm. For further
details, please refer to (Rakotomamonjy, et al., 2008).

For the considered MKL optimisation problem the weights
wm can be expressed as (please see appendix A1 for details)

wm ¼ dm ∑
n

i¼1
yiαixi ð2:8Þ

In the present case, MKL can be seen as a feature selection
technique, i.e. each kernel corresponds to a different subset of
features (corresponding to the labelled regions). The consid-
ered approach is illustrated in Fig. 3. However, MKL can
potentially be used as a model selection strategy, where each
kernel corresponds to a different model (e.g. different param-
eter of a non-linear kernel, Rakotomamonjy et al., 2008). In a
neuroimaging context, MKL approaches were mostly used to
combine heterogeneous sources of features, such as different
imaging modalities (e.g. Filippone et al., 2012) or imaging

with psychological testing (e.g. Filipovych et al., 2011).
Such combination of multiple image modalities can also be
performed using the MKL implementation in PRoNTo v2.0.

Assessing Performance

We performed a nested cross-validation procedure to train the
model and optimise the model’s hyperparameters. The exter-
nal loop was used for assessing the model’s performance and
the internal loop was used for optimising the models
hyperparameters (soft-margin parameter, C, for the SVM
and SimpleMKL). For all models (MKL and SVM) the
hyperparameter range was [0.01, 1, 100]. The reason for the
limited number of tested values was the high computational
cost of MKL with parameter optimisation. For the Haxby
dataset we used a leave-one-block-out cross-validation for
the external loop and the internal loop. For the ‘face’ dataset,
we performed a leave-one-example-per-class-out cross-vali-
dation, for the external and internal loop. For the OASIS
dataset we used a k-folds cross-validation on subjects-per-
group, with k = 10 folds for the external loop (i.e. leaving
10% of the subjects out, half of them being demented, half
being healthy) and k = 5 folds for the internal loop. Model

Fig. 3 Illustration of the multiple kernel learning classification
procedure. For each image i, the signal in each voxel is extracted and
concatenated in the feature vector xm,i according to the M different
regions defined by the AAL atlas. Each vector is associated to a label yi
(+1 or −1 in the case of binary classification). A linear kernel Km is then
built from the feature vectors for each region m (m = 1, …, M). The

kernels and their associated labels are used to train the model. First,
model parameters wm are estimated to define a decision function fm per
kernel. The weight of each decision function, dm, is then estimated to
provide a final decision function f(x). The model can then be applied to
new/unseen data x* to obtain an associated predicted label, based on
feature vectors defined using the same atlas, x1*, x2*,…, xM*
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performance was assessed by balanced accuracy values, com-
puted as the average of the class accuracies (corresponding to
the sensitivity and specificity). A p-value was associated to
each accuracy measure using permutation tests: the labels of
the examples in the training set were randomly shuffled (tak-
ing the block structure of the datasets into account) before
building a model. Results were considered significant when
the obtainedmodels performed equally or better than the mod-
el without shuffling the labels at most 5% of the time across
100 permutations (i.e. p-value < 0.05).

Weight Map

As shown in Eq. 2.8 the models weights (w and wm),
representing the contribution of each feature (here voxel) for
the decision function or predictive model can be explicitly
computed and plotted as brain images in order to display the
decision function of the model based on previously defined
brain regions. To avoid scaling issues between weight maps
(e.g. from different folds or data sets), the resulting weight
maps were normalized (i.e. w/||w||2).

As our MKL approach can be seen as a hierarchical model
of the brain, it is possible to derive weights at two levels: (1)
the weight or contribution of each region to the decision func-
tion, i.e. the values of dm, and (2) the weights for each voxel
(see appendix A2 for the derivation of the weights per voxel).
The weights at the voxel level can provide insights on the
homogeneity of the discriminative patterns within the regions.
Regions were ranked according to their contribution to the
model (i.e. dm), averaged across folds. Only regions with a
positive (i.e. non-null) contribution to the decision function f
are displayed (i.e. #dm > 0).

Stability of the Regions’ Contribution

To investigate whether the selected regions are stable across
the folds of the cross-validation (i.e. variability in the training
data), we computed the Breproducibility^ of the regions’ rank-
ing. Firstly, the ranking of a region is computed within each
fold by sorting the kernel contributions in ascending order.
Regions with a null contribution were assigned a null rank.
The minimum value of the ranking is hence 0, while its max-
imum corresponds to the number of regions. The Expected
Ranking (ER) is computed as the average of the ranking
across folds. As in (Kia et al. 2016), we compute the cosine
of the angle between the expected ranking (ER) and the rank-
ing in each fold and estimate the ‘reproducibility’ of the rank-
ing as the expectation of the cosine. This measure provides an
estimation of the ‘distance’ between the ranking in each fold
and the average ranking.

More specifically, if we assume an angle αj between ER
and Rj, the ranking in fold j (j = 1… number of folds), we have
(Eq. 2.9):

cos α j
� � ¼ ER� Rj

∥ER∥� ∥Rj∥
ð2:9Þ

The reproducibility ψR of the ranking (0 < =ψR < =1) is
then (Eq. 2.10):

ψR ¼ E cos α j
� �� �

; ∀ j ¼ 1…number of folds ð2:10Þ

The closer this number is to 1, the more stable the solution
is across folds. It is important to note that these values are
meaningful only if the corresponding model performs signif-
icantly above chance level.

Comparison of Atlases

We finally compare different priors (i.e. atlases) in terms of
obtained weight maps. To this end, we computed the Pearson
correlation between the weight maps at the voxel level of each
atlas, for overlapping voxels (i.e. voxels considered for
modeling in both atlases). We then obtained three values of
correlation, one for each pair of atlas. The closer this value is
to one, the more similar the two considered weight maps are.
The significance of the obtained correlation values was tested
using 1000 non-parametric permutations. As correlation mea-
sures do not take into account null values, we also estimated the
proportion of null weights that is shared by both atlases (i.e.
voxels with 0 weight in both atlases, the intersection of null
values) compared to the total number of overlapping voxels.

Results

Haxby Dataset

Model Performance

Table 1 shows that the model can discriminate with high accu-
racy if the subject was viewing images of faces versus images
of buildings, for all models and atlases. This was expected in
view of the previous performances obtained using this dataset
(e.g. Hanke et al. 2009a; Schrouff et al. 2013a). Overall, the
MKL models perform better than the SVM models, with the
MKL-HCP model leading to the best performance. For both
MKL and SVM, the Brodmann atlas leads to a slight decrease
in balanced accuracy when compared to the AAL and HCP
atlases. Please note that using only the left and right fusiform
regions as defined by the AAL atlas leads to a balanced accu-
racy of 99.5% (108/108, 107/108). This shows that these visual
areas carry a lot of predictive information. These regions are
therefore expected to have a high model contribution and ER.
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Stability of the Regions’ Contribution

For each MKL model, we present the number of regions se-
lected (i.e. with a non-null contribution across folds) in
Table 2, as well as the model’s reproducibility.

For this dataset, all models are quite sparse, with a relatively
low number of regions with a non-null contribution to the mod-
el. The models with the highest accuracies (namely AAL and
HCP) also lead to the highest reproducibility.

Comparison of Weight Maps Across Atlases

The weight maps for each atlas (at the voxel level) are
displayed in Fig. 4 and the list of selected regions with
non-null contributions for the MKL models for each atlas
are displayed in appendices Tables 7, 8 and 9, along with
their contributions dm and expected ranking ER. We can
see that the fusiform regions (left and right) are ranked
highly in the MKL-AAL model (ranks 115/116 and 103/
116, respectively). Similarly, the MKL-Brodmann model
selected area 19 (visual cortex, V3, V4 and V5) with
highest rank (70/74), and area 37 (overlapping with the
fusiform gyrus) with rank (50/74). In contrast, the MKL-
HCP model selected ventromedial areas 1 and 2 with
ranks (180/180) and (170/180), respectively.

In order to verify if the weight maps for the different MKL
models were similar we computed the pairwise correlation
coefficient between the weight vectors for the different
models. The weight vectors for the AAL-MKL and
Brodmann-MKL models have a correlation coefficient of
ρ = 0.5330 (p = 9.9e−4), with 79.16% of voxels with a null
weight in both models. The AAL-MKL and HCP-MKL
weight vectors have a correlation coefficient of ρ = 0.3470
(p = 9.9e−4) and shared 83.05% of null weights, while the
Brodmann-MKL and HCP-MKL weight vectors have a cor-
relation coefficient of ρ = 0.5402 (p = 9.9e−4) with 86.51% of
common null weights. The weight vectors for the two models
leading to the highest performance and reproducibility are
hence significantly correlated.

Face Dataset

Model Performance

Table 3 displays model performance for the MKL and SVM
models considered. Most of the models were able to discrim-
inate if the subjects were looking at ‘famous’ vs ‘non-famous
faces’, however the accuracies were lower than the ones ob-
served for the Haxby dataset. For this dataset there is an im-
provement in performance for the MKL models based on the
AAL and Brodmann atlases with respect to the SVM models.
The Brodmann-MKL model has the best performance across
the MKL models. Results for the HCP-MKL and AAL-SVM
models are not significant.

Stability of the Regions’ Contribution

For each MKL model, we present the number of regions se-
lected (i.e. with a non-null contribution across folds) in
Table 4, as well as the model’s reproducibility.

For this dataset, between 35% and 48% of the regions were
selected, resulting in moderate sparsity. As for the Haxby
dataset, the atlases leading to the best performance (namely
AAL and Brodmann) lead to the highest reproducibility.

Comparison of Weight Maps Across Atlases

The weight maps for each atlas (at the voxel level) are
displayed in Fig. 5 and the list of selected regions with non-
null contributions for the MKL models for each atlas are
displayed in appendices Tables 10, 11 and 12, along with their

Table 1 Model performance for
the MKL and SVM models
distinguishing between ‘faces’ (F)
and ‘houses’ (H), for each atlas
(in %, with p-value)

Model Atlas Balanced accuracy
(%)

True positives (Faces)/
Total positives

True negatives (Houses)/
Total negatives

MKL AAL 98.15 (p = 0.01) 107/108 105/108

Brodmann 96.30 (p = 0.01) 104/108 104/108

HCP 100.0 (p = 0.01) 108/108 108/108

SVM AAL 93.06 (p = 0.01) 101/108 100/108

Brodmann 91.20 (p = 0.01) 96/108 101/108

HCP 94.91 (p = 0.01) 100/108 105/108

True positives (resp. negatives) represent the class accuracy for faces (resp. houses) samples classified correctly as
faces (resp. houses). Note that the difference between the SVMmodels is only the mask used to select the voxels,
which is based on the atlas

Table 2 Number of regions selected across folds and model
reproducibility, for each MKL model

Model Atlas ROIs (/total) Reproducibility

MKL AAL 14 (/116) 0.9415

Brodmann 21 (/74) 0.8690

HCP 13 (/180) 0.9396
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contributions dm and expected ranking ER. The regions with
the highest expected rankings in the AAL-MKL model were
the precentral gyrus (ER = 105/105), the cingulum (ER = 104/
105), the occipital gyrus (ER = 99/105), the pallidum
(ER = 99/105) and the inferior frontal cortex (ER = 98/105).
The MKL-Brodmann model selected areas 31 (portion of the
posterior cingulate cortex, ER = 68/69), 5 (primary somato-
sensory cortex, ER = 67/69), substantia nigra (ER = 66/69), 1
(postcentral gyrus, ER = 65/69) and 44 (inferior frontal gyrus,
ER = 65/69) with highest expected rankings. The MKL-HCP
model selected somatosensory cortex (Area 2, ER = 180/180),
precuneus (ER = 177/180) and premotor regions (Dorsal area
6, ER = 176/180) with highest expected ranking.

The correlation coefficient between the weight vectors for
the AAL-MKL and Brodmann-MKL models is ρ = 0.1717
(p = 9.9e−4), with 34.23% of voxels with a null weight in both
atlases. The AAL-MKL andHCP-MKLweight vectors have a

correlation coefficient of ρ = 0.2760 (p = 9.9e−4) and shared
44.43% of null weights, while the Brodmann-MKL and HCP-
MKL weight vectors have a correlation coefficient of
ρ = 0.1550 (p = 9.9e−4) with 33.00% of common null weights.
For this dataset, the similarity between weight maps is much
lower than for the Haxby dataset, with most null weights be-
ing so in only one atlas.

OASIS

Model Performance

Classifying healthy versus demented patients (with mild and
very mild dementia) led to the accuracy values presented in
Table 5. All models led to significant classification results.
The results show that SVM models perform better than the

Fig. 4 Weight images at the voxel level for the ‘faces’ versus ‘houses’
comparison based on the Haxby dataset (average across folds), for each
model considered. For the MKL models (top row), voxels in green

(AAL), yellow (Brodmann) or orange (HCP) have a null contribution to
the model. For each atlas, the cross-hair was positioned on the region with
the highest MKL model contribution across folds (i.e. dm)

Table 3 Model performance for
the MKL and SVM whole brain
models distinguishing between
‘famous faces’ (F) and ‘non-
famous faces’ (N)

Model Atlas Balanced accuracy
(%)

True positives (F)/ Total
positives

True negatives (N)/ Total
negatives

MKL AAL 73.08 (p = 0.01) 20/26 18/26

Brodmann 75.00 (p = 0.02) 19/26 20/26

HCP 67.31 (p = 0.11) 19/26 16/26

SVM AAL 65.38 (p = 0.05) 17/26 17/26

Brodmann 67.31 (p = 0.04) 18/26 19/26

HCP 67.31 (p = 0.04) 18/26 18/26

True positives (resp. negatives) represent the class accuracy for ‘famous faces’ (resp. ‘non-famous faces’) samples
classified correctly as ‘famous faces’ (resp. ‘non-famous faces’). Note that the difference between the SVM
models is only the mask used to select the voxels, which is based on the atlas
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MKL models for this dataset, and that the Brodmann atlas led
to highest performance for both MKL and SVM models.

Stability of the Regions’ Contribution

For each MKL model, we present the number of regions se-
lected (i.e. with a non-null contribution across folds) in
Table 6, as well as the model’s reproducibility.

The decision function seems to be based on a more distrib-
uted set of regions for this dataset. This was also supported by
the higher model performance of SVM compared to MKL,
since the SVM is a non-sparsemodel. As observed in the other
datasets, the model leading to the highest accuracy (i.e. using
Brodmann atlas) leads to the highest reproducibility.

Comparison of Weight Maps Across Atlases

Theweight maps for each atlas (at the voxel level) are displayed
in Fig. 6 and the list of selected regions with non-null

contributions for the MKL models for each atlas are displayed
in appendices Tables 13, 14 and 15, along with their contribu-
tions dm and expected ranking ER. The regions with highest
ranks in the MKL-AAL model include frontal regions
(ER = 115/116), lingual gyrus (ER = 112/116), thalamus
(ER = 108/116) and precuneus (ER = 101/116). The hippocampi
were ranked 89/116 for right hippocampus and 61/116 for left
hippocampus. The MKL-Brodmann model selected areas 7 (in-
cluding the precuneus, ER = 63/69), 46 (including parts of the
middle and inferior frontal gyrus, ER = 62/69), and 6 (premotor
cortex and supplementarymotor area, ER= 62/69)with high ER.
The hippocampus had an expected ranking of 21/65. The regions
with highest expected ranking according to the MKL-HCP re-
gions were the hippocampus (ER = 178/180), posterior cingulate
cortex (Area 23c, ER = 176/180) and part of lateral temporal
cortex (Area TE2 anterior, ER = 152/180).

The correlation coefficient between the weight vectors at
the voxel level for the AAL-MKL and Brodmann-MKL
models is ρ = 0.4213 (p = 9.9e−4), with 7.79% of voxels with
null weights in both atlases. The AAL-MKL and HCP-MKL
weight vectors have a correlation coefficient of ρ = 0.3507
(p = 9.9e−4) and shared 18.15% of null weights, while the
Brodmann-MKL and HCP- weight vectors have a correlation
coefficient of ρ = 0.4632 (p = 9.9e−4) with 9.43% of common
null weights. For this dataset, there were more similarities
between the AAL-MKL and the Brodmann-MKL models
and between the Brodmann-MKL and the HCP-MKL models
than between the AAL-MKL and the HCP-MKL models,
which both have lower accuracies.

Fig. 5 Weight images at the voxel level for the ‘famous’ versus ‘non-
famous’ comparison based on the Bfaces^ dataset (average across folds),
for eachmodel considered. For theMKLmodels (top row), voxels in light

blue have a null contribution to the model. For each atlas, the cross-hair
was positioned on the region with the highest MKL model contribution
across folds (i.e. dm)

Table 4 Number of regions selected across folds (compared to the total
number of regions considered) and model reproducibility, for each MKL
model

Model Atlas ROIs (/total) Reproducibility

MKL AAL 37 (/105) 0.8846

Brodmann 33 (/69) 0.8830

HCP 66 (/180) 0.8091
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Discussion

In this work, we present a novel approach to introduce ana-
tomical or functional information in whole-brain machine
learningmodels. Our procedure combines a priori information
about the brain anatomy or function from an atlas withMultiple
Kernel Learning (MKL, Rakotomamonjy et al., 2008), thereby
estimating the contribution of each previously defined region of
interest for the predictive model. Furthermore, the considered
algorithm is sparse in the number of kernels (L1-norm con-
straint), therefore it selects a subset of regions that carry predic-
tive information. Our approach results in a list of pre-defined
brain regions, which can be ranked according to their contribu-
tion to the model. As previously mentioned, the obtained list of
regions does not need to be thresholded since the regions which
were not selected by the model in any fold have a null contri-
bution to the model (i.e. dm = 0). This is a clear asset over
techniques such as summarising region weights post-hoc
(Schrouff et al., 2013b) or the locally multivariate searchlight
approach (Kriegeskorte et al., 2006). In the proposed approach,
there is indeed no need to apply statistical tests to select regions
with significant contributions and to apply corrections for mul-
tiple comparisons.

Our results show that the MKL model combining anatomi-
cally or functionally labelled regions had higher performance in
comparison with the SVM model for the two fMRI datasets
considered but not for the structural one (OASIS). These results
suggest that the model assumptions of the MKL implementa-
tion considered (i.e. only a small subset of regions carry predic-
tive information) is adequate for the fMRI datasets but not for
the OASIS dataset. However, it is important to notice that the

MKL results are also affected by the choice of the atlas (or the
grouping structure), with some atlas being better than others
depending on the dataset considered. The HCP atlas led to the
best performance for the Haxby dataset, the AAL led to the best
performance for the faces data set, while the Brodmann atlas led
to best performance for the structural dataset. There was also a
difference in performance for the SVM model as the voxels
included for modeling are different from one atlas to another.

In terms of selected regions, the list of selected regions was
dependent on the choice of the atlas. The different atlases considered
have different brain coverage and very different parcellation of re-
gions, therefore differences in the selection of regions are expected.
In addition, the sparsity constraint of the MKL model might also
contribute for the difference between the selected regions across
atlases, as regions with correlated information might not be selected
as being relevant for the predictive model.

As previously mentioned in the introduction, and discussed in
previous works (Haufe et al., 2014, Weichwald et al., 2015), mul-
tivariate predictive models cannot provide a clear answer to why a
specific region/feature has a high contribution to the model.
Alternative approaches (e.g. univariate tests, correlation analyses,
…) should be used to investigate why a set of regions has predic-
tive information. In this work, we assess whether the highest-
ranking regions are ‘meaningful’ by referring to the literature on
the cognitive neuroscience and clinical issues they tackle.

Considering the Haxby dataset, the MKLmodels were able
to discriminate with high accuracy if the subject was viewing
images of faces versus images of buildings regardless of the
atlas used. All MKL models identified regions that comprise
the core system for visual processing as informative (Haxby
et al., 2000 and Haxby et al. 2001). Nonetheless, the HCP
atlas led to the best performance, reaching 100% balanced
accuracy. The visual brain region with the highest contribution
for HCP-MKLmodel was the ventro-medial visual area on the
ventral surface of each hemisphere. It should be noted that this
region has not been previously well parcellated in either the
human or the macaque, usually being either left unparcellated
or parts of it being included in other areas (Glasser et al., 2016).
Surprisingly, the HCP-MKLwas not able to select the fusiform
face area. The way the visual system is differently parcellated in

Table 5 Model performance for
the MKL and SVM whole brain
models distinguishing between
‘demented patients’ (D) and
‘control’ (C)

Model Atlas Balanced accuracy (%) True positives (D)/
Total positives

True negatives (C)/
Total negatives

MKL AAL 66.00 (p = 0.01) 34/50 32/50

Brodmann 68.00 (p = 0.01) 34/50 34/50

HCP 65.00 (p = 0.01) 34/50 31/50

SVM AAL 67.00 (p = 0.01) 32/50 35/50

Brodmann 70.00 (p = 0.01) 33/50 37/50

HCP 63.00 (p = 0.01) 29/50 34/50

True positives (resp. negatives) represent the number of demented (resp. non-demented) patients classified cor-
rectly as demented (resp. non-demented). Note that the difference between the SVMmodels is only the mask used
to select the voxels, which is based on the atlas

Table 6 Number of regions selected across folds and model
reproducibility, for each MKL model

Model Atlas ROIs (/total) Reproducibility

MKL AAL 73 (/116) 0.7769

Brodmann 46 (/65) 0.8862

HCP 85 (/180) 0.7767
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the three atlases might explain the differences observed in the
balanced accuracy for the MKL models based on different
atlases. For example, while the fusiform gyrus, selected as a
region with high contribution by AAL-MKL model, is a

relatively large region, in contrast, the HCP atlas provides a
more detailed segmentation of the visual areas into smaller
regions.

For the face dataset, both the AAL-MKL and the
Brodmann-MKL models were able to discriminate if the sub-
jects were looking at famous faces versus unfamiliar faces.
Surprisingly, the results for the HCP-MKLwere not statistical-
ly significant according to the permutation test. A possible
explanation for these results is the very small sample size (only
26 images per class), which can lead to very high variance in
the model’s performance, particularly when the leave-one-out
cross validation framework is used (Varoquaux et al., 2017).
Overall, the AAL-MKL model was able to identify regions
that play an important role in visual processing such as cuneus,
occipital regions and lingual gyrus and the Brodmann-MKL
model was able to identify visuospatial area (BA7) and so-
matosensory association cortex (Minnesbusch et al., 2009;
Liu et al. 2014). The selected regions for both atlases also
included regions that have been implicated in recollection of
episodic memories such as the precuneus and the posterior
cingulate, (Nielson et al., 2010). In addition, prefrontal regions
including the dorsolateral and ventromedial prefrontal cortex
for Brodmann and the orbitofrontal cortex for both atlases were
also selected. These regions have been found to be important
for processing famous faces (Nielson et al., 2010; Sergerie
et al. 2005; Leveroni et al., 2000), and may relate to the search
and retrieval of person identity semantic information. The
Brodmann-MKL model led to better performance than
the AAL-MKL model. Interestingly, the posterior cingulate

Fig. 6 Weight images at the voxel level for the ‘demented’ versus ‘non-
demented’ comparison based on the Oasis dataset (average across folds),
for each model considered. For the MKL models (top row), voxels in

green have a null contribution to the model. For each atlas, the cross-hair
was positioned on the region with the highest MKL model contribution
across folds (i.e. dm)

Table 7 MKL modelling of the comparison of ‘faces’ vs ‘houses’,
based on the AAL atlas

Region Contribution (%) Size ER

Fusiform_L 21.342208 617 115.29

Occipital_Mid_L 20.902485 839 114.92

Lingual_R 20.323188 642 114.50

Lingual_L 13.591652 597 108.29

Fusiform_R 10.874692 687 102.96

Cingulum_Post_L 5.947777 143 110.83

Frontal_Inf_Oper_R 4.831543 373 101.17

Parietal_Sup_L 1.248777 401 81.54

Occipital_Sup_L 0.464520 314 45.17

Caudate_L 0.152138 285 4.58

Occipital_Mid_R 0.136176 441 9.00

Hippocampus_R 0.109758 284 13.54

Cingulum_Ant_L 0.074190 402 18.00

Thalamus_L 0.000894 290 4.50

Regions ranked further (i.e. rank >14) have a perfectly null contribution
to the model. ER stands for Expected Ranking. The region size is
displayed in voxels. The weights were averaged across folds (except for
computing ER). A region label ending in ‘L’ (resp. ‘R’) means left (resp.
right) hemisphere region
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cortex presented the highest weight in the Brodmann-MKL
model with a contribution of 21.92% for the predictive model.
The posterior cingulate has been implicated in recollection of
episodic memories (Henson et al. 1999; Maddock et al. 2001),
and consistently reported as involved in the processing of fa-
mous faces (Leveroni et al., 2000; Nielson et al., 2010) there-
fore it might have an important role in accessing information
about famous people. In contrast, the Brodmann-MKL model
attributed high weights to motor regions (precentral and mid-
cingulate) suggesting that different types of facesmight prompt
different patterns of motor responses, whichmight be related to
differences in reaction time between the two tasks (subjects
were asked to make fame judgements during the two condi-
tions, ‘famous’ and ‘non-famous faces’). It should be noted
that there were also similarities between the regions selected
by the AAL-MKL and Brodmann-MKL, for example, the pos-
terior cingulate cortex was selected by the AAL-MKL and the
motor regions were selected by Brodmann-MKL. In summary,
the face dataset presents a high variability between the top
regions selected by the different MKL models depending on
the atlas used. One possible explanation for this variability is
that the classification task considered is more complex than the
one presented in theHaxby dataset and thereforemight involve
a large network of regions, which are differently parcellated in
the different atlases.

For the OASIS dataset, our results show that the MKL
models were able to discriminate with moderate accuracy be-
tween anatomical brain scans of patients with mild and very
mild dementia and brain scans of age/gender-matched healthy
controls. These results are in agreement with previous
Alzheimer’s literature, which shows that pattern recognition
methods applied to structuralMRI can consistently discriminate
between brain scans of patient and healthy controls (Arimura
et al., 2008, Klöppel et al., 2008,Magnin et al., 2009, Duchesne
et al., 2008, Vemuri et al., 2008, Gerardin et al., 2009, Nho
et al., 2010, Oliveira et al., 2010, Farhan et al., 2014). As ex-
pected, the MKL model was able to identify, for all atlases,
regions that comprise the core system for episodic memories
(including temporal regions, hippocampus, posterior cingulate
and precuneus) and parieto-frontal regions, which are also in
agreement with existing literature (Zhang et al., 2015, Magnin
et al., 2009). The Brodmann atlas led to the highest perfor-
mance, suggesting that this atlas has a good coverage and seg-
mentation of the most discriminative regions. In the Brodmann-
MKLmodel, the most informative region was the BA 7, which
comprises the superior parietal lobule and part of precuneus.
These regions have been described as diagnostic markers of
Alzheimer’s disease (Karas et al., 2007, Quiroz et al. 2013).
Surprisingly, the Brodmann-MKL did not select the hippocam-
pus as one of the most relevant regions for the prediction. In
contrast, the hippocampus has been selected as the region with
the highest contribution to the predictive model by the HCP-
MKL and the left hippocampus has been selected as the third

region with the highest contribution by the AAL-MKL. One
possible explanation for the Brodmann-MKL model not
selecting the hippocampus as a highly informative region might
be due to the limitation of the considered MKL model, which
might not select two regions as being important if they have
correlated information.

The considered MKL approach comprises a sparsity con-
straint on the kernels. This reflects an assumption that only a
few kernels (or regions) carry predictive information, which
might not be suited for all datasets. Our results show that the
solutions for the three datasets considered had different de-
grees of sparsity. This might reflect that the pattern of interest
is sparse for the Haxby and faces datasets, but not for the
OASIS dataset. To dampen this issue, other regularization
constrains, less conservative than the L1 could be envisaged.
FutureMKL developments including a combination of L1 and
L2 regularizations should address this limitation. Our results
also show that there was not an optimal atlas for all considered
datasets. The definition of the atlas could also be approached
as an optimisation problem, with the best grouping of regions
being learnt automatically from the data.

In addition to identifying a subset of regions that contrib-
ute to the predictive model we can also investigate whether
the selected results are stable across folds, i.e. is the selected
subset of regions similar for slightly varying training sets?To
investigate the stability of the selection of regions across
folds, we used the expected ranking (ER) to estimate the
reproducibility as a metric of stability. Across datasets, it
seems that there is an association between reproducibility
and how easy the discrimination between the categories is.
This is illustrated by higher reproducibility score,ψR, for the
Haxby dataset (average across atlases: 0.9181), lower for the
‘face’ dataset (average across atlases: 0.8523) and the lowest
for the OASIS dataset (average across atlases: 0.8174).
These results suggest that, when the sparse constraint is ap-
propriate for the classification problem, the L1 MKL model
leads to both high performance and high reproducibility (e.g.
Haxby dataset). For the face dataset, there seems to be bal-
ance between performance and reproducibility. This last re-
sult is in agreement with Kia et al. 2016, who showed a sim-
ilar effect duringmodel optimisation across most subjects of
the MEG recordings of the face data set. For the OASIS
dataset, the model leading to the highest performance also
led to the highest reproducibility. However, as mentioned
above, the sparse prior does not seem appropriate for this
dataset,whichprevents us fromdrawing further conclusions.
A potential improvement of our approach would be to in-
clude the reproducibility of the expected ranking of regions
as a criterion for optimising the soft-margin hyperparameter
(C), in addition to the generalization performance. The ad-
vantages of introducing reproducibility as an additional op-
timisation criterion has been also discussed in (Rosa et al.
2015; Kia et al. 2016 and Baldassarre et al. 2017).
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Implementation

The proposedMKL frameworkmodelling thewhole brainmul-
tivariate pattern as a combination of regional patterns has been
implemented in our open-source software PRoNTo v2.0. The
MKL algorithm corresponds to the simpleMKL toolbox
(Rakotomamonjy et al., 2008). Detailed experiments on the
memory usage and computational expenses can be found in
the reference (Rakotomamonjy et al., 2008). Regarding mem-
ory use, the software (here Matlab) needs to be able to load all
the ROI kernels simultaneously. Therefore, the size of the ker-
nel (i.e. number of examples x number of examples) will play a
role, as will the number of kernels built. Regarding CPU time,
(Rakotomamonjy et al., 2008) showed that both the number of
examples and the number of kernels affected computational
expenses. For all the models considered in this work, running
permutations to assess model significance was computationally
expensive and was performed on a cluster for efficiency.

PRoNTo v2.0 also includes the post-hoc summarization of
weights, as detailed in (Schrouff et al., 2013b). Nevertheless this
approach suffers from the various limitations in terms of interpre-
tation that were discussed in this work (i.e. the obtained list of
regions should not be thresholded and the weights reflect the de-
cision function of the model, not the neural sources of the signal).

Finally, PRoNTo v2.0 is provided under the GNU/GPL
license ‘as is’ with no warranty. Our team has done its best
to provide a robust framework to perform machine learning
modeling of neuroimaging data. Such an endeavor is however
a continuous process and we thank our users for reporting
bugs. Improvements and bug fixes will be implemented in
future versions of the software (v2.1 and v3.0, in progress).

In conclusion, here we present a new tool for introducing
anatomical or functional information in whole-brain machine
learning models using sparse multiple kernel learning. When
the grouping structure defined by the atlas is consistent with the
data and the sparsity constraint is appropriate, the proposed
approach can lead to an increase in model performance when
compared towhole-brainmodels. Furthermore, the obtained list
of regions contributing to the model can then be investigated in
terms of cognitive or clinical neuroscience and reproducibility.
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Appendix A: Weights Derivations

Support Vector Machine (SVM)

The Lagrangian of the SVM problem (Eq. 2.2.) is given by

L ¼ 1

2
∥w∥2 þ C∑iξi þ ∑iαi 1−ξi−yi 〈w; xi〉þ bð Þð Þ−∑iνiξi

Setting to zero the derivatives of the Lagrangian with re-
spect to wm we get

∂L
∂w

¼ w−∑iαiyixi ¼ 0

w ¼ ∑iαiyixi
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Multiple Kernel Learning (MKL)

The Lagrangian of the MKL problem (Eq. 2.7.) is given by

L ¼ 1

2
∑m

1

dm
∥wm∥2 þ C∑iξi

þ ∑iαi 1−ξi−yi ∑m wm; xi þ bð Þð Þ−∑iνiξi

þ λ ∑mdm−1ð Þ−∑mnmdm

Setting to zero the derivatives of the Lagrangian with re-
spect to wm we get

∂L
∂wm

¼ 1

dm
wm−∑iαiyixi ¼ 0

wm ¼ dm∑iαiyixi

Haxby Data

Regions Selected in MKL-AAL

Table 7 displays the regions with non-null contributions to the
MKL-AAL model, along with their contribution dm, size (in
voxels) and expected ranking ER, across folds.

Regions Selected in MKL-Brodmann

Table 8 displays the regions with non-null contributions
to the MKL-Brodmann model, along with their contri-
bution dm, size (in voxels) and expected ranking ER,
across folds.

Table 8 MKL modelling of the comparison of ‘faces’ vs ‘houses’, based on the Brodmann atlas

Region Area Description Contribution
(%)

Size ER

brodmann area 19 Associative visual
cortex (V3,V4,V5)

69.301764 589 70.00

brodmann area 30 Part of cingulate cortex 8.895519 179 68.25
brodmann area 23 Ventral posterior

cingulate cortex
8.204297 117 65.13

brodmann area 37 Fusiform gyrus 5.712166 271 50.50
brodmann area 33 Part of anterior

cingulate cortex
2.137109 10 65.25

Caudate Tail 1.619009 25 30.29
Midline Nucleus 1.272252 4 40.33
Hypothalamus 0.782331 10 34.91
brodmann area 27 Piriform cortex 0.778436 10 45.46
brodmann area 36 Part of the perirhinal

cortex
0.251014 118 8.00

Lateral Dorsal
Nucleus

0.236659 10 25.92

brodmann area 46 Dorsolateral prefrontal
cortex

0.232491 91 8.00

Caudate Head 0.173804 120 5.42
Amygdala 0.083022 94 5.17
brodmann area 1 Part of primary

somatosensory
cortex

0.075739 43 5.21

brodmann area 29 Retrosplenial
cingulate cortex

0.064846 37 2.67

Anterior
Commissure

0.059758 5 5.42

Subthalamic
Nucleus

0.059646 14 5.29

Medial Dorsal
Nucleus

0.037006 64 2.67

Medial
Geniculum
Body

0.019957 6 2.54

Lateral
Geniculum
Body

0.003176 4 2.67

Regions ranked further (i.e. rank >21) have a perfectly null contribution to the model. ER stands for Expected Ranking. The region size is displayed in
voxels. The weights were averaged across folds (except for computing ER)
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Regions Selected in MKL-HCP

Table 9 displays the regions with non-null contributions to the
MKL-HCP model, along with their contribution dm, size (in
voxels) and expected ranking ER, across folds.

Face Data

Regions Selected in MKL-AAL

Table 10 displays the regions with non-null contributions to
the MKL-AAL model, along with their contribution dm, size
(in voxels) and expected ranking ER, across folds.

Regions Selected in MKL-Brodmann

Table 11 displays the regions with non-null contributions to
the MKL-Brodmann model, along with their contribution dm,
size (in voxels) and expected ranking ER, across folds.

Regions Selected in MKL-HCP

Table 12 displays the regions with non-null contributions to
the MKL-HCP model, along with their contribution dm, size
(in voxels) and expected ranking ER, across folds.

OASIS Data

Regions Selected in MKL-AAL

Table 13 displays the regions with non-null contributions to
the MKL-AAL model, along with their contribution dm, size
(in voxels) and expected ranking ER, across folds.

Table 9 MKL modelling of the comparison of ‘faces’ vs ‘houses’,
based on the HCP atlas

Region Area Description Contribution
(%)

Size ER

VMV1_
ROI

VentroMedial Visual
Area 1

52.05 143.00 180.00

IP0_ROI Area IntraParietal 0 24.92 92.00 179.00
VMV2_

ROI
VentroMedial Visual

Area 2
10.26 54.00 170.50

7PL_ROI Lateral Area 7P of
the superior
parietal cortex

4.91 44.00 169.00

MST_ROI Medial Superior
Temporal Area

3.66 28.00 153.96

IFJa_ROI Area IFJa (part of
the inferior
frontal cortex)

3.31 54.00 161.08

DVT_ROI Dorsal Transitional
Visual Area

0.36 102.00 21.88

PHA2_
ROI

ParaHippocampal
Area 2

0.19 60.00 14.54

d23ab_
ROI

Area dorsal 23 a + b
(part of the posterior
cingulate cortex)

0.16 71.00 14.46

V7_ROI Seventh Visual Area 0.07 62.00 7.29
PGp_ROI Area PGp (part of the

Inferior Parietal
Cortex)

0.05 109.00 14.46

Ig_ROI Insular Granular
Complex

0.05 61.00 21.67

52_ROI Area 2 (part of insula
and frontal
operculum)

0.03 16.00 14.50

Regions ranked further (i.e. rank >13) have a perfectly null contribution
to the model. ER stands for Expected Ranking. The region size is
displayed in voxels. The weights were averaged across folds (except for
computing ER)

Table 10 MKLmodelling of the comparison of ‘faces’ vs ‘scrambled’,
based on the AAL atlas

Region Contribution (%) Size ER

Precentral_L 26.41 969.00 104.85
Cingulum_Mid_L 18.72 557.00 103.85
Frontal_Inf_Tri_R 9.96 474.00 98.12
Cuneus_L 5.71 433.00 91.77
Pallidum_L 5.18 71.00 98.88
Occipital_Inf_R 5.11 275.00 99.12
Heschl_R 4.94 67.00 95.31
Frontal_Inf_Oper_L 3.96 296.00 71.96
Caudate_R 3.79 243.00 86.85
Amygdala_L 3.39 66.00 96.77
Vermis_7 1.45 19.00 65.04
Occipital_Mid_R 1.42 560.00 51.00
Occipital_Mid_L 1.29 954.00 60.96
SupraMarginal_L 1.25 371.00 53.81
Frontal_Mid_Orb_R 1.09 186.00 64.46
Frontal_Sup_Orb_L 0.99 91.00 60.42
Angular_L 0.98 330.00 57.08
Caudate_L 0.65 228.00 14.85
Parietal_Inf_R 0.58 340.00 32.27
Frontal_Mid_Orb_L 0.55 214.00 18.12
Insula_R 0.54 510.00 4.00
Cerebelum_Crus1_L 0.54 73.00 21.92
Cingulum_Post_R 0.32 94.00 14.50
Occipital_Sup_R 0.31 386.00 17.85
Precuneus_L 0.17 931.00 10.58
Postcentral_R 0.14 855.00 3.65
Cingulum_Post_L 0.10 141.00 10.35
Postcentral_L 0.10 1060.00 3.62
Temporal_Sup_L 0.09 702.00 3.65
Vermis_9 0.06 7.00 7.04
Angular_R 0.06 469.00 3.62
Temporal_Mid_L 0.06 1354.00 3.58
Paracentral_Lobule_R 0.05 211.00 3.65
Lingual_R 0.05 674.00 3.58
Frontal_Inf_Oper_R 0.02 355.00 3.54
Occipital_Sup_L 0.00 374.00 3.42
Pallidum_R 0.00 75.00 3.31

Regions ranked further (i.e. rank >37) have a perfectly null contribution
to the model. ER stands for Expected Ranking. The region size is
displayed in voxels. The weights were averaged across folds (except for
computing ER). A region label ending in ‘L’ (resp. ‘R’) means left (resp.
right) hemisphere region
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Regions Selected in MKL-Brodmann

Table 14 displays the regions with non-null contributions to
the MKL-Brodmann model, along with their contribution dm,
size (in voxels) and expected ranking ER, across folds.

Regions Selected in MKL-HCP

Table 15 displays the regions with non-null contributions to
the MKL-HCP model, along with their contribution dm, size
(in voxels) and expected ranking ER, across folds.

Table 11 MKL modelling of the
comparison of ‘faces’ vs
‘scrambled’, based on the
Brodmann atlas

Region Area Description Contribution
(%)

Size ER

brodmann area 31 Dorsal posterior cingulate cortex 21.92 469.00 68.46

brodmann area 44 Pars opercularis of the inferior
frontal gyrus

16.41 102.00 65.38

brodmann area 5 Somatosensory Association Cortex 14.15 185.00 66.58

Substania Nigra 11.54 20.00 65.81

brodmann area 1 Part of primary somatosensory cortex 9.03 48.00 64.81

brodmann area 25 Subgenual area (part of the Ventromedial
prefrontal cortex)

5.70 6.00 62.58

brodmann area 42 Auditory cortex 5.49 88.00 57.73

Caudate Tail 5.13 26.00 55.50

brodmann area 40 Supramarginal gyrus 2.03 900.00 42.08

brodmann area 7 Superior Parietal lobule and part of
precuneus

1.64 1069.00 30.23

Hypothalamus 0.96 6.00 34.31

brodmann area 41 Auditory cortex 0.75 101.00 20.73

Caudate Head 0.70 88.00 29.08

Caudate Body 0.66 189.00 9.23

brodmann area 21 Middle temporal gyrus 0.55 493.00 13.65

brodmann area 46 Dorsolateral prefrontal cortex 0.51 190.00 13.81

brodmann area 45 Pars triangularis of the inferior
frontal gyrus

0.48 174.00 11.50

Lateral Posterior
Nucleus

0.48 9.00 29.31

brodmann area 6 Premotor cortex and Supplementary
motor Cortex

0.47 1821.00 13.54

Lateral Globus Pallidus 0.41 121.00 4.92

Mammillary Body 0.38 22.00 9.12

Putamen 0.22 502.00 4.65

Ventral Posterior Medial
Nucleus

0.10 8.00 6.58

brodmann area 2 Part of primary somatosensory
cortex

0.09 203.00 2.19

brodmann area 34 Dorsal entorhinal cortex 0.06 51.00 2.23

brodmann area 11 Part of the orbitofrontal
cortex

0.04 273.00 2.23

brodmann area 22 Superior temporal gyrus 0.03 469.00 2.23

brodmann area 39 Angular gyrus 0.03 290.00 4.42

brodmann area 24 Ventral anterior cingulate cortex 0.01 396.00 2.23

brodmann area 27 Piriform cortex 0.01 10.00 2.08

brodmann area 33 Part of anterior cingulate cortex 0.00 8.00 2.08

brodmann area 4 Primary motor cortex 0.00 339.00 2.19

Corpus Callosum 0.00 845.00 2.15

Regions ranked further (i.e. rank >33) have a perfectly null contribution to the model. ER stands for Expected
Ranking. The region size is displayed in voxels. The weights were averaged across folds (except for computing
ER)
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Table 12 MKL modelling of the
comparison of ‘faces’ vs
‘scrambled’, based on the HCP
atlas

Region Area Description Contribution
(%)

Size ER

2_ROI Area 2 (part of the somatosensory
cortex)

18.58 319.00 179.92

PCV_ROI PreCuneus Visual Area 8.04 119.00 176.62
6d_ROI Dorsal area 6 (superior premotor

subdivions)
7.61 123.00 175.77

V6_ROI Sixth Visual Area 7.04 101.00 155.77
PFcm_ROI Area PFcm (part of the auditory

cortex)
6.74 115.00 175.00

TE1m_ROI Area TE1 Middle (lateral temporal
cortex)

5.41 98.00 147.54

11l_ROI Area 11 l (part of the orbital and polar
frontal cortex)

5.34 132.00 172.81

44_ROI Area 44 (part of the inferior frontal
cortex)

4.58 197.00 130.65

AAIC_ROI Anterior Agranular

Insula Complex

3.87 123.00 138.88

31a_ROI Area 31a (part of the posterior cingulate
cortex)

3.46 68.00 54.54

TPOJ3_
ROI

Area TemporoParietoOccipital Junction 3 3.16 46.00 149.81

PeEc_ROI Perirhinal Ectorhinal Cortex 2.59 202.00 142.96
7AL_ROI Lateral area 7A of the superior parietal

cortex
2.23 102.00 110.92

MI_ROI Middle Insular Area 2.06 155.00 97.65
10pp_ROI Polar 10p (part of orbital and polar frontal

cortex)
1.66 9.00 115.23

8BM_ROI Area 8BM (medial prefrontal cortex) 1.56 231.00 96.27
5mv_ROI Area 5 m ventral of the superior parietal

cortex
1.42 107.00 114.77

6v_ROI Ventral Area 6 (inferior premotor
subdivisions)

1.22 131.00 107.58

MBelt_ROI Medial Belt Complex (Early Auditory
Cortex)

1.14 67.00 113.42

PoI2_ROI Posterior Insular Area 2 1.00 174.00 69.96
A5_ROI Auditory 5 Complex (Auditory Association

Cortex)
0.93 212.00 33.08

A4_ROI Auditory 4 Complex 0.87 120.00 87.62
24dd_ROI Dorsal Area 24d (cingulate motor

areas)
0.77 160.00 38.73

10d_ROI Area 10d (part of Orbital and Polar Frontal
Cortex)

0.67 88.00 44.88

PGs_ROI Area PGs (part of inferior parietal
cortex)

0.65 227.00 68.88

VMV2_
ROI

VentroMedial Visual Area 0.59 49.00 75.65

PFm_ROI Area PFm Complex (part of Inferior
parietal cortex)

0.57 312.00 74.54

pOFC_ROI posterior OFC Complex (orbital frontal
cortex)

0.54 19.00 74.92

AVI_ROI Anterior Ventral Insular Area 0.52 116.00 25.88
PoI1_ROI Area Posterior Insular 1 0.45 108.00 32.12
s6-8_ROI Superior 6–8 Transitional Area (part of dorsolateral

prefrontal cortex)
0.42 107.00 37.85

IP2_ROI Area IntraParietal 2 0.40 56.00 25.85
IFJa_ROI Area IFJa (part of the inferior frontal

cortex)
0.36 59.00 37.62

FST_ROI Area FST (Visual Area) 0.32 70.00 56.12
31pv_ROI Area 31p ventral (part of the posterior cingulate

cortex)
0.30 84.00 73.96

25_ROI Area 25 (part of Anterior Cingulate and Medial Prefrontal
Cortex)

0.26 8.00 25.31

PHT_ROI Area PHT (part of lateral temporal
cortex)

0.25 168.00 13.15

55b_ROI Area 55b (part of premotor
cortex)

0.23 115.00 19.46
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Table 12 (continued)
Region Area Description Contribution

(%)
Size ER

OP1_ROI Area OP1/SII (Part of Posterior Opercular
Cortex)

0.22 92.00 12.73

8BL_ROI Area 8B Lateral (Part of dorsolateral prefrontal
cortex)

0.20 223.00 6.65

47s_ROI Area 47 s (part of orbital and polar frontal
cortex)

0.20 128.00 19.19

23d_ROI Area 23d (part of posterior cingulate
cortex)

0.13 100.00 31.15

V2_ROI Second Visual Area 0.13 744.00 12.62
47m_ROI Area 47 m (part of orbital and polar frontal

cortex)
0.12 70.00 24.88

IP1_ROI Area IntraParietal 1 0.12 148.00 6.54
3b_ROI Primary somatosensory cortex 0.11 268.00 6.38
V3B_ROI Area V3b (part of dorsal stream visual

cortex)
0.11 20.00 36.58

6ma_ROI Area 6 m anterior (part of supplementary motor
cortex)

0.11 235.00 12.62

45_ROI Area 45 (part of inferior frontal cortex) 0.11 159.00 24.46
8Av_ROI Area 8Av (part of dorsolateral prefrontal

cortex)
0.09 224.00 12.65

7m_ROI Area 7 m (part of posterior cingulate cortex) 0.08 122.00 6.54
46_ROI Area 46 (part of dorsolateral prefrontal cortex) 0.07 172.00 19.15
PGp_ROI Area PGp (part of the Inferior Parietal Cortex) 0.06 144.00 6.35
FEF_ROI Frontal Eye Fields 0.05 106.00 6.31
IP0_ROI Area IntraParietal 0 0.04 89.00 6.35
RI_ROI RetroInsular Cortex 0.04 64.00 6.12
7Pm_ROI Medial Area 7P

(part of the superior medial parietal
cortex)

0.03 81.00 12.58

OFC_ROI Orbitofrontal cortex 0.03 14.00 6.15
4_ROI Primary Motor Cortex 0.03 477.00 12.27
PIT_ROI Posterior InferoTemporal 0.02 71.00 6.23
a47r_ROI Area anterior 47r (part of inferior frontal cortex) 0.01 276.00 18.04
LBelt_ROI Lateral Belt Complex (early auditory areas) 0.01 43.00 6.00
V8_ROI Eighth Visual Area 0.01 94.00 6.08
A1_ROI Primary Auditory Cortex 0.01 51.00 12.12
d23ab_ROI Area dorsal 23 a + b (part of the posterior cingulate

cortex)
0.01 75.00 6.04

V3A_ROI Area V3A (dorsal stream areas) 0.01 117.00 6.27

Regions ranked further (i.e. rank >66) have a perfectly null contribution to the model. ER stands for Expected
Ranking. The region size is displayed in voxels. The weights were averaged across folds (except for computing
ER)

Table 13 MKL modelling of the comparison of ‘demented’ vs ‘healthy’, based on the AAL atlas

Region Contribution (%) Size ER

Frontal_Inf_Tri_L 12.39 3507.00 115.20
Lingual_L 7.59 4338.00 111.80
Hippocampus_R 6.32 1353.00 88.90
Frontal_Inf_Oper_R 5.92 2049.00 88.80
Thalamus_L 5.14 1113.00 108.30
Temporal_Inf_L 4.63 6361.00 97.80
Frontal_Sup_L 4.47 3910.00 56.20
Cerebelum_Crus1_L 4.23 4519.00 87.40
Insula_L 4.02 3528.00 86.90
Cingulum_Mid_R 3.45 4483.00 64.10
Fusiform_R 3.23 5351.00 65.00
Precuneus_L 3.21 5505.00 101.30
Temporal_Mid_L 2.70 9111.00 83.20
Temporal_Pole_Mid_R 2.61 1657.00 62.70
Precentral_R 1.96 3371.00 43.00
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Table 13 (continued)

Region Contribution (%) Size ER

SupraMarginal_L 1.75 2075.00 42.10
Hippocampus_L 1.75 1406.00 61.00
Cingulum_Ant_L 1.64 2969.00 52.30
Frontal_Sup_R 1.47 4555.00 52.50
Cerebelum_Crus1_R 1.34 4276.00 50.00
Frontal_Sup_Medial_R 1.31 2694.00 41.10
Precentral_L 1.25 3761.00 59.70
Heschl_R 1.12 517.00 41.70
Calcarine_L 0.96 4519.00 40.50
Angular_L 0.91 2023.00 38.80
Vermis_10 0.89 29.00 77.80
Frontal_Mid_L 0.80 6488.00 30.50
Parietal_Inf_R 0.77 2104.00 75.40
Vermis_7 0.73 393.00 65.40
Frontal_Inf_Orb_R 0.69 3061.00 39.40
Putamen_L 0.65 1711.00 66.50
Occipital_Mid_R 0.65 3564.00 47.10
Cuneus_L 0.63 2601.00 37.70
Frontal_Inf_Tri_R 0.62 2777.00 20.60
Cerebelum_Crus2_R 0.60 3309.00 39.50
Frontal_Sup_Orb_R 0.51 1618.00 30.60
Supp_Motor_Area_L 0.48 3116.00 20.10
Cerebelum_3_L 0.45 159.00 36.20
Cuneus_R 0.43 2475.00 37.60
Cerebelum_10_L 0.42 6.00 37.10
Supp_Motor_Area_R 0.35 3347.00 28.20
Occipital_Inf_L 0.35 1872.00 10.60
Cerebelum_4_5_R 0.33 1818.00 36.60
Frontal_Inf_Oper_L 0.32 1524.00 37.10
Temporal_Pole_Sup_R 0.30 1412.00 26.90
Occipital_Mid_L 0.28 5641.00 10.30
Postcentral_R 0.27 3979.00 10.50
Temporal_Pole_Mid_L 0.27 1175.00 27.80
Pallidum_L 0.27 229.00 28.10
Cerebelum_7b_L 0.26 808.00 19.40
Caudate_R 0.23 1111.00 36.60
Occipital_Sup_L 0.23 1710.00 10.00
Cerebelum_7b_R 0.22 705.00 18.40
Vermis_9 0.19 321.00 27.20
Frontal_Inf_Orb_L 0.18 3303.00 10.10
Lingual_R 0.17 4625.00 9.90
Precuneus_R 0.14 5142.00 17.70
SupraMarginal_R 0.12 3395.00 9.70
Parietal_Sup_L 0.08 2274.00 9.10
Cingulum_Ant_R 0.07 2460.00 9.10
Caudate_L 0.07 988.00 9.00
Heschl_L 0.07 485.00 9.00
Temporal_Pole_Sup_L 0.06 1440.00 8.90
ParaHippocampal_L 0.06 1964.00 16.90
Cerebelum_8_L 0.06 1902.00 17.40
Cingulum_Post_L 0.05 699.00 19.20
Cerebelum_10_R 0.05 8.00 16.80
Angular_R 0.05 2871.00 8.90
Cerebelum_Crus2_L 0.05 3514.00 8.70
Thalamus_R 0.05 1178.00 9.20
Cingulum_Post_R 0.03 369.00 8.50
Vermis_1_2 0.02 79.00 8.90
Frontal_Mid_Orb_R 0.02 1798.00 18.10

Regions ranked further (i.e. rank >73) have a perfectly null contribution to the model. ER stands for Expected Ranking. The region size is displayed in
voxels. The weights were averaged across folds (except for computing ER). A region label ending in ‘L’ (resp. ‘R’) means left (resp. right) hemisphere
region
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Table 14 MKL modelling of the
comparison of ‘demented’ vs
‘healthy’, based on the Brodmann
atlas

Region Area Description Contribution
(%)

Size ER

brodmann area 7 Superior Parietal lobule
and part of precuneus

11.56 6488.00 63.10

brodmann area 46 Dorsolateral prefrontal
cortex

9.16 740.00 62.50

brodmann area 6 Premotor cortex and
Supplementary
motor Cortex

8.80 8215.00 61.90

brodmann area 22 Superior temporal gyrus 7.26 2439.00 58.00

brodmann area 44 Pars opercularis of the
inferior frontal gyrus

6.51 885.00 59.30

brodmann area 45 Pars triangularis of the
inferior frontal gyrus

5.58 546.00 56.50

brodmann area 18 Secondary visual cortex
(V2)

4.36 4810.00 49.30

brodmann area 24 Ventral anterior
cingulate cortex

4.07 2345.00 54.40

brodmann area 20 Inferior temporal gyrus 3.89 4218.00 50.80

brodmann area 17 Primary visual cortex
(V1)

3.47 1101.00 53.70

Caudate Tail 3.36 8.00 54.40

brodmann area 19 Associative visual
cortex (V3,V4,V5)

2.94 4725.00 43.90

brodmann area 38 Temporopolar area 2.73 2471.00 42.70

brodmann area 34 Dorsal entorhinal cortex 2.40 608.00 36.90

brodmann area 39 Angular gyrus 1.87 1783.00 39.10

brodmann area 3 Part of primary
somatosensory
cortex

1.76 1064.00 26.70

brodmann area 2 Part of primary
somatosensory
cortex

1.68 812.00 39.20

brodmann area 10 Anterior prefrontal
cortex

1.54 4066.00 30.30

brodmann area 42 Auditory cortex 1.48 433.00 38.90

brodmann area 23 Ventral posterior
cingulate cortex

1.47 866.00 26.00

brodmann area 36 Ectorhinal area 1.39 1032.00 33.40

Caudate Body 1.28 521.00 37.70

Hippocampus 1.28 572.00 21.00

brodmann area 47 Pars orbitalis, part of the
inferior frontal gyrus

1.18 2550.00 20.80

Red Nucleus 1.17 7.00 36.70

brodmann area 1 Part of primary
somatosensory
cortex

1.01 57.00 31.90

Putamen 0.92 2452.00 28.90

Mammillary Body 0.90 60.00 31.60

Lateral Posterior Nucleus 0.59 45.00 26.60

brodmann area 8 Part of the frontal
cortex, it includes the
frontal eye fields

0.57 2473.00 14.50

Ventral Lateral Nucleus 0.51 74.00 25.50

brodmann area 5 Somatosensory
Association Cortex

0.49 1044.00 18.70

brodmann area 31 Dorsal Posterior
cingulate cortex

0.48 3310.00 13.60

brodmann area 40 Supramarginal gyrus 0.39 4753.00 9.50
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Table 15 MKL modelling of the
comparison of ‘demented’ vs
‘healthy’, based on the HCP atlas

Region Area Description Contribution
(%)

Size ER

H_ROI Hippocampus 10.53 1050.00 177.90
23c_ROI Area 23c (part of posterior cingulate cortex) 7.30 1000.00 175.60
TE2a_ROI Area TE2 anterior (part of lateral temporal cortex) 5.26 2039.00 152.50
6d_ROI Dorsal area 6 (superior premotor subdivions) 5.23 563.00 156.50
IP2_ROI Area IntraParietal 2 4.48 441.00 172.20
V1_ROI Primary Visual Cortex 4.31 5459.00 154.60
STSdp_

ROI
Area STSd posterior (auditory association cortex) 3.61 926.00 166.10

31a_ROI Area 31a (part of the posterior cingulate cortex) 3.44 588.00 120.40
9-46d_ROI Area 9-46d (part of the cortex prefrontal dorsolateral) 3.08 1362.00 135.40
7Am_ROI Medial Area 7A (Superior Parietal Cortex) 3.00 852.00 151.00
24dv_ROI Ventral Area 24d (Cingulate motor area) 2.89 417.00 135.20
6a_ROI Area 6 anterior (premotor subdivisions) 2.80 1313.00 127.80
47l_ROI Area 47 l (47 lateral) (part of inferior frontal gyrus) 2.44 810.00 117.30
AAIC_

ROI
Anterior Agranular

Insula Complex

2.41 831.00 100.40

V4_ROI Fourth Visual Area 2.31 1692.00 132.20
STV_ROI Superior Temporal Visual Area 1.89 1057.00 82.90
8C_ROI Area 8C (part of inferior frontal cortex) 1.88 1018.00 113.90
PFop_ROI Area PF opercular (part of inferior parietal cortex) 1.64 753.00 66.90
IFSp_ROI Area IFSp (part of inferior frontal sulcus) 1.38 578.00 66.70
44_ROI Area 44 (part of the inferior frontal cortex) 1.30 1142.00 97.00
6ma_ROI Area 6 m anterior (Part of supplementary motor cortex) 1.24 1103.00 97.50
AVI_ROI Anterior Ventral Insular Area 1.16 881.00 97.30
TGv_ROI Area TG Ventral (part of lateral temporal cortex) 1.13 1772.00 50.30
PIT_ROI Posterior InferoTemporal 1.10 437.00 111.00
p10p_ROI Area posterior 10p (Part of orbital and polar frontal cortex) 1.06 776.00 80.60
IP0_ROI Area IntraParietal 0 0.99 711.00 65.80
V3_ROI Third Visual Area 0.95 2777.00 80.50
31pv_ROI Area 31p ventral (Part of the posterior cingulate cortex 0.94 685.00 94.90
p9-46v_

ROI
Area posterior 9-46v (part of dorsolateral prefrontal cortex) 0.94 992.00 50.30

a24pr_ROI Anterior 24 prime (part of anterior cingulate) 0.92 667.00 94.60
TGd_ROI Area TG dorsal (part of lateral temporal cortex) 0.87 5074.00 47.90
p24_ROI Area posterior 24 (part of anterior cingulate) 0.85 867.00 65.60

Table 14 (continued)
Region Area Description Contribution

(%)
Size ER

Lateral Globus Pallidus 0.28 53.00 12.70

brodmann area 9 Dorsolateral prefrontal
cortex

0.27 3740.00 12.80

brodmann area 29 Retrosplenial cingulate
cortex

0.27 203.00 13.10

Medial Dorsal Nucleus 0.26 573.00 13.10

Medial Geniculum Body 0.22 5.00 20.80

brodmann area 11 Part of the orbitofrontal
cortex

0.20 4067.00 5.40

brodmann area 13 Insular Cortex 0.18 3527.00 8.20

brodmann area 33 Part of anterior
cingulate cortex

0.16 26.00 20.00

Corpus Callosum 0.08 109.00 4.10

Caudate Head 0.03 740.00 4.40

Ventral Posterior Medial Nucleus 0.00 49.00 3.70

brodmann area 28 Ventral entorhinal
cortex

0.00 609.00 3.80

Regions ranked further (i.e. rank >46) have a perfectly null contribution to the model. ER stands for Expected Ranking.
The region size is displayed in voxels. The weights were averaged across folds (except for computing ER)
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Table 15 (continued)
Region Area Description Contribution

(%)
Size ER

8BL_ROI Area 8B Lateral (part of dorsolateral prefrontal cortex) 0.81 674.00 64.10
7Pm_ROI Medial Area 7P (part of the superior medial parietal cortex) 0.78 611.00 17.80
7PL_ROI Lateral Area 7P of the superior parietal cortex 0.75 284.00 49.50
V2_ROI Second Visual Area 0.71 5166.00 17.70
TPOJ1_

ROI
Area TemporoParietoOccipital Junction 1 0.67 1069.00 48.90

V3B_ROI Area V3b (part of dorsal stream visual cortex) 0.66 139.00 94.40
A4_ROI Auditory 4 Complex 0.64 638.00 78.80
p24pr_ROI Area Posterior 24 prime (part of anterior cingulate) 0.60 809.00 93.20
1_ROI Area 1 (part of primary somatosensory complex) 0.58 341.00 17.70
TE2p_ROI Area TE2 posterior (part of lateral temporal cortex) 0.57 1526.00 32.90
V7_ROI Seventh Visual Area 0.54 391.00 78.70
LIPd_ROI Area Lateral IntraParietal dorsal (Part of superior parietal cortex) 0.49 208.00 61.90
MST_ROI Medial Superior Temporal Area 0.47 230.00 47.80
FOP1_ROI Frontal Opercular area 1 (Part of posterior opercular cortex) 0.46 565.00 48.60
45_ROI Area 45 (part of inferior frontal gyrus) 0.44 944.00 17.40
IP1_ROI Area IntraParietal 1 0.42 1044.00 32.20
10v_ROI Area 10v (part of medial prefrontal cortex) 0.41 1569.00 62.20
33pr_ROI Area 33 prime (part of anterior cingulate cortex) 0.40 305.00 76.30
6mp_ROI Area 6mp (supplementary motor area) 0.39 1081.00 17.30
8BM_ROI Area 8BM (medial prefrontal cortex) 0.37 1828.00 75.90
5mv_ROI Area 5 m ventral of the superior parietal cortex 0.37 600.00 16.90
PH_ROI Area PH (lies between theMT+ complex and the ventral stream) 0.36 1473.00 47.20
s32_ROI Area s32 (part of anterior cingulate andmedial prefrontal cortex) 0.36 500.00 30.80
TF_ROI Area TF (part of lateral temporal cortex) 0.35 2309.00 31.30
VMV1_

ROI
VentroMedial Visual Area 1 0.35 1189.00 61.40

55b_ROI Area 55b (part of premotor cortex) 0.34 658.00 62.10
7AL_ROI Lateral area 7A of the superior parietal cortex 0.34 612.00 62.90
11l_ROI Area 11 l (part of the orbital and polar frontal cortex) 0.33 1458.00 46.30
V6_ROI Sixth Visual Area 0.28 588.00 61.30
SFL_ROI Superior Frontal Language Area 0.26 839.00 31.00
POS2_ROI Parieto-Occipital Sulcus Area 2 (part of posterior cingulate

cortex)
0.25 1761.00 45.50

PeEc_ROI Perirhinal Ectorhinal Cortex 0.24 2622.00 16.50
TE1p_ROI Area TE1 posterior (part of lateral temporal cortex 0.23 2090.00 16.60
PHA2_

ROI
ParaHippocampal Area 2 0.23 523.00 45.70

MIP_ROI Medial IntraParietal Area 0.19 482.00 16.20
p47r_ROI Area posterior 47r (Part of inferior frontal cortex) 0.19 718.00 16.20
3a_ROI Area 3a (Part of Primary somatosensory cortex) 0.17 190.00 44.90
RI_ROI RetroInsular Cortex 0.11 360.00 15.70
6r_ROI Rostral Area 6 (Part of inferior premotor subdivisions 0.11 1434.00 31.50
PFcm_ROI Area PFcm (part of the auditory cortex) 0.08 846.00 29.60
FST_ROI Area FST (Visual Area) 0.08 584.00 15.20
5m_ROI Area 5 m (part of paracentral lobule) 0.07 603.00 30.40
AIP_ROI Anterior IntraParietal Area 0.06 813.00 14.70
10pp_ROI Polar 10p (part of orbital and polar frontal cortex) 0.05 789.00 14.60
8Av_ROI Area 8Av (part of dorsolateral prefrontal cortex) 0.03 1029.00 15.40
TPOJ2_

ROI
Area TemporoParietoOccipital Junction 2 0.02 956.00 14.10

pOFC_
ROI

posterior OFC Complex (orbital frontal cortex 0.02 1096.00 14.70

V4t_ROI Area V4 t (part ofMT+Complex andNeighboring Visual Areas) 0.01 235.00 14.60
a9-46v_

ROI
Area anterior 9-46v (part of dorsolateral prefrontal cortex) 0.00 899.00 15.00

OP4_ROI Area OP4/PV (part of opercular cortex) 0.00 1128.00 15.20
PSL_ROI PeriSylvian Language Area 0.00 854.00 14.40
25_ROI Area 25 (part of Anterior Cingulate and Medial Prefrontal

Cortex)
0.00 606.00 13.60

EC_ROI Entorhinal Cortex 0.00 1008.00 15.30

Regions ranked further (i.e. rank >85) have a perfectly null contribution to the model. ER stands for Expected Ranking.
The region size is displayed in voxels. The weights were averaged across folds (except for computing ER)

140 Neuroinform (2018) 16:117–143



Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A.,
Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014).
Machine Learning for neuroimaging with scikit-learn. Frontiers in
Neuroinformatics, 8. https://doi.org/10.3389/fninf.2014.00014.

Arimura, H., Yoshiura, T., Kumazawa, S., Tanaka, K., Koga, H., Mihara,
F., Honda, H., Sakai, S., Toyofuku, F., & Higashida, Y. (2008).
Automated method for identification of patients with Alzheimer's
disease based on three-dimensional MR images. Academic
Radiology, 15(3), 274–284.

Bach, F., Lanckriet, G., & Jordan, M. (2004). Multiple kernel learning,
conic duality, and the SMO algorithm. Proceedings of the 21st
International Conference on Machine Learning (pp. 41–48).
Banff: ACM.

Baldassarre, L., Mourao-Miranda, J., & Pontil, M. (2012). Structured
Sparsity Models for Brain Decoding from fMRI data. Proceedings
of the 2nd conference on Pattern Recognition in NeuroImaging.
Washington, DC: IEEE Computer Society.

Baldassarre, L., Pontil, M., & Mourao-Miranda, J. (2017). Sparsity is
better with stability: combining accuracy and stability for model
selection in brain decoding. Frontiers in Neuroscience, 11(62).
https://doi.org/10.3389/fnins.2017.00062.

Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm
for optimal margin classifiers. COLT '92 Proceedings of the fifth
annual workshop on Computational learning theory (pp. 144–
152). New York: ACM.

Canu, S., Grandvalet, Y., Guigue, V., & Rakotomamonjy, A. (2003).
SVM and kernels methods Matlab toolbox. LITIS EA4108, INSA
de Rouen, France. URL http://asi.insa-rouen.fr/enseignants/
~arakotom/toolbox/index.html.

Chang, C.C., & Lin, C.J. (2011) LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and
Technology, 2(3):1–27.

Dai, D., Wang, J., Hua, J., & He, H. (2012). Classification of ADHD
children through multimodal magnetic resonance imaging.
Frontiers in Systems Neuroscience, 6, 1–8.

Duchesne, A., Caroli, C., Geroldi, C., Barillot, G. B., & Frisoni, D. L. C.
(2008). MRI-based automated computer classification of probable
AD versus normal controls. IEEE Transactions on Medical
Imaging, 27, 509–520.

Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis:
promise, pitfalls, and potential. NeuroImage, 78, 261–269.

Farhan, S., Fahiem, M.A., & Tauseef, H. (2014). An Ensemble-of-
Classifiers Based Approach for Early Diagnosis of Alzheimer's
Disease: Classification Using Structural Features of Brain Images.
Comput Math Methods Med. https://doi.org/10.1155/2014/862307.

Filipovych, R., Resnick, S.M., & Davatzikos, C. (2011). Multi-Kernel
Classification for Integration of Clinical and Imaging Data:
Application to Prediction of Cognitive Decline in Older Adults.
Machine Learning in Medical Imaging, 26–34. https://doi.org/10.
1007/978-3-642-24319-6_4.

Filippone, M., Marquand, A., Blain, C., Williams, C., Mourao-Miranda,
J., & Girolami, M. (2012). Probabilistic prediction of neurological

disorders with a statistical assessement of neuroimaging data modal-
ities. Annals of Applied Statistics, 6, 1883–1905.

Fu, C. H.,Mourao-Miranda, J., Costafreda, S. G., Khanna, A., Marquand,
A. F., Williams, S. C., & Brammer, M. J. (2008). Pattern classifica-
tion of sad facial processing: toward the development of neurobio-
logical markers in depression. Biological Psychiatry, 63, 656–662.

Gaonkar, B., & Davatzikos, C. (2012). Deriving statistical significance
maps for SVM based image classification and group comparisons.
Medical Image Computing and Computer-Assisted Intervention,
15(Pt 1):723–730.

Garraux, G., Phillips, C., Schrouff, J., Kreisler, A., Lemaire, C.,
Degueldre, C., Delcour, C., Hustinx, R., Luxen, A., Destée, A., &
Salmon, E. (2013). Multiclass classification of FDG PET scans for
the distinction between Parkinson's Disease and Atypical
Parkinsonian Syndromes. NeuroImage Clinical, 2, 883–893.

Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B.,
Kim, H. S., Niethammer, M., Dubois, B., Lehericy, S., Garnero,
L., Eustache, F., Colliot, O., & Alzheimer’s Disease Neuroimaging
Initiative. (2009). Multidimensional classification of hippocampal
shape features discriminates Alzheimer's disease and mild cognitive
impairment from normal aging. NeuroImage, 47(4), 1486–2476.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J.,
Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson,
M., Smith, S.M., & Van Essen, D.C. (2016). A multi-modal
parcellation of human cerebral cortex. Nature, 536, 171–178.

Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., &
Taylor, J. E. (2011). A family of interpretable multivariate
models for regression and classification of whole-brain fMRI
data. ArXiv e-prints, 1110, 4139.

Grotegerd, D., Redlich, R., Almeida, J. R., Riemenschneider, M.,
Kugel, H., Arolt, V., & Dannlowski, U. (2014). MANIA-a
pattern classification toolbox for neuroimaging data.
Neuroinformatics, 12, 471–486.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Frund, I.,
Rieger, J. W., Hermann, C. S., Haxby, J. V., Hanson, S. J., &
Pollmann, S. (2009a). PyMVPA: a unifying approach to the analysis
of neuroscientific data. Frontiers in Neuroinformatics, 3, 3.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J.
V., & Pollman, S. (2009b). PyMVPA: A Python toolbox for multi-
variate pattern analysis of fMRI data. Neuroinformatics, 7, 37–53.

Hanson, S. J., Matsuka, T., &Haxby, J. V. (2004). Combinatorial codes in
ventral temporal lobe for object recognition: Haxby (2001) revisited:
is there a Bface^ area? NeuroImage, 23, 156–166.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J. D.,
Blankertz, B., & Biessmann, F. (2014). On the interpretation
of weight vectors of linear models in multivariate neuroim-
aging. NeuroImage, 87, 96–110.

Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed
human neural system for face perception. Trends in Cognitive
Sciences, 4(6), 223–233.

Haxby, J., Gobbini, M. I., Furev, M. L., Ishai, A., Schouten, J. L., &
Pietrini, P. (2001). Distributed and overlapping representations of
faces and objects in ventral temporal cortex. Science, 293, 2425–
2430.

Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI:
Principles, pitfalls, and perspectives. Neuron, 87, 257–270.

Haynes, J. D., & Rees, G. (2005). Predicting the orientation of invisible
stimuli from activity in human primary visual cortex. Nature
Neuroscience, 8, 686–691.

Haynes, J. D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R.
E. (2007). Reading hidden intentions in the human brain. Current
Biology, 17, 323–328.

Hebart, M. N., Görgen, K., & Haynes, J. D. (2015). The Decoding
Toolbox (TDT): A versatile software package for multivariate anal-
yses of functional imaging data. Frontiers in Neuroinformatics, 8,
88. https://doi.org/10.3389/fninf.2014.00088.

Neuroinform (2018) 16:117–143 141

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fnins.2017.00062
https://doi.org/10.1155/2014/862307
https://doi.org/10.1007/978-3-642-24319-6_4
https://doi.org/10.1007/978-3-642-24319-6_4
https://doi.org/10.3389/fninf.2014.00088


Henson, R. N. A., Rugg, M.D., Shallice, T., Josephs, O., & Dolan, R. J.
(1999). Recollection and familiarity in recognition memory: An
event-related functional magnetic resonance imaging study. The
Journal of Neuroscience, 19, 3962–3972.

Henson, R. N. A., Shallice, T., Gorno-Tempini, M.-L., & Dolan, R. J.
(2002). Face repetition effects in implicit and explicit memory tests
as measured by fMRI. Cerebral Cortex, 12, 178–186.

Hinrichs, C., Singh, V., Xu, G., Johnson, S. C., & Alzheimers Disease
Neuroimaging Initiative. (2011). Predictive markers for AD in a
multi-modality framework: an analysis of MCI progression in the
ADNI population. NeuroImage, 55, 574–589.

Huang, J., & Zhang, T. (2010). The benefit of group sparsity. The Annals
of Statistics, 38, 1978–2004.

Karas, G., Scheltens, P., Rombouts, S., van Schijndel, R., Klein, M.,
Jones, B., van der Flier, W., Vrenken, H., & Barkhof, F. (2007).
Precuneus atrophy in early-onset Alzheimer's disease: a morphomet-
ric structural MRI study. Neuroradiology, 49(12), 967–976.

Kia, S. M., Vega Pons, S., Weisz, N., & Passerini, A. (2016).
Interpretability of Multivariate Brain Maps in Linear Brain
Decoding: Definition, and Heuristic Quantification in Multivariate
Analysis of MEG Time-Locked Effects. Frontiers in Neuroscience.
https://doi.org/10.3389/fnins.2016.00619.

Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I.,
Rohrer, J. D., Fox, N. C., Jack Jr., C. R., Ashburner, J., &
Frackowiak, R. S. (2008). Automatic classification of MR scans in
Alzheimer's disease. Brain, 131, 681–689.

Klöppel, S., Abdulkadir, A., Jack Jr., C. R., Koutsouleris, N., Mourão-
Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across
diseases. NeuroImage, 61, 457–463.

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based
functional brain mapping. Proceedings of the National Academy of
Sciences of the United States of America, 103, 3863–3868.

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational
similarity analysis – connecting the branches of systems neurosci-
ence. Frontiers in Systems Neuroscience. https://doi.org/10.3389/
neuro.06.004.2008.

LaConte, S., Strother, S., Cherkassky, V., & Hu, X. (2005). Support
vector machines for temporal classification of block design fMRI
data. NeuroImage, 26, 317–329.

Lanckriet, G. R. G., Cristianini, N., Ghaoui, L. E., Bartlett, P., & Jordan,
M. I. (2004). Learning the kernel matrix with semidefinite program-
ming. Journal Machine Learning Research, 5, 27–72.

Leveroni, C. L., Seidenberg,M.,Mayer, A. R., Mead, L. A., Binder, J. R.,
& Rao, S. M. (2000). Neural systems underlying the recognition of
familiar and newly learned faces. The Journal of Neuroscience,
20(2), 878–886.

Liu, J., Li, J., Feng, L., Li, L., Tian. J., & Lee, K. (2014) Seeing Jesus in
toast: neural and behavioral correlates of face pareidolia. Cortex, 53,
60–77. https://doi.org/10.1016/j.cortex.2014.01.013.

Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2001) Remembering
familiar people: the posterior cingulate cortex and autobiographical
memory retrieval. Neuroscience, 104(3):667–676.

Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot,
O., Sarazin, M., Dubois, B., Lehéricy, S., & Benali, H. (2009).
Support vector machine-based classification of Alzheimer’s disease
from whole-brain anatomical MRI. Neuroradiology, 51, 73–83.

Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., &
Buckner, R.L. (2007). Open Access Series of Imaging Studies
(OASIS): Cross-sectional MRI Data in Young, Middle Aged,
Nondemented, and Demented Older Adults. Journal of Cognitive
Neuroscience, 19(9), 1498–1507.

Marquand, A.F., O’Daly, O.G., De Simoni, S., Alsop, D., Maguire, R.P.,
Williams, S.C.R., Zelaya, F.O., & Metha, M.A. (2012). Dissociable
effects of methylphenidate, atomoxetine and placebo on regional
cerebral blood flow in healthy volunteers at rest: A multi-class pat-
tern recognition technique. NeuroImage, 60, 1015–1024.

Marquand, A. F., Brammer, M., Williams, S. C. R., & Doyle, O. M.
(2014). Bayesian multi-task learning for decoding multi-subject
neuroimaging data. NeuroImage, 92, 298–311.

Meinshausen, N. & Bühlmann, P. (2010). Stability selection. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72,
417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x.

Minnesbusch, D. A., Suchan, B., Köster, O., & Daum, I. (2009). A bilat-
eral occipitotemporal network mediates face perception.
Behavioural Brain Research, 198, 179–185.

Morris, J.C. (1993). The Clinical Dementia Rating (CDR): current ver-
sion and scoring rules. Neurology, 43(11), 2412–2412.

Mourão-Miranda, J., Bokde, A., Born, C., Hampel, H., & Stetter, M.
(2005). Classifying brain states and determining the discriminating
activation patterns: Support VectorMachine on functionalMRI data.
NeuroImage, 28, 980–995.

Nho, K., Shen, L., Kim, S., Risacher, S.L., West, J.D., Foroud, T., Jack,
C.R., Weiner, M.W., & Saykin, A.J. (2010). Automatic prediction of
conversion frommild cognitive impairment to probable Alzheimer’s
disease using structural magnetic resonance imaging. AMIA Annual
Symposium Proceedings, 2010, 542–546.

Nielson, K. A., Seidenberg, M., Woodard, J., Durgerian, S., Zhang, Q.,
Gross, W. L., Gander, A., Guidotti, L.M., Antuono, P., & Rao, S.M.
(2010). Common neural systems associated with the recognition of
famous faces and names: An event-related fMRI study. Brain and
Cognition, 72(3), 491–498.

O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially
distributed representations of objects and faces in ventral temporal
cortex. Journal of Cognitive Neuroscience, 17, 580–590.

Oliveira Jr., P. P., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J. R., &
Amaro, E. (2010). Use of SVMmethods with surface-based cortical
and volumetric subcortical measurements to detect Alzheimer's dis-
ease. Journal of Alzheimer's Disease, 19, 1263–1272.

Oosterhof, N. N., Connolly, A. C., &Haxby, J. V. (2016). CoSMoMVPA:
multi-modal multivariate pattern analysis of neuroimaging data in
Matlab / GNU Octave. Frontiers in Neuroinformatics. https://doi.
org/10.3389/fninf.2016.00027.

Orrù, G., Pettersson-Yeo, W., Marquand, A., Sartori, G., & Mechelli, A.
(2012). Using Support Vector Machine to identify imaging bio-
markers of neurological and psychiatric disease: A critical review.
Neuroscience and Biobehavioral Reviews, 36, 1140–1152.

Pereira, F., & Botvinick, M. (2011). Information mapping with pattern
classifiers: a comparative study. NeuroImage, 56, 476–496.

Pereira, F., Mitchell, T. M., & Botvinick, M. (2009). Machine learning
classifiers and fMRI: a tutorial overview. NeuroImage, 45, S199–
S209.

Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005).
Category-specific cortical activity precedes retrieval during memory
search. Science, 310, 1963–1966.

Quiroz, Y. T., Stern, C. E., Reiman, E. M., Brickhouse, M., Ruiz, A.,
Sperling, R. A., Lopera, F., & Dickerson, B. C. (2013). Cortical
atrophy in presymptomatic Alzheimer's disease presenilin 1 muta-
tion carriers. Journal of Neurology, Neurosurgery, and Psychiatry,
84, 556–561.

Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008).
SimpleMKL. Journal of Machine Learning, 9, 2491–2521.

Ramirez, F. M., Cichy, R. M., Allefeld, C., & Haynes, J. D. (2014). The
neural code for face orientation in the human fusiform face area. The
Journal of Neuroscience, 34, 12155–12167.

Rasmussen, Z. P. M., Hansen, L. K., Madsen, K. H., Churchill, N. H., &
Strother, S. C. (2012). Model sparsity and brain pattern interpreta-
tion of classification models in neuroimaging. Pattern Recognition,
45, 2085–2100.

Rondina, J.M., Hahn, T., de Oliveira, L., Marquand, A.F., Dresler, T.,
Leitner, T., Fallgatter, A.J., Shawe-Taylor, J., & Mourão-Miranda,
J. (2014). SCoRS –Amethod based on stability for feature selection

142 Neuroinform (2018) 16:117–143

https://doi.org/10.3389/fnins.2016.00619
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.cortex.2014.01.013
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.3389/fninf.2016.00027


and mapping in neuroimaging. IEEE Transactions on Medical
Imaging, 33(1), 85–98. https://doi.org/10.1109/TMI.2013.2281398.

Rosa, M. J., Portugal, L., Hahn, T., Fallgatter, A. J., Garrido, M. I.,
Shawe-Taylor, J., & Mourao-Miranda, J. (2015). Sparse network-
based models for patient classification using fMRI. NeuroImage,
105, 493–506.

Schrouff, J., Kussé, C., Wehenkel, L., Maquet, P., & Phillips, C. (2012).
Decoding semi-constrained brain activity from fMRI using Support
Vector Machines and Gaussian Processes. PLoS One, 7, e35860.

Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C.,
Ashburner, J., Phillips, C., Richiardi, J., & Mourao-Miranda, J.
(2013a). PRoNTo: Pattern Recognition for Neuroimaging
Toolbox. Neuroinformatics, 3, 319–337.

Schrouff, J., Cremers, J., Garraux, G., Baldassarre, L., Mourão-Miranda,
J., & Phillips, C. (2013b). Localizing and comparing weight maps
generated from linear kernel machine learning models. Proceedings
of the 3rd workshop on Pattern Recognition in NeuroImaging.
http://hdl.handle.net/2268/157714.

Sergerie, K., Lepage, M., & Armony, J. L. (2005). A face to remember:
emotional expression modulates prefrontal activity during memory
formation. NeuroImage, 24(2), 580–585.

Tambini, A., & Davachi, L. (2013). Persistence of hippocampal
multivoxel patterns into postencoding rest is related to memory.
Proceedings of the National Academy of Sciences of the United
States of America, 110, 19591–19596.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, 58, 267–288.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002).
Automated Anatomical Labeling of activations in SPM using a
Macroscopic Anatomical Parcellation of the MNI MRI single-
subject brain. NeuroImage, 15, 273–289.

Varoquaux, G., Raamana, P., Engemann, D. A., Hoyos-Idrobo, A.,
Schwartz, Y., & Thirion, B. (2017). Assessing and tuning brain
decoders: Cross-validation, caveats, and guidelines. NeuroImage,
145, 166–179.

Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K.,
Knopman, D.S., Boeve, B.F., Petersen, R.C., & Jack, C.R. Jr.
(2008). Alzheimer’s disease diagnosis in individual subjects using
structural MR image: validation studies. NeuroImage, 39(3), 1186–
1197.

Weichwald, S., Meyer, T., Özdenizci, O., Schölkopf, B., Ball, T., &
Grosse-Wentrup,M. (2015). Causal interpretation rules for encoding
and decoding models in neuroimaging. NeuroImage, 110, 48–59.

Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multi-
modal classification of Alzheimer’s disease and mild cognitive im-
pairment. NeuroImage, 55, 856–867.

Zhang, Y., Dong, Z., Phillips, P., Wang, S., Ji, G., Yang, J., & Yuan, T.F.
(2015). Detection of subjects and brain regions related to
Alzheimer’s disease using 3D MRI scans based on eigenbrain and
machine learning. Frontiers in Computational Neuroscience, 9.
https://doi.org/10.3389/fncom.2015.00066.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B, 67,
301–320.

Neuroinform (2018) 16:117–143 143

https://doi.org/10.1109/TMI.2013.2281398
http://hdl.handle.net/2268/157714
https://doi.org/10.3389/fncom.2015.00066

	Embedding Anatomical or Functional Knowledge in Whole-Brain Multiple Kernel Learning Models
	Abstract
	Introduction
	Related Approaches
	Proposed Approach

	Materials and Methods
	Datasets and Pre-Processing
	Machine Learning, Modelling
	Single Kernel Modelling
	Multiple Kernel Learning
	Assessing Performance

	Weight Map
	Stability of the Regions’ Contribution
	Comparison of Atlases


	Results
	Haxby Dataset
	Model Performance
	Stability of the Regions’ Contribution
	Comparison of Weight Maps Across Atlases

	Face Dataset
	Model Performance
	Stability of the Regions’ Contribution
	Comparison of Weight Maps Across Atlases

	OASIS
	Model Performance
	Stability of the Regions’ Contribution
	Comparison of Weight Maps Across Atlases


	Discussion
	Implementation
	Information Sharing Statement

	Appendix A: Weights Derivations
	Support Vector Machine (SVM)
	Multiple Kernel Learning (MKL)

	Haxby Data
	Regions Selected in MKL-AAL
	Regions Selected in MKL-Brodmann
	Regions Selected in MKL-HCP

	Face Data
	Regions Selected in MKL-AAL
	Regions Selected in MKL-Brodmann
	Regions Selected in MKL-HCP

	OASIS Data
	Regions Selected in MKL-AAL
	Regions Selected in MKL-Brodmann
	Regions Selected in MKL-HCP

	References 


