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Abstract The way in which a neuronal tree expands plays
an important role in its functional and computational char-
acteristics. We aimed to study the existence of an optimal
neuronal design for different types of cortical GABAer-
gic neurons. To do this, we hypothesized that both the
axonal and dendritic trees of individual neurons optimize
brain connectivity in terms of wiring length. We took the
branching points of real three-dimensional neuronal recon-
structions of the axonal and dendritic trees of different
types of cortical interneurons and searched for the mini-
mal wiring arborization structure that respects the branching
points. We compared the minimal wiring arborization with
real axonal and dendritic trees. We tested this optimiza-
tion problem using a new approach based on graph theory
and evolutionary computation techniques. We concluded
that neuronal wiring is near-optimal in most of the tested
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neurons, although the wiring length of dendritic trees is gen-
erally nearer to the optimum. Therefore, wiring economy
is related to the way in which neuronal arborizations grow
irrespective of the marked differences in the morphology of
the examined interneurons.
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Introduction

Santiago Ramén y Cajal formulated the fundamental
anatomical principles of the organization of nerve cells more
than a century ago. He stated that the structure of axons and
dendrites is designed in such a way as to save space, time
and matter (Cajal 1899). Here we aim to show that dendritic
and axonal trees of different types of cortical interneurons
optimize brain connectivity in terms of neuronal wiring cost.
Although the concept of wiring cost is not clearly defined,
it is basically based on the assumption that the further
away two elements are, the more expensive the connection
between them is. Therefore, wiring cost can be expressed as
a function of the distance between elements, this being the
criterion to be minimized.

Wiring cost has been widely used in the literature to
explain neuron placement in different brain areas and
species, as well as morphological properties in single neu-
rons. Regarding placement, some authors consider the min-
imization of wiring costs in order to explain neuron place-
ment in simple nervous systems such as Caenorhabditis
elegans (Kaiser and Hilgetag 2006; Chen et al. 2006; Pérez-
Escudero and de Polavieja 2007; Pérez-Escudero et al.
2009). There are also studies on the relation of wiring
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economy and neuron placement in larger brains. For exam-
ple, Rivera-Alba et al. (2011) try to explain the placement of
neurons in a module of the Drosophila melanogaster brain;
Chklovskii et al. (2002) associate wiring optimization with
the optimal arrangement of elements of neuronal circuits
in the mouse neocortex; Kaiser and Hilgetag (2006) further
examine the concept of wiring economy analyzing three-
dimensional spatial positions of connected cortical areas in
the macaque brain; Rivera-Alba et al. (2014) use the concept
of wiring economy and the dimensions of neuronal compo-
nents to predict the microarchitecture of the neuropile across
brain areas and species. Karbowski (2015) combines dif-
ferent forms of wiring minimization with the maximization
of dendritic spine proportion in the cerebral cortex across
species.

Regarding the morphological properties of single neu-
rons, Cuntz et al. (2007, 2008, 2010) and Schneider et al.
(2014) use simulations of synthetic neuronal structures to
show that optimal wiring explains dendritic branching pat-
terns. Wen and Chklovskii (2008) and Wen et al. (2009)
attempt to disclose the relationship between the dimensions
and branching structure of dendritic arbors and synaptic
distribution by minimizing wiring cost. Other studies for-
mulate mathematically the relation between optimal wiring
and different dendritic characteristics. For example, Cuntz
et al. (2012) have shown that optimal wiring predicts a 2/3
power law between dendritic wiring length and the number
of branching points and also a 2/3 power law between wiring
and the number of synapses.

Here we also analyze wiring economy in single neu-
rons. However, we take a different approach from pre-
vious research considering a specific criterion of wiring
cost assessment, namely, wiring length. We start from the
branching and terminal point cloud of real neuronal trees,
which we search for the shortest arborization. We force
the computed wiring to pass through the branching points
to reach the terminal points, and we limit the number of
times that the points branch out, since multifurcations rarely
occur in real neurons. We hypothesize that by imposing
constraints that provide realistic synthetic arborizations, we
can for the most part explain the wiring economy of sin-
gle neurons considering only wiring length. In addition, we
search for the longest arborization that meets the same con-
straints in order to analyze the range of variation of the
wiring function. We use the same criteria to analyze both the
dendritic and axonal wiring of neurons with very different
morphologies.

We use graph theory and evolutionary computation tech-
niques to test our wiring optimization hypothesis. Graph
theory is suitable for representing the point clouds and their
connections and has been successfully applied in previ-
ous works studying dendritic structures (Cuntz et al. 2007,
2008) and neocortical axons (Budd et al. 2010). With the

@ Springer

imposed constraints, our wiring design problem is NP-hard,
so we had to use heuristic methods for problem solving. We
opted for evolutionary computation techniques. Relatively
few heuristics have been used to analyze wiring design.
For example, Cuntz et al. (2007, 2008) used a greedy algo-
rithm which locally minimizes the total amount of wiring in
their synthetic neuronal structures, whereas Pérez-Escudero
et al. (2009) and Rivera-Alba et al. (2011) used simulated
annealing (Kirkpatrick et al. 1983) to find low-cost neu-
ronal element configurations. To the best of our knowledge,
graph theory has not previously been used in conjunction
with heuristic methods to analyze both the dendritic and
axonal wiring of a set of single neurons with different mor-
phologies. Specifically, we analyze six morphological types
of neocortical interneurons, including Martinotti, large bas-
ket, common type, horse tail, chandelier and common basket
cells (DeFelipe et al. 2013). These interneurons are charac-
terized by different dendritic and axonal morphologies and
synaptic connections (see e.g., Ascoli et al. (2008)).

Methods
Data

We used a set of 12 three-dimensional reconstructed
interneurons (Fig. 1) classified into different types accord-
ing to their morphology by 42 leading neuroscientists
(DeFelipe et al. 2013). These neurons were originally
extracted from NeuroMorpho.Org (Ascoli et al. 2007).
Table 1 shows the cell type and unique identifier of these
neurons in NeuroMorpho.Org. We worked with the follow-
ing types (two neurons of each type): Martinotti (MA), large
basket (LB), common type (CT), horse tail (HT), chandelier
(CH) and common basket (CB).

Wiring Algorithm

In general, neurons can be divided into distinct morpholog-
ical and functional regions: a receptor apparatus (formed
by the dendrites and the cell body or soma), the emission
apparatus (the axon), and the distribution apparatus (termi-
nal axonal arborization). For example, Fig. 2a shows neuron
CT2 in Fig. 1 with superimposed point clouds formed by
the roots, branching and terminal points of the dendrites
(red) and the axon (blue). We searched for the optimal (the
shortest) dendritic wiring from the red point cloud and for
the optimal axonal wiring from the blue point cloud. From
a graph theory viewpoint, a tree that connects all the tar-
get nodes or points together with the minimal cost (length
in our case) is called a minimum spanning tree (MST).
Well-known classical algorithms exist for building an MST
(Kruskal 1956; Prim 1957).
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Fig. 1 The twelve analyzed interneurons. Dendrites are shown in red
and axons in blue. We consider six different types of interneurons
depending on their morphology: a,b Martinotti (MA), c,d large basket

All branching points in the analyzed neurons were bifur-
cations. Therefore, we forced these nodes to divide into two
branches too. In graph theory, the degree of a node is defined
as the number of edges incident to it (in our case, the input
branch plus the times a point branches out). A tree that con-
nects all points with minimal cost and also limits the degree
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(LB), e,f common type (CT), g,h horse tail (HT), i,j chandelier (CH)
and k,] common basket (CB), as defined in a previous work for the
classification on GABAergic interneurons (DeFelipe et al. 2013)

of each node is called a degree-constrained minimum span-
ning tree (DCMST). Whereas the MST of a graph is simple
to build, finding the DCMST is highly complex (it is an NP-
hard problem (Garey and Johnson 1979)). For this reason,
a large number of heuristics have been applied in the liter-
ature. For example, Krishnamoorthy et al. (2001) compare
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Table 1 NeuroMorpho.Org identifier and cell type of the 12 ana-
lyzed interneurons. We analyzed the morphology files of the repository
version 6.1 (May 2015)

Neuron NeuroMorpho.Org ID Type

MAL NMO_02204 Martinotti

MA2 NMO_00334 Martinotti

LBI1 NMO_04572 Large basket
LB2 NMO_04582 Large basket
CTl1 NMO_02732 Common type
CT2 NMO_04558 Common type
HT1 NMO_04577 Horse tail

HT2 NMO_00337 Horse tail

CH1 NMO_04548 Chandelier

CH2 NMO_00291 Chandelier

CB1 NMO_01858 Common basket
CB2 NMO_04574 Common basket

simulated annealing and genetic algorithms, whereas tabu
search is used in Wamiliana (2004), and Bui et al. (2012)
propose an ant-based colony algorithm.

In our neuronal wiring analysis, we are looking for
minimal cost trees, with constraints on the number of
bifurcations. Additionally, to assure that the extent of the
dendritic and axonal arborizations is fixed, the roots (i.e.,
points of origin of the dendrites and axons from the cell
body) and terminal points of real neuronal trees should
also be unchanged in the searched structures. Therefore,
we face DCMST problems where the roles played by the
nodes in the trees are also fixed. We can deal with this
by building degree- and role-constrained minimum span-
ning trees (DRCMST) as proposed in Anton-Sanchez et al.
(2015). Due to its complexity, DRCMST problem solving
is approximated using a wide range of evolutionary compu-
tation techniques. The conclusion is that genetic algorithms
(Holland 1975), and, in particular, the steady-state genetic
algorithm (ssGA) (Syswerda 1991), performed significantly
better for the DRCMST problem. Therefore, we solved our
neuronal wiring design problems using this technique.

A genetic algorithm mimics the process of natural selec-
tion by evolving a population of individuals through random

Fig. 2 Example of point clouds.
a Neuron CT2 with
superimposed point clouds
formed by the roots, branching
points and terminal points of the
dendrites (red) and the axon
(blue). b,c Axonal (b) and
dendritic (c¢) point clouds: the
root points are shown in black,
the branching points in brown \
and the terminal points in blue
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actions that resemble genetic crossovers and mutations.
Applying a selection criterion, the algorithm decides which
individuals survive (the fittest) and which are discarded.
One of the main issues that need to be addressed when using
genetic algorithms is the definition and encoding of individ-
uals. In our case, an individual of the population is a feasible
neuronal arborization, and each individual is encoded by a
permutation as explained below. The smaller the total wiring
length is, the fitter an individual is considered to be.

Axonal arborizations consist of a single tree but dendritic
arborizations are, generally, formed by a group of trees. The
methodology proposed in Anton-Sanchez et al. (2015) can
simultaneously optimize one or more trees. Therefore it is
applicable to our wiring design problems for both axons
and dendrites. Thus, by restricting the number of branches
(degree) and the role played by each point in the trees,
we search for a single tree with optimal wiring in axonal
point clouds and we search for a group of trees with opti-
mal wiring in dendritic point clouds. Then, we compare
the resulting structures and the real arborizations. Figure 2b
shows the axonal point cloud of neuron CT2 in three dif-
ferent colors, differentiating the three roles with which we
work. Figure 2c¢ shows the colored dendritic point cloud.
Note that, in this case, we have five roots because the neu-
ron has five dendritic trees (none of the roots are readily
appreciable because it is a three-dimensional point cloud).

To search for the optimal arborization that meets the dis-
cussed constraints, we formulate and optimize DRCMST
problems. As in Anton-Sanchez et al. (2015), an arboriza-
tion is represented by a permutation of length n — ¢, where
n is the total number of points and ¢ is the number of trees
to be built. Each position of the permutation represents a
connection between two points. The use of two auxiliary
arrays of length n — ¢ to decode the permutation-based rep-
resentation guarantees degree and role constraints in the
trees.

Figure 3 shows an example with two of the dendritic
trees of neuron CT2. Figure 3a shows the point cloud of
these two trees and uses different colors to identify the roles.
Figure 3b shows a solution which matches the real neuronal
trees. Figure 3c shows another possible valid set of trees.

This small example has n = 10 points and t = 2 trees.
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Fig.3 Two examples of dendritic trees of neuron CT2 shown in Fig. 1
and their codification with the proposed permutation-based represen-
tation. a Numbered point cloud of the two trees. The roots are shown
in black, terminal points in blue and branching points (bifurcations)
in brown. b Equivalent structure to real trees. ¢ Another valid solu-
tion. Differences to (b) are shown in red. Note that as the roots are
unchanged, the number of constructed trees is always equal to the num-
ber of trees in the neuron. However, branching and terminal points
from different dendritic trees can be mixed. d Auxiliary arrays needed
to decode the permutations. e Permutations that represent the arboriza-
tions in (b) and (¢). Decoding is as follows. A number s at position k of
the permutation means that the node at position s of auxiliary array 1 is
connected to the node at position k of auxiliary array 2. For example,
in the permutation shown in (e), top, representing arborization (b), we
find s = 5 at position k = 1. This means that the node at position 5 in
auxiliary array 1 (node 4) is connected to the node which is at position
1 of auxiliary array 2 (node 3). The number at position k = 2iss = 1,
which means that the node at position 1 of auxiliary array 1 (node 1) is
connected to the node at position 2 of auxiliary array 2 (node 4), and
so on (see Anton-Sanchez et al. (2015) for further details on decoding)

Therefore, the length of the permutations that represent this
arborization is n — ¢ = 8. Figure 3d shows the two auxiliary
arrays needed for permutation decoding (Anton-Sanchez
et al. (2015) details how these arrays are built). Figure 3e
shows the permutations that represent the arborizations in
(b) and (c).

The procedure starts with a random initial population of
permutations of length n — ¢. Then the genetic algorithm
performs crossover and mutation operations on the individ-
uals (arborizations) of the population. This results in the
generation of new permutations with some changes of posi-
tion, i.e., with changes to some of the connections that form
the trees. The genetic algorithm evolves searching for the
arborization with minimal wiring until a stop criterion is met
(usually a maximum number of iterations).

Axon partition

As reported in Anton-Sanchez et al. (2015), DRCMST prob-
lems up to 200 nodes can be readily solved. This is the
case of dendritic wiring design problems. The computa-
tional cost of solving axonal design problems in the same
way would be huge because they are much more com-
plex, and it would be very time consuming. Therefore, we
introduce parallel computing to address complex problems,
that is, we partition the overall axonal point cloud into
smaller clouds, and we solve these smaller clouds sepa-
rately. We can simultaneously solve each of the parts (which
takes a few seconds or minutes depending on their size)
and then combine the best (shortest) solutions found in
each part to ouput the solution that provides the complete
axonal tree (negligible time compared to the rest of the
process).

The axon is represented by a permutation of length n — 1,
where n is the total number of points in the axonal point
cloud. The creation of sub-regions in the overall point cloud
is equivalent to partitioning this permutation into as many
parts as sub-regions we need to solve. First, we optimize
each of the parts into which we divide the permutation,
searching for the shortest tree structures in different regions
of the point cloud (different colors in Fig. 4). Each sub-
region is solved according to the procedure reported in
Anton-Sanchez et al. (2015) as described above. Second, we
put together the shortest solutions found in each sub-region
(sub-part of the global permutation) to output a permuta-
tion that represents the entire axonal tree. Third, we try
to improve the global solution found. To do this, we iter-
atively swap permutation positions that are close to the
junctions of the parts making up the whole permutation
(Fig. 5).

Due to the diversity of axon shapes (spherical, elon-
gated, etc.), we try out two different methods to create the
smaller point clouds within the overall set of points. For all
the analyzed neurons, we optimize the axonal wiring using
the two methods described below. For each neuron, we
choose the result provided by the method that performs best,
that is, the method that provides the shortest total axonal
wiring, and we compare its length with the real axonal
wiring.

K -means algorithm

One method for creating subsets of nodes is the k-
means unsupervised clustering algorithm (MacQueen 1967)
to group nodes according to the distance between them
(Figs. 4a and 4b). We choose a value of k nearest to how
many hundreds of nodes there are in the point cloud. For
example, we choose k = 3 for neuron MA2 whose axonal
point cloud has 274 nodes.
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Fig. 4 Axonal point clouds of
some of the analyzed
interneurons divided into
smaller clouds to reduce
complexity. Sub-regions are
shown in different colors and the
root of the tree is shown in
black. a Neuron MA2. 274
points. Groups created using the
k-means algorithm with k=3
groups. b Neuron LB1. 500
points. k=6 groups. ¢ Neuron
CH2. 800 points. Groups
created by distances from nodes
to the soma with group size of
125. d Neuron CB2. 674 points.
Group size of 165

[ RRI
sSGA

Fig. 5 Description of the partitioning process for complex problems
with a high number of nodes. Example with the axon of neuron LB1.
a The axonal point cloud (500 nodes) is divided into six smaller point
clouds (using the k-means algorithm in this case): cyan, magenta, red,
blue, yellow and green. The genetic algorithm (ssGA) is applied to
each sub-region separately searching for the shortest arborization in
each of the smaller point clouds. A sub-region is part of the global
permutation depicting the complete axon. Each position of the per-
mutation represents a connection between two nodes (e.g., the first
three positions of the cyan permutation correspond to the three con-
nections of the magnified region in this color). b We put together the
best solutions found in each part to output the global permutation for
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the complete axonal tree. We apply a local optimization process in
the neighborhoods where the sub-region solutions meet: we iteratively
switch positions near the junctions of the parts that form the global per-
mutation trying to find better solutions. Switching positions at those
permutation locations means changing connections between nearby
nodes of two different sub-regions (an example is shown in the magni-
fied region of the yellow and green zones). After the local optimization
processes we choose the permutation depicting the best (shortest) com-
plete axonal tree. We repeat the procedure in (a) and (b) 20 times for
each neuron (maintaining the same sub-regions). Then we choose and
compare with the real axonal tree the best arborization found
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Soma distance

The other method is to form groups of nodes based on their
distance to the soma. By setting a group size, e.g. 100, we
form the first group with the first 100 nodes of the point
cloud that are closest to the soma, the second group with
the next 100 nodes closest to the soma, after excluding the
nodes used in previous groups, and so on. We test several
group sizes for each of the neurons in order to achieve good
results for comparison with the real neuronal trees (Figs. 4¢
and 4d).

Software

We provide software enabling the user to analyze the wiring
optimality of a three-dimensional neuron from its specifi-
cation in .asc format. The software and a user manual are
available for download at the Computational Intelligence
Group’s webpage ! (Software section). It is capable of pro-
cessing wiring design problems with point clouds up to size
200. Larger problems are costly for a personal computer and
are better addressed using parallel computing. Both den-
dritic and axonal wiring can be analyzed. We implemented
the necessary preprocessing for the .asc files in Java and we
used the single-objective ssGA implementation provided in
jMetal framework (Durillo and Nebro 2011).

Results

Table 2 summarizes the characteristic features of the 12
neurons analyzed in this study: number of dendritic trees,
total number of points (roots, branching and terminal points)
of the dendritic point cloud and total number of points of
the axonal point cloud (always a single tree). Furthermore,
it shows the ratio between the total length of the shortest
trees found and the total length of real neuronal trees (see
below). The wiring length between two connected points is
measured, in both the real and found tree structures, using
the Euclidean distance between them. Therefore, we use an
approximate real wiring length because we ignore the path
tortuosity.

Dendritic Wiring Optimization

The number of dendritic trees in the analyzed neurons varies
from 2 to 11 (Table 2); the total number of nodes in these
cases is between 32 and 132. For dendritic wiring optimiza-
tion, we did not apply the partitioning methods described in
the previous section because they were not complex prob-
lems. The results for dentritic trees are similar across all

Thttp://cig.fi.upm.es/
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Table 2 Characteristics of the 12 interneurons shown in Fig. 1.
Dendrites Axon

Neuron Trees Points Best/Real Points Best/Real
MAI1 4 54 95.50 % 476 102.59 %
MA2 4 66 97.33 % 274 92.98 %
LB1 6 100 93.34 % 500 97.98 %
LB2 7 58 98.00 % 822 111.04 %
CT1 3 32 97.51 % 236 96.00 %
CT2 5 60 99.91 % 168 88.21 %
HT1 3 44 98.92 % 228 98.12 %
HT2 2 90 97.97 % 156 86.46 %
CH1 3 46 95.24 % 780 101.36 %
CH2 3 48 98.59 % 800 113.01 %
CB1 7 46 95.29 % 560 94.20 %
CB2 11 132 91.98 % 674 109.36 %

Number of dendritic trees. Total number of points in the dendritic point
cloud (considering all trees). Total number of points in the axonal point
cloud (always a single tree). Ratio between the total length of the best
(shortest) structure found for each neuron and the total length of the
real neuronal trees. Below 100 % (boldface), the length of the best
found structure is shorter than the real wiring

types of neurons. In all cases, the ssGA algorithm slightly
improves upon the real neuronal arborization, i.e., it finds a
slightly lower total wiring. The ratio between the length of
the best dendritic structure found and the length of the real
dendritic trees (fourth column of Table 2) shows that the
greatest improvement is achieved for neuron CB2, where
the genetic algorithm finds a solution whose total length is
8 % shorter than the real neuronal wiring.

To check the range of variation of the wiring function, we
performed the optimization process by reversing the direc-
tion, that is, we searched for structures that maximized the
wiring length while meeting the constraints. As shown in
Fig. 6, the maximum wiring of the dendritic arborizations
was much longer than the real dendritic wiring (the results
ranged from 270.51 % in neuron LB2 to 605.42 % in neuron
CT1).

Going back to our running example with the dendrites
of neuron CT2, Fig. 7 illustrates the difference between the
real dendritic wiring and some structures found during the
optimization process for the entire dendritic arborization of
this neuron. Figure 7a shows the dendritic point cloud with
the connections between nodes that exist in the real trees
of this neuron. The five dendritic trees of this neuron are
shown in five different colors. Figure 7b shows the den-
dritic connections in the shortest structure found. It is a
slight improvement upon the real dendritic wiring. Figure 7d
shows the connections of the structure that maximizes the
wiring of this neuron. It is more than five times longer than
the real wiring (Fig. 6). Figure 7c shows a wiring which is
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Fig. 6 Total dendritic length (um) of the 12 analyzed interneurons
(red) versus total length of the minimum and maximum arborizations
found (green and purple, respectively). In all cases, the optimization

in-between the minimum and maximum found by the opti-
mization algorithm. It is about three times longer than the
real wiring. Note that all connections are drawn as straight
lines as we measure the (straight) length between points.

Axonal Wiring Optimization

The axonal point clouds of the 12 analyzed neurons have
from 156 to 822 nodes (Table 2) with an average number

algorithm finds a better (shorter) solution than the real wiring. The
maximum wiring found is much longer than the real wiring (four times
on average)

of nodes greater than 470. As mentioned above, we use
two different techniques to create sub-regions in the over-
all point cloud of each axon to reduce complexity. For each
method, we combine the shortest solutions found in each
sub-region so that our approach outputs the global minimum
arborization (Fig. 5). We choose the result of the technique
that returns the shortest total wiring for each neuron.

For Martinotti, large basket and common type neurons
(Fig. 1a—f), the best solutions found were clearly better with

Fig.7 Example of neuron CT2 and differences between real and opti-
mized dendritic wiring. a Dendritic point cloud with real connections
between points. Five dendritic trees are shown in different colors:
brown, green, magenta, cyan and red. b Dendritic point cloud with the
connections in the shortest structure found by the algorithm. The opti-
mization algorithm finds a structure that improves the real neuronal
wiring by only two microns. With the exception of only two edges, the
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tree structure provided by the algorithm is identical to the real dendritic
wiring (black connections in the magnified regions in (a) and (b)).
¢ Structure whose wiring is three times longer than the real wiring.
d Dendritic point cloud with the connections in the largest structure
found, which is five times longer than the real wiring. The trees in (c)
and (d) are very different from the real dendritic trees, and their colors
were chosen arbitrarily
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the k-means algorithm (in the case of neuron LB1, there was
a 15 % difference in the best solutions found by both meth-
ods). For chandelier and common basket neurons (Fig. 1i-1),
the best solutions found were vastly better creating groups
of nodes depending on their distances to the soma (up to
33 % better than k-means algorithm in the case of neuron
CB2). For horse tail neurons (Fig. 1g-h), we also achieved
better results by grouping the nodes by their distance to the
soma. However, the best solutions found for this type of
neurons were very similar using both methods.

The results of the two methods used to split the axonal
point clouds clearly differentiated which method it is better
to apply for each type of neuron. This was predictable con-
sidering the shape of the axons. In spherical-shaped axons,
like chandelier and common basket neurons, it is better to
group the nodes around the root tree. In axons with much
less homogeneous shapes, like Martinotti and large basket
neurons, it is better to group the nodes taking into account
the distance between them regardless of a reference point.

Unlike dendrites, the tree structures output by the opti-
mization algorithm do not improve upon the real axonal
wiring in all cases. In the last column of Table 2, a figure
below 100 % shows that the best solution found by the
ssGA has a total wiring length shorter (better) than the
real axonal tree. A number greater than 100 % indicates
that the algorithm cannot find a solution that improves the
real wiring. For neuron HT2, for example, we obtain a tree
whose total length is almost 14 % less than the real axonal
tree. However, for neuron CH2 (one of the most complex
axons analyzed with 800 nodes), the best solution found was
13 % worse (longer total length) than the real axonal wiring.
We also searched for the trees that maximized the axonal
wiring of each neuron. The results varied from 409.15 % in
neuron CT2 to 2403.15 % in neuron HT1, i.e., the maximum
wiring found was between four and 24 times longer than the
real wiring. Figure 8 shows the total real lengths of the 12

axons and the total length of the minimum and maximum
solutions found for each neuron.

In some of the axonal wiring design problems, the algo-
rithm was unable to find the real configuration, which was
known to exist. Therefore, we performed the following
test to check algorithm performance. We generated ran-
dom point clouds with n points and built their MSTs using
Prim’s algorithm (Prim 1957). From these MSTs, we con-
strained the degree and role of each point to match the
degree and role in the MSTs. Then, from the original point
clouds and with the imposed constraints, we searched for
the DRCMSTs. We did this for n = 50, 100 without prob-
lem partitioning. For n = 200, 400, 800, we divided the
point clouds into smaller sub-regions using both of the
partitioning methods described in Section “Axon partition”.

For small problems, the optimization algorithm was very
close to the MST length (2 % larger for n = 50 and 6 %
for n = 100). For larger problems, we applied the parti-
tioning methods to create sub-regions. By optimizing the
sub-regions of the point cloud separately, we may not come
as near to the global optimum. This is the price we pay for
making these problems computationally tractable. For ran-
dom problems with n = 200, the optimization algorithm
yielded solutions 14 % larger than the MST length. For
n = 400, 800, the solutions were 23 % and 26 % larger than
their MSTs, respectively. For n = 200, 400, we found the
best results, i.e., shortest wirings, creating the sub-regions
according to the soma distance. For n = 800, the ssGA
found the best solutions using the k-means algorithm.

The mean number of points in the 12 dendritic wiring
design problems was 65, and the mean best-to-real ratio for
the shortest solutions found was 96.63 %. Therefore, we
concluded that, because the algorithm performed quite well
for similar values of n, dendritic wiring was very nearly
optimal in terms of wiring length. Comparing axons and
dendrites, axonal wiring was not as optimal in terms of
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algorithm finds a solution that is shorter than or very close to real
wiring. The maximum axonal wiring found is much longer than the
real wiring (12 times on average)
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wiring length for neurons whose axonal point clouds had the
lowest number n of points (although n was greater than the
largest dendritic point clouds). Specifically, the best-to-real
ratios in neuron HT2 (n = 156) and neuron CT2 (n = 168)
were 86.46 % and 88.21 %, respectively (Table 2). Neu-
ronal trees appear to expand more optimally in less complex
branching structures. Consequently, dendritic wiring, gen-
erally simpler than axonal wiring, should come closer to
the optimum in terms of the wiring length discussed in this
study. In future research, we intend to refine the resolution
of large problems in order to explore what happens in the
axons for which our algorithm failed to improve upon the
real wiring length.

The test that we conducted gives an idea of how well
the genetic algorithm performs for problems of different
sizes using both partitioning methods, but we must take
into account that the comparison of the MST and DRCMST
solutions is unfair. The MST for a big point cloud is easily
obtainable in polynomial time. However, if the problem has
degree and/or role constraints, the problem becomes NP-
hard, and large problems are extremely difficult to solve. On
this ground, it is necessary to use heuristic methods.

In addition, we extended the study to analyze both the
optimality of dendritic and axonal wiring of another 16 neu-
rons (see Supplementary Table 1) to substantiate that the
results were similar with groups of neurons with size greater
than two (Supplementary Table 2).

Discussion

We present a new approach to test the hypothesis of opti-
mal neuronal wiring in single neurons using graph theory
and evolutionary computation. We analyzed both the den-
dritic wiring and the much more complex axonal wiring. We
found that the tree structure of different types of neocor-
tical interneurons, which included Martinotti, large basket,
common type, horse tail, chandelier and common basket
cells, is near-optimal in terms of wiring length, although
dendritic wiring was generally nearer to the optimum than
axonal wiring. This is a remarkable finding since a charac-
teristic of these neurons is that the postsynaptic targets and
spatial characteristics of their dendritic and axonal arboriza-
tions are rather different (see below). Our analysis stresses
the importance of the wiring cost to which some morpho-
logical and organizational principles in the brain have been
attributed (Chklovskii 2004).

Dendritic wiring optimization was solved properly using
the method proposed in Anton-Sanchez et al. (2015). To
address axonal wiring design problems, however, we had
to reduce their size. The method proposed here is to
divide the axonal point cloud into different sub-regions
and find the shortest tree structures in each of these

@ Springer

sub-regions. The results show that this method performs
well in many cases, providing a more efficient method in
terms of time and computational cost savings. However, for
some of the more complex axons, the optimization algo-
rithm output a tree structure whose total length was close
to but larger than real wiring (i.e., the algorithm could not
find an equal or better solution than the real situation).
Future research needs to improve the way in which the
sub-regions are created and how the best solutions found
in these sub-regions are combined to output the overall
solution. Thus, it would be possible to deal with larger
problems.

For all dendrites and many axons, the genetic algo-
rithm (ssGA) used output tree structures with a total length
slightly shorter than the real trees. This indicates that den-
drite and axon spanning uses the least amount of wiring
needed to achieve their functions but that there are also other
important factors that influence neuron growth. For exam-
ple, we might consider a more complete wiring cost function
minimizing the distance of each non-root point to the root of
the tree. This is closely related to minimizing the time that it
takes for a signal to reach a synaptic contact from the soma
(see e.g., Cuntz et al. (2007), Wen and Chklovskii (2008),
Budd et al. (2010)).

For dendritic trees of the same neuron, we could check
if the optimal arborization found has the same number of
trees as the real neuron by not fixing the number of trees in
advance.

Note also that there are “obstacles”, like blood vessels
and cell somata, that the dendrite and axon trajectory has to
circumvent. The more such obstacles there are, the greater
the wiring cost would be. Moreover, the larger the arbor is,
the more the trajectory modifications are. Thus, the wiring
may not be perfectly optimal, particularly in axons. How-
ever, we did not take tortuosity into consideration (although
it would have been more realistic) on the grounds of the
complexity of the problem. Moreover, tortuosity is, at least
in part, due to the presence of obstacles, and we did not
have access to this information. In addition, different types
of interneurons connect with different postsynaptic targets,
and this is related to the spatial characteristics of their axons.
For example, the pattern of postsynaptic contacts may be
‘distributed’ or evenly spaced, whereas others may show a
‘gradient’ pattern where the distribution of contacts changes
in a specific direction. ‘Clustered’ terminal branches are
characteristic of chandelier cells that innervate pyramidal-
cell axon initial segments (see, e.g., Ascoli et al. (2008),
Blazquez-Llorca et al. (2014)). Further studies using more
complete data on the synaptic characteristics of the cells
under study and the local spatial distribution and density
of the blood vessels and somata where the neuron is local-
ized will make the wiring rules of single neurons easier to
interpret.
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using the identifiers in Table 1 and Supplementary Table 1.
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