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Almost all single neuron models currently being used and
developed combine discretized cable models with Hodgkin-
Huxley type equations.1 This approach, employed by the pop-
ular software package NEURON2 and its competitors such as
GENESIS,3 MOOSE,4 etc., is based on mathematical
methods developed in the 50s and 60s, before supercomputers
were available for scientific research. Wilfrid Rall introduced
linear cable theory to analyze the electrical behavior of den-
drites5 and was the first to demonstrate their importance for
synaptic integration.6 Later he proposed a computational ap-
proach, called compartmental modeling, based on a spatial
discretization of the linear cable equation.7 Although compart-
mental modeling allows simulation of the complex 3D

morphology of dendrites and axons in reasonable detail, the
underlying equations ignore many 3D aspects by computing
the changes in membrane potential in a branched 1D cable.
Each cylindrical compartment is isopotential with a constant
radius and uniform membrane currents. In some cases the use
of tapering cylinders2 can provide a better approximation of
the real neuronal shape.

Compartmental models can easily be extended to include
nonlinear conductances by adding Hodgkin-Huxley type
equations8 to represent different types of voltage/ligand-
gated channels. This method is extensible and in principle
all types of channels identified can be included in a model,
provided the necessary kinetic data are available for the
Hodgkin-Huxley type equations.9 For most neuron types the
cytoplasmic calcium concentrations will also need to be com-
puted to simulate calcium-activated potassium channels.10 A
simple well-mixed solution, usually called the calcium pool, is
often used but this is not effective to simulate the multiple time
constants by which calcium concentrations can evolve.11

More realistic models of calcium dynamics require calcium
diffusion and here one runs into limitations of the compart-
mental approach. Because a uniform membrane current is
assumed, the only gradient for calcium within each compart-
ment is perpendicular to the membrane and therefore only 1D
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calcium diffusion can be simulated, usually radially if the goal
is to model potassium channel activation12 (Fig. 1a, bottom).
In addition, calcium gradients occur over much shorter dis-
tances than voltage gradients due to strong calcium buffering
in most neurons and therefore a reasonably accurate model of
longitudinal calcium gradients will require very short electri-
cal compartments.13 More challenging is to model calcium
influx through synaptic channels in a dendritic spine. A com-
mon approach is to model the spine head as a stack of short
cylinders, attached to a similar stack of narrower cylinders
representing the spine neck, and simulate the 1D diffusion
along the longitudinal axis of this system (Fig. 1a, top). This
works fine until one tries to attach this spine to a dendrite
using radial diffusion: the morphologies do not connect prop-
erly. It is difficult to compute the volumes at the connection
and it requires very short dendritic compartments to represent
the localized effects of calcium changes in spines (Fig. 1a).

In general, compartmental modeling does a poor job of
simulating structures that do not look like cylinders, such as
somas, axonal boutons or spines. It is also difficult to compute
the effects of small changes in shape, like the enlargement of
spines during induction of long-term potentiation,14 if the
morphology has been approximated. In the past the limitations
of the cylindrical model were not a big concern because re-
constructions of neural morphology were also imprecise. The
standard manual approach to neural reconstruction, as

exemplified by the Neurolucida software, describes the neu-
ron as a branched cable with slowly changing diameters and is
limited by the poor resolution of light microscopy below
0.5 μm.15 With the increased use of electron microscopy16

and innovations like super resolution microscopy17 much bet-
ter neural reconstructions are becoming available that often
deviate from the cylinder assumption. For example, many
dendrites have an elliptical cross section instead of a circular
one.18 High resolution reconstruction data is typically de-
scribed by a surface mesh (Fig. 1b), which provides much
more detail than a traditional reconstruction, as found on
neuromorpho.org.19

Linear cable theory and compartmental modeling assume
that the resistance of the external medium is uniform and
usually ignore it (re = 0)5. This assumption does not matter
much for membrane potential calculations but limits the va-
lidity of models of the extracellular local field potential (LFP).
Recent studies show a strong interest in modeling approaches
to understand the source of the LFP and to interpret the in-
creasing number of experiments where LFP is recorded at
multiple sites.20 Such simulations are typically based on
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Fig. 1 a. 1D calcium diffusion in compartmental models of a spine (top)
and of an unbranched dendrite (bottom). In each green section the calcium
concentration is well-mixed. Red arrows show direction of calcium
diffusion, brown membrane represents the site of homogenous calcium
influx. Notice that the spine does not ‘fit’ onto the dendrite because of
their different shapes. Also, the calcium concentration gradients in the
dendritic compartment ignore the position of the spine if the two systems

were to be connected. b. Tetrahedral mesh of part of a spiny dendrite CA1
pyramidal neuron (Harris, K. M., & Stevens, J. K. (1989). Dendritic
spines of CA 1 pyramidal cells in the rat hippocampus: serial electron
microscopy with reference to their biophysical characteristics. The
Journal of Neuroscience, 9(8), 2982–2997). In this representation
calcium diffusion and electrical events can be simulated in 3D at the
resolution of the mesh elements
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networks of compartmental models of neurons of varying
morphological detail.21 Because the physical mechanisms
causing the LFP are a topic of active discussion22 it is at
present difficult to predict the major sources of error in this
modeling approach. Nevertheless, it is clear that the use of
uniform membrane currents on cylinders and the assumption
of a homogeneous extracellular medium are gross simplifica-
tions, especially in the presence of tightly packed neurons.

Considering the many limitations of compartmental model-
ingmentioned, the lack of development of alternative methods
to simulate morphologically detailed neurons is surprising. A
promising effort was the NeuroDune project,23 which used
finite volume approaches to accurately model the 3D place-
ment of synapses with the neuron model still based on cable
theory. Unfortunately this project seems no longer active and
its website is defunct. Our group has been developing a soft-
ware package STEPS for the stochastic simulation of reaction-
diffusion systems in neurons.24 STEPS uses tetrahedral vol-
ume meshes to represent the full 3D morphology with an
accuracy of 0.1 μm and below (Fig. 1b). Like several other
software packages used to model molecular events in synap-
ses,25 STEPS was originally designed to simulate only small
parts of neurons, such as spines26 or partial dendrites.27

Thanks to a recent MPI-based parallel version with
supralinear scaling on computing clusters,28 simulation of

complete neurons in 3D is now practical with STEPS. This
allows for detailed comparison with compartmental models13

but also, and more interestingly, it makes molecular level sim-
ulation at the full neuronal scale possible. An example is sim-
ulation of the effect of different clustering schemes for calci-
um and calcium-activated potassium channels at the sub-μm
scale act on the generation of dendritic calcium spikes27.
Nevertheless this is not a complete solution: not every prob-
lem requires computationally intensive stochastic simulation
and at present STEPS does not support network simulation or
computation of the LFP.

The number of scientific questions at the molecular, struc-
tural and network levels that cannot be properly simulated
with a 1D approach is expected to increase. With easier access
to large computing power provided by university clusters and
cloud computing, there is no longer a need for the numerical
efficiency of cable theory to model a single neuron. Mesh-
based simulators that fully represent the shape of neurons at
high resolution and compute electrical events in 3D can run on
such computing platforms at good speeds. This approach may
not be practical yet for large neural network simulations,29 but
it would serve the computational neuroscience community
well to recognize the limitations of cable theory and foster
the development of several new software platforms to simu-
late neuronal physiology in 3D.
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