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Abstract We propose an infrastructure for the automated
anonymization, extraction and processing of image data
stored in clinical data repositories to make routinely acquired
imaging data available for research purposes. The automated
system, which was tested in the context of analyzing routinely
acquired MR brain imaging data, consists of four modules:
subject selection using PACS query, anonymization of privacy
sensitive information and removal of facial features, quality
assurance on DICOM header and image information, and
quantitative imaging biomarker extraction. In total, 1,616
examinations were selected based on the following MRI scan-
ning protocols: dementia protocol (246), multiple sclerosis
protocol (446) and open question protocol (924). We evaluat-
ed the effectiveness of the infrastructure in accessing and
successfully extracting biomarkers from routinely acquired
clinical imaging data. To examine the validity, we compared
brain volumes between patient groups with positive and neg-
ative diagnosis, according to the patient reports. Overall,

success rates of image data retrieval and automatic processing
were 82.5 %, 82.3 % and 66.2 % for the three protocol groups
respectively, indicating that a large percentage of routinely
acquired clinical imaging data can be used for brain volumetry
research, despite image heterogeneity. In line with the litera-
ture, brain volumes were found to be significantly smaller (p-
value <0.001) in patients with a positive diagnosis of dementia
(915 ml) compared to patients with a negative diagnosis
(939 ml). This study demonstrates that quantitative image
biomarkers such as intracranial and brain volume can be
extracted from routinely acquired clinical imaging data. This
enables secondary use of clinical images for research into
quantitative biomarkers at a hitherto unprecedented scale.

Keywords Medical informatics . Magnetic resonance
imaging . Radiology information systems . Neuroimaging .

Biomarkers

Introduction

In the last decades, the use of medical imaging in routine
clinical practice has increased both in quantity and diversity.
As advances in imaging hard- and software, and in imaging
tracers, uncover new ways to visualize disease processes,
medical imaging will continue to fulfill an important role in
the diagnosis and treatment of patients in routine clinical care.
The inclusion of imaging protocols in the diagnostic guide-
lines and criteria is a testimony of this importance. In the field
of brain imaging for example, imaging has become critical for
the diagnosis and/or operative planning for the treatment of
acute traumas, tumors, and diseases such as epilepsy and
multiple sclerosis, to name only a few. More recently, imaging
has become supportive for the diagnosis of Alzheimer’s dis-
ease (Jack et al. 2011; Frisoni et al. 2010). Owing to these
developments the amount of imaging data stored in Picture
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Archiving and Communication System (PACS) databases
across hospitals continues to grow.

Traditionally, the interpretation of medical imaging data in
clinical practice is performed qualitatively by trained radiolo-
gists. However, in clinical research and population studies,
image information is increasingly condensed into a set of
quantitative measures. This research is aimed at the develop-
ment of ‘quantitative imaging biomarkers’, which objectively
can determine the presence and stage of a disease or the
response to a treatment. For example, the degree of carotid
artery stenosis has been shown to be a quantitative imaging
biomarker for stroke (NASCET 1991; ECST 1998). The
Agatston score quantifies the amount of coronary calcification
to predict the presence of obstructive coronary artery disease
(Agatston et al. 1990; Kondos et al. 2003; Detrano et al.
2008). Also, a low hippocampal volume in magnetic reso-
nance images has been used as quantitative imaging biomark-
er for dementia (den Heijer et al. 2006; Bobinski et al. 2000;
Jack et al. 1992). Furthermore, computer tools are being
developed to automate these measurements (Adame et al.
2004; Tang et al. 2012; Isgum et al. 2007; Shahzad et al.
2013; Fischl et al. 2002; van der Lijn et al. 2008).

Following both the trends of the increasing quantity of
imaging data in routine clinical practice and the rising impor-
tance of quantitative imaging biomarkers in research, we see
the natural opportunity for the secondary use of routinely
acquired clinical imaging data to support medical imaging
research on hitherto unprecedented scales. The principle of
using legacy medical data for research has e.g. been success-
fully applied using electronic patient records from hospital
databases (www.i2b2.org) or general practitioners databases
(www.ipci.nl).

In recent years, the interest in using legacy imaging data for
systematic medical knowledge discovery has increased. For
example, information technology systems for unlocking clin-
ical imaging data for research have been proposed based on
the Biomedical Informatics Research Network (BIRN)
(Chervenak et al. 2012; BIRN 2013), Extensible
Neuroimaging Archive Toolkit (XNAT) (Doran et al. 2012;
Marcus et al. 2007, 2011), Informatics for Integrating Biology
& the Bedside (I2B2) (Mi2b2 2012; Murphy et al. 2010) or
web-based infrastructures (Baltasar Sánchez and González-
Sistal 2011; Bland et al. 2007). Furthermore, the feasibility of
using these infrastructures for quantitative imaging research
has been investigated. In the work by Hoogenboom et al.
(2012, 2013), the feasibility of using biomarkers extracted
from legacy imaging data has been investigated with brain
morphology markers from structural magnetic resonance im-
aging (MRI) and white matter microstructure markers from
diffusion tensor imaging (DTI). Also, Fennema-Notestine
et al. (2007) demonstrated the feasibility of pooling legacy
multi-center data into one analysis to investigate hippocampal
changes in normal aging. In principle, a vast amount of

information is contained in imaging data that are acquired in
routine clinical care, but this information is not often used for
research. The main advantages of using legacy data are the
avoidance of additional acquisition costs and the potential to
increase the scale of research. This could for example lead to
the ability to detect subtle effects that may otherwise remain
hidden and to capture rare cases. Moreover, it would allow for
subdivisions within groups. However, there are serious chal-
lenges: logistical challenges related to secure data access,
retrieval and anonymization, and data analysis challenges
owing to heterogeneity in imaging data due to differences in
scanner and acquisition protocols.

In view of this, the aim of this work is: 1) to design and
implement a system which can extract imaging data from
clinical repositories and process them such that they are avail-
able for research purposes; and 2) to show the feasibility to
apply automated image processing to these data, for
supporting quantitative imaging biomarker research on rou-
tinely acquired clinical imaging data. The system should
satisfy the following requirements:

Anonymization: The first priority is to ensure the confi-
dentiality of sensitive health care data. Secondary use of
health care data requires consent, unless this is infeasible. If
requesting consent is infeasible, data can be used for research
if they are anonymized and proper safeguards are in place. In
line with Directive 95/46/EC, the law for Protection of
Personal data (Dutch: Wet Bescherming Persoonsgegevens),
the Health Insurance Portability and Accountability Act and
the World Medical Association Declaration of Helsinki
(Gezondheidsraad 1993; KNAW 2003; HIPAA 2013; WMA
2002), proper de-identification mechanisms must be con-
structed and approved. Moreover, the infrastructure must be
secure and guarded by a trusted and independent third party
(privacy officer). This privacy officer provides the contact for
patients with respect to their right to privacy and withdrawal.

Cope with clinical workflow: It is of utmost importance
that the system does not interfere with the clinical workflow.
The current infrastructure to access clinical images stored in
hospital PACS databases is not suited for large scale image
retrieval and processing. Available retrieval mechanisms
could severely interfere with clinical workflow by overloading
available resources. The systemmust also be able to cope with
variation in scanning protocols, logistical issues and patient
diversity. This requires a system which is robust to the input
data and includes proper quality assurance algorithms.

Automation: The ease of use of the system for researchers
will have a direct impact on the success of the system. The
process of retrieving and processing routinely acquired data
should be as automated as possible and should require little
knowledge of the underlying components for successful exe-
cution. Furthermore, results must be easily reproducible and
all details pertaining to how these results were obtained must
be documented.
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Flexibility: To fully exploit the diversity of imaging data
acquired in routine clinical practice and to account for active
research in image processing tools, the infrastructure must be
open to improvements and alterations. This requires a flexible
framework enabling changes in the various components to
increase the effectiveness or to include other methods of
quantitative imaging biomarker extraction.

Infrastructure

We designed and implemented an infrastructure taking into
account the requirements above (Fig. 1). This infrastructure
was approved by the Erasmus MC medical ethics committee
and data protection authorities.

Hardware

The infrastructure’s hardware consists of three main parts: a
query and de-identification server connected to the PACS
databases (2×6-core AMD Opteron 4180 2.6GHz 16GB),
an authorization and pseudonymization computer under the
supervision of the privacy officer (2×2-core Intel Xeon 5140
2.33GHz 14GB) and the research environment connected to
computing clusters for fast quantitative imaging biomarker
extraction (224 cores 2.1GHz AMD Opteron 6172 5GB per
core). This design satisfies the requirements with respect to
patient anonymization. The privacy officer computer is the
only connection between patient data and the research envi-
ronment. This allows the privacy officer to authorize and
monitor all requests filed by researchers.

Software

The system uses both publicly available programs and custom-
made programs written in Java, Python or C++. Unix/Bash
scripts were used to combine these programs into modules
carrying out specific tasks. For example, for patient de-identi-
fication, software programs for the textual anonymization of
DICOM files and for the defacing, using image registration,
were combined into one module. The modular design enables a
uniform way to supply input and output to the modules, and
enables control over the parameter settings of the programs
used within the module. The modules are connected by a single
master Unix/Bash script to form a pipeline of data-processing
stages. A configuration file can be supplied with parameter
settings and paths which are propagated to the relevant pro-
grams and modules. This approach allows changes to individ-
ual modules without affecting the other modules while keeping
the pipeline intact, or interchanging modules to make the infra-
structure useful for other studies and applications. All devel-
oped software, including the modules used in this study and
other modules which are used by other researchers in our group,
will be provided under the lesser GNU Public License (LGPL)
3 through the Biomedical Imaging Group Rotterdam (BIGR)
website (http://www.bigr.nl).

In the following sections, we will describe the modules in
more detail. Alternative publicly available programs are listed
for interested readers who want to replicate our approach.

Module 1 Subject selection and PACS query

The interface to the system resides in the research environ-
ment. We have implemented a text-based search program to

Fig. 1 Schematic overview of the
modular design of the
infrastructure. Details of each
module are described in the
Infrastructure section
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enable text mining on anonymized free text patient reports.
This program is developed in java and access is restricted to
authorized persons via a password. The program has an inter-
face where a user can query the reports with regular expres-
sions, upon which a list of study ID’s satisfying the search is
returned. Possible search terms are for example MRI protocol
codes, year of examination and other information which is
routinely collected in clinical reporting.

Once a selection of study ID’s has been made, a request is
sent via ‘scp’ to the privacy officer computer. Next to the list of
study ID’s, this requests includes a configuration file, in which
parameter settings can be provided, and the login information
(user, password and ip-address). This action initiates a fully
automated pipeline. The login information is checked with a
simplematching program. For monitoring the requests, log files
are automatically generated. The privacy officer has the possi-
bility to halt all incoming requests or requests for individual
patients via an exclusion list. The anonymous study-ID is
mapped to the non-anonymous ID used in the hospital using a
simple mapping program and mapping table. This mapping
table has been previously generated when constructing the
database of anonymized patient reports.

If the request is authorized, the request is passed on to the
query and de-identification server. Querying the images from
the PACS is achieved with a DICOM query (‘dcmqr’) on
patient ID, a low-level operation which should be available
in all PACS installations. DICOM series are sent within the
infrastructure with ‘dcmsnd’. Both utilities are part of the
DCM4CHE toolbox (http://www.dcm4che.org/), but can be
substituted with appropriate alternatives which are also
publicly available (e.g. tools which support C-find and C-
store such as GDCM, http://gdcm.sourceforge.net/html/
gdcmscu.html). Automization of the pipeline in this module
and other modules is achieved with ‘storescp’, which is part of
the OFFIS DCMTK toolkit (http://dicom.offis.de/dcmtk.php.
en). This utility manages the arrival of DICOM images and
initiates further steps.

Module 2 De-identification and defacing

After the images are retrieved, the images are de-identified on
a textual and image level. Imaging data in PACS are stored in
DICOM format (Digital Imaging and Communications in
Medicine). The header of each DICOM file contains textual
information essential for image identification, which includes
patient sensitive information such as names, locations, identi-
fiers and dates. Additionally, scan vendors and technicians
have the possibility to enter additional information in private
entries. Therefore, all patient sensitive elements specified in
the DICOM specification (Medical Imaging & Technology
Alliance 2011) are removed, together with all the private
elements, as it cannot be foreseen whether patient information
is stored in private fields. Birth dates are reset to January 1st of

the year of birth.We employed DICOM libraries implemented
in Python (http://code.google.com/p/pydicom/) to remove and
change DICOM entries (an alternative is the ‘dcmodify’ tool
in the OFFIS DCMTK).

In case of brain images, de-identification is further accom-
plished via a defacing algorithm which automatically removes
facial features from images of the head. Details of this step are
explained in the ‘Experiments’ section. Defacing was carried
out by registering a mask to the image using the Elastix
registration program (Klein et al. 2010). The registered mask
does not contain the facial area. Thus by multiplying the
image with this mask, we remove the facial features. The
software is publicly available, and we provide the parameters
we used on the Elastix website. Viable alternatives include
FLIRT 2013, which is a publicly available tool from FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).

Module 3 Quality assurance

After de-identification and defacing, images are automatically
checked by quality assurance algorithms to ensure that they are
of sufficient quality to extract the quantitative imaging bio-
markers of interest. Both textual information, contained in the
DICOM headers, and image features are utilized in this step.

Using the DICOM header entries, we first determine the
type of MRI scan sequence from the image acquisition param-
eters. A Python program has been written to classify MR
images based on e.g. the echo time, inversion time, repetition
time and flip angle. Reported values in literature were used to
determine the classification (Jackson et al. 1997; Bernstein et al.
2004; Westbrook 1999). Using this Python program, we can
impose requirements on the image such as the aforementioned
scan sequence classification, but also other DICOM entries can
be used such as the resolution, slice thickness and contrast
agent. This program is available on the BIGR website.

We also check whether the image volume contains the full
anatomy of interest. For this task, also image registration is
used; details of this step are provided in the Experiments
section for brain imaging, but the methodology can readily
be applied to other anatomical regions.

Module 4 Quantitative imaging biomarker extraction

Image datasets that successfully passed quality assurance are
sent to the privacy officer computer for pseudonymization, i.e.
the non-anonymous ID used in the hospital is mapped back to
the anonymous study (pseudo-)ID used in the research setting.
This mapping is only available at the privacy officer and can
be used for linkage when performing studies combining mul-
tiple health care data sources. The same mapping program is
used as in module 1.

The fully anonymized images are sent to the research
environment for quantitative imaging biomarker processing.
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For MRI brain images, prior to biomarker extraction we
preprocessed the images with non-uniformity correction
(N4itk: Tustison et al. 2010) and conversion to the NifTI
image format (http://www.mccauslandcenter.sc.edu/mricro/
mricron/dcm2nii.html). We used a brain tissue segmentation
method which was developed in our own lab (Vrooman et al.
2007). Alternative packages are publicly available, e.g.
F r e e s u r f e r ( h t t p : / / f r e e s u r f e r . n e t / f s w i k i /
SubcorticalSegmentation), Fast (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FAST), or SPM (http://www.fil.ion.ucl.ac.uk/spm/),
which are widely used in the research community. The latter
twomethods have been compared to the segmentationmethod
used in this infrastructure and it has shown that the methods
achieve similar performance (de Boer et al. 2010).

Experiments

As a proof of principle study we performed intracranial vol-
ume and brain tissue volume extraction from routinely ac-
quired clinical imaging data. This allows us to study patterns
of atrophy in different age and patient groups. Such studies
have so far been primarily carried out in well-defined pro-
spective population studies or clinical cohort studies. For
example, population studies have provided information on
grey matter and white matter atrophy with age (Ikram et al.
2007; Sigurdsson et al. 2012). In frontotemporal dementia
(Lund and Manchester Groups 1994; Neary et al. 1998;
Rascovsky et al. 2011) and Alzheimer’s disease (Dubois
et al. 2007, 2010; McKhann et al. 2011), atrophy of respec-
tively frontal lobes and medial temporal lobe regions have
been reported and included in diagnostic criteria. Also multi-
ple sclerosis (MS) has been associated with brain atrophy (Ge
2006; Fischer et al. 2008; Bakshi et al. 2005). The importance
of imaging in the diagnostic process of these diseases has
resulted in a large amount of routine clinical data available
for this pilot study (Jack et al. 2011; Frisoni et al. 2010;
McDonald et al. 2001; Polman et al. 2011).

Research Questions

In the proof of principle study of the infrastructure, we inves-
tigate the operational performance and the potential of the
secondary use of clinical imaging data. The experiments were
designed to address two research questions:

1. What are the success rates of the infrastructure in
accessing routinely acquired imaging data and subsequent
quantitative imaging biomarker extraction?

2. Can we provide a proof of principle that the system is a
useful research tool in associating imaging biomarkers
with other parameters such as gender, age and disease?

Patient Selection and Configuration

Image selection was based on scanning protocol codes and
date of acquisition. Imaging data were selected from PACS
databases of the Erasmus MC, University Medical Center
Rotterdam. We restricted our analysis to the period from
January 2007 to January 2012, during which a total of
21.998 brain MRI scans were acquired. We employed text
mining on the radiology reports to extract imaging studies
performed under the dementia (246 subjects), MS (446) and
open question (924) protocols. The dementia and MS proto-
cols have been included to address the second research ques-
tion. The open question protocol is used if patients exhibit a-
specific neurological symptoms. This protocol group contains
patients with a large diversity both in disease and scanning
practices, and will help to evaluate the robustness of the
infrastructure for a wide range of imaging data.

The scanning protocol codes used for patient selection are
part of the clinical workflow and indicate the purpose of
scanning. As the protocol code is assigned to an examination
prior to the diagnosis, it may not be used to assign a patient to
a disease group. Therefore, we reviewed the patient records to
control for the diagnosis of dementia and MS. The positive
diagnosis of dementia was assigned if the report mentioned
the diagnosis of dementia as determined by a specialist or if
findings which are indicative of dementia (lobar, cortical or
hippocampal atrophy, enlarged ventricles and white matter
abnormalities) as determined by a trained radiologist. For the
positive diagnosis of MS we verified whether the report
contained a confirmed diagnosis by a specialist, or a patholo-
gy satisfying the McDonald criteria; dissemination of space
and time of white matter lesions periventricular, juxtacortical,
infratentorial and/or in the spinal cord (Polman et al. 2011).
The negative diagnosis was assigned if the diagnosis was
ruled out by a specialist or if no findings satisfying the criteria
were reported. This procedure resulted in 115 subjects with a
positive diagnosis of dementia and 131 subjects with a nega-
tive diagnosis. For the MS subjects, 241 subjects were posi-
tively diagnosed versus 173 negatively diagnosed. The nega-
tively diagnosed patients are scanned using the same set of
scanners and are hence used in our study as a control group for
the positively diagnosed patients.

The image processing pipeline requires MR T1 weighted
(T1w) images, or if not available, PDw and T2w scans of the
head without contrast agent. Contrast agent such as gadolin-
ium often appears hyperintense in MR images, which could
lead to misclassifications in tissue volumes.

De-Identification

All patient sensitive information was removed from the
DICOM headers, e.g. names, locations, identifiers and com-
ments. Furthermore, as the images used in this study contained
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the face, we used atlas registration (Klein et al. 2010) to mask
the facial features. The method is based on atlas registration
with the MNI152 atlas (Fonov et al. 2009; 2011). Using affine
image registration, the atlas image is deformed in such a way
that it is similar to the target image, establishing spatial corre-
spondence between points in the atlas and target image. In the
atlas image, an operator manually defined a region of interest
excluding the facial features (atlas label image). By applying
the same deformation to the atlas label image we masked the
subject image. An example is provided in Fig. 2.

Quality Assurance

Images were first classified into different MRI sequences (e.g.
T1w, T2w, PDw, diffusion weighted and functional MR im-
ages) based on image acquisition parameters in the DICOM
header to remedy the variability in naming. Images retrieved
from PACS were filtered on the MRI sequence specifications
in the configuration file and the highest resolution image of
each scan sequence was selected for subsequent processing.

As part of the automatic quality check of the incoming data,
it was determinedwhether the image contains the full extent of
the brain. In this step we again used the MNI152 atlas (Fonov
et al. 2009; 2011) which was affinely registered to the subject
image. The MNI152 brain mask was transformed to subject
space, so as to label the voxels belonging to the brain. If more
than 20 % of the voxels on one of the outer image planes are
labeled as brain, it is likely that the full brain ROI is not
contained in the image, and the image is excluded.

Quantitative Imaging Biomarker Extraction

Images were preprocessed by MRI bias field correction to
correct for slowly varying signal intensity differences
(Tustison et al. 2010). For brain tissue segmentation, a k-
Nearest Neighbor (kNN) method is used, which is trained on
the subject to be segmented (Cover and Hart 1967). For a
detailed overview of the method we refer to Vrooman

et al. (2007). Briefly, the method relies on six atlas
images (in which cerebral spinal fluid, grey matter and
white matter have been outlined by a radiologist), which
are non-rigidly registered to the subject image to be
segmented by maximizing mutual information (Pluim
et al. 2003). The deformations resulting from this reg-
istration step are then applied to the corresponding atlas
label image. Averaging the transformed atlas label im-
ages produces a probability map of brain tissues for the
target image, which can be interpreted as the probability
of voxels belonging to a certain tissue class. Using the
probability map, likely samples of the different classes
are extracted from the target image and used to build
the intensity based kNN-classifier.

The advantage of this approach of atlas-based training is
that possible differences in contrasts between the atlas and
target image are dealt with in the registration step and do not
affect the segmentation. In addition, since we utilize mutual
information as similarity measure in the registration, it is
possible to register the atlases to images obtained with a
different scanning protocol. For example we are able to use
T1-weighted atlas images to segment brains on T2- or PD-
weighted images.

The images are segmented into cerebral spinal fluid (CSF),
grey matter (GM), white matter (WM) and background.
Whole brain volume is formed by the sum of GM and WM.
Intracranial volume (ICV) is determined by the sum of CSF,
GM and WM. Summing all voxels (volume elements, 3D
pixels) of a certain tissue yields tissue volumes in milliliters.
Skull masking was performed by multi-atlas registration.
Similar to the quality assurance step, multiple (6) non-rigidly
registered atlas brain label images are combined into a single
brain mask by majority voting (with a threshold of 0.8). The
cerebra (excluding cerebellum) in the 6 atlas images were
manually annotated by an expert neuroradiologist. Figure 3
shows a typical segmentation result.

Data Analysis

Performance

To evaluate the performance of the infrastructure in accessing
routinely acquired imaging data and subsequent quantitative
imaging biomarker extraction, we report the success rates at
the following steps in the processing pipeline: i) image query;
ii) quality assurance; and iii) quantitative imaging biomarker
extraction. The final segmentations are visually inspected in
the three orthogonal mid-planes to verify the segmentation
results. This last step (iv) is aimed to investigate whether
visual inspection is mandatory in future studies, or whether
fully automatic biomarker research on routinely acquired clin-
ical imaging data is feasible.

Fig. 2 An example output of the defacing algorithm, which removes
facial features from images using image registration
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Proof of Principle

To provide a proof of principle that the infrastructure can
reproduce known results from literature, we first selected all
patients which at time of scanning were 45 years or older. This
selection was applied to make the age range of the different
groups more comparable. We employed an automatic outlier
exclusion criterion to exclude biomarkers with largely deviat-
ing volumes. We excluded all subjects with ICV corrected
brain volumes outside [Q1-1.5*IQR; Q3+1.5*IQR], where Qn

and IQR denotes the nth quartile and the interquartile range
respectively. To provide more insight in the heterogeneity of
the imaging data in different groups, we present the image
acquisition parameters in Table 2.

We plotted quantitative imaging biomarkers (brain
volumes as percentages of ICV) as function of age for
different subgroups and gender (Fig. 4). For the statisti-
cal analyses, we used linear regression models to inves-
tigate demographic (gender/age), disease group and scan-
ner effects:

ICV ¼ β0 þ β1gender þ β2ageþ
X

i¼subgroups

β3igroupi

þ β4seqþ
X

j¼scanner

β5 jtype j þ β6fsþ ε ð1Þ

In this equation, the nominal variable ‘group’ denotes the
different disease subgroups (positive and negative diagnosis
of dementia and MS and the open question group).
Combining images from different sources can increase power
due to a larger sample size, but the likely added variability
must properly be taken into account. Therefore, we added the
scanning sequence (seq), the scanner manufacturer and model
type (type) and the magnetic field strength (fs) into the model
to investigate this effect. The possible values for the scanner
hardware and scan sequence parameters are listed in Table 2.
We employed the conventional α=0.05 level for significance.
For brain volumes we added ICV as additional effect to

control for differences in head sizes:

Brain volume ¼ β0 þ β1gender þ β2age

þ
X

i¼subgroups

β3igroupi þ β4seq

þ
X

j¼scanner

β5 jtype j þ β6fsþ β7ICV þ ε ð2Þ

All statistical analyseswere performed using SPSS version 20.

Results

Performance

The success rates at the different steps in the automated
pipeline are shown in Fig. 5 as percentages of the number of
patients at selection.

Step i Across all protocol groups we observed high suc-
cess rates (>97.2 %) for data retrieval from the
PACS database.

Step ii For the dementia and MS protocols, 86.2 % and
91.7 % passed the quality assurance test, respective-
ly. The open question group showed a lower success
rate (74.5 %). Inspection showed that this can be
attributed to the more frequent deviation from pro-
tocol, such as the inclusion of contrast agent (150
cases) or limited field of view (57), situations which
lead to exclusion in our study design. In the demen-
tia protocol group, 19 subjects were excluded due to
incomplete field of view and 25 for inclusion of
contrast agent. In the MS group, the numbers for
exclusions were 12 and 19 respectively.

Step iii The extraction of quantitative imaging biomarkers
was successful in most instances, independent of the
protocol code. The number of images that passed the
whole chain was reduced by 7.2 % or less. Errors

Fig. 3 Fig. 3 T1-weighted image
(first row) and result after
segmentation in brain tissue and
CSF (second row). The brain is
depicted in sagittal, coronal and
axial orientation
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were often due to severe pathology in patients with
large tumors, head traumas, severe atrophy or large
resections.

Step iv After visual inspection final success rates were 82.5%
82.3 % and 66.2 % for the dementia, multiple sclero-
sis and open question protocol groups respectively.
The small decrease compared to the previous step
shows that only a small percentage of images passing
biomarker extraction yielded faulty segmentations.

The processing time involved from image query to com-
pletion of biomarker extraction in all 1616 subjects combined
was 40 h.

Proof of Principle

To show the potential of automated quantitative imaging
biomarker extraction from routinely acquired imaging data,
we investigate whether we can reproduce findings that have
been reported in literature. After excluding the subjects not
satisfying the age range of 45 years and older and the auto-
matic outlier exclusion criterion based on the IQR, the char-
acteristics of this study population are listed in Table 1.

The image acquisition parameters of the MR images can be
seen in Table 2. The second column shows the distribution of
scanner types for each group. The subsequent columns show
the distribution of image acquisition parameters which

Dementia Multiple sclerosis

Open question Pooled

Fig. 4 Scatter plots of brain volumes versus age, segregated by gender
(Men: open circles. Women: open triangles). For the dementia and
multiple sclerosis protocol groups, blue denotes a positive diagnosis and
red a negative diagnosis. Regression lines for linear fit are shown for men

andwomen combined. Results are presented for the three protocol groups:
dementia, multiple sclerosis and open question respectively (after age
≥45 year and IQR selection). The last plot combines all protocol groups.
Volumes are expressed as percentage of intracranial volume

72 Neuroinform (2015) 13:65–81



influence image resolution and contrast, taken for all scanner
types combined and stratified per group.

ICV

Effect of Gender and age on ICV

The linear regression model for ICV (Equation 1) yielded
an adjusted R2=31.0 % and F(11,640)=27.6, p<0.001.
Gender accounted for 28.7 % of this variance. ICV values
stratified by gender are shown in Table 3 and Fig. 6. The

model showed significant ICV differences in gender in the
total population (t(640)=16.4, p<0.001) and in the indi-
vidual groups (positive dementia t(76)=4.95; negative
dementia t(71)=5.28; positive MS t(62)=5.69; negative
MS t(62) = 5.05; open quest ion t(336) = 12.7; all
p<0.001). Men had larger ICV than women.

As expected, age had no large effect and only explained
0.4 % of the variance. A small but statistically significant
increase in ICV was found (Table 4 and Fig. 7), which in the
total population was 1 ml/year (t(640)=2.4; p=0.019). In the
individual groups, the negatively diagnosed dementia group

Table 1 Characteristics of the study population, stratified by gender and group. Note that these numbers are obtained after the age selection of 45 years
and older and the automatic outlier exclusion criterion

Total Men Women

Dementia
(positive diagnosis)

Number 83 48 35

Age (years) 67.5±8.4 68.5±8.4 66.1±8.5

Dementia
(negative diagnosis)

Number 79 39 40

Age (years) 60.5±8.3 60.2±8.1 60.7±8.6

Multiple sclerosis
(positive diagnosis)

Number 76 27 49

Age (years) 54.4±7.4 54.1±7.8 54.5±7.3

Multiple sclerosis
(negative diagnosis)

Number 70 35 35

Age (years) 58.3±10.4 59.9±10.6 56.7±10.0

Open question Number 344 190 154

Age (years) 60.7±9.8 60.5±9.2 61.1±10.5

Age distributions are described by mean and standard deviations in years

Group

Open questionMultiple sclerosisDementia
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and open question group showed a significant increase in ICV
(t(71)=2.54, p=0.01; t(336)=2.19, p=0.03 respectively).

However, this was a very small effect compared to the mean
ICVand likely caused by the heterogeneity of the clinical data.

Table 3 Intracranial and brain volume (corrected for ICV) stratified per group and gender

ICV in ml (CI 95 %) Brain volume in ml (CI 95 %)

Men Women Total Men Women Total

Dementia
(positive diagnosis)

1,198 (1,169;1,227) 1,069 (1,040;1,099) 1,134 (1,105;1,162) 916 (907;926) 915 (906;924) 915 (907;924)

Dementia
(negative diagnosis)

1,235 (1,208;1,262) 1,107 (1,080;1,134) 1,171 (1,145;1,197) 930 (931;948) 938 (929;947) 939 (930;947)

Multiple sclerosis
(positive diagnosis)

1,199 (1,171;1,228) 1,071 (1,044;1,098) 1,135 (1,108;1,162) 947 (938;956) 945 (937;955) 947 (938;955)

Multiple sclerosis
(negative diagnosis)

1,216 (1,189;1,244) 1,088 (1,061;1,116) 1,152 (1,126;1,179) 948 (939;957) 946 (938;955) 947 (939;956)

Open question 1,212 (1,192;1,232) 1,084 (1,063;1,104) 1,148 (1,129;1,166) 933 (927;940) 932 (926;939) 933 (927;939)

Total pooled 1,212 (1,196;1,228) 1,084 (1,068;1,100) 935 (930;941) 937 (931;942)

Multiple linear regression: all analyses are corrected for age and scanner effects, Brain volumes are corrected for ICV, the covariates are evaluated at age
= 60.5, ICV=1,150 ml, the Philips NT Intera scanner is taken as reference. Analyses on the total pooled group are corrected for the groups

Fig. 6 Intracranial and brain volumes stratified by gender and group.
Multiple linear regression: all analyses are corrected for age and scanner
effects, Brain volumes are corrected for ICV, the covariates are evaluated

at age = 60.5, ICV=1,150 ml, and the Philips NT Intera is taken as
reference. Analyses on the total pooled group are corrected for the
individual groups
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Table 4 The relationship between intracranial volume (ICV) and brain volume (corrected for ICV) with age

ICV Brain volume
Age predictor Age predictor
β in ml per year (CI 95 %) β in ml per year (CI 95 %)

Dementia (positive diagnosis) 0.8 (−1.9;3.5) −0.5 (−1.2;0.2)
Dementia (negative diagnosis) 3.5 (0.7;6.2) −0.9 (−1.9;0.2)
Multiple sclerosis (positive diagnosis) −0.1 (−2.9;2.7) 0.2 (−0.8;1.2)
Multiple sclerosis (negative diagnosis) −1.3 (−3.8;1.2) −1.1 (−2.1;−0.2)
Open question 1.2 (0.1;2.4) −1.0 (−1.4;−0.7)
Total pooled 1.0 (0.2;1.8) −0.9 (−1.2;−0.6)

Multiple linear regression: all analyses are corrected for gender and scanner effects. Brain volumes are corrected for ICV. Analyses on the total pooled
group are corrected for the groups

Fig. 7 Intracranial and brain volumes versus age. Multiple linear regression: all analyses are corrected for scanner effects, Brain volumes are corrected
for ICV, Analyses on the total pooled group are corrected for the individual groups
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Effect of Groups on ICV

Group label had no large effect and only explained 0.3 % of
the variance of the data. In Table 3, the difference in ICV
between groups is shown. The linear regression model did not
show any significant effects (all t<1.75, p>0.08).

Effect of Scanner Parameters on ICV

Scanner parameters accounted for 0.7 % of variance in the
data. The model did not show any significant effects on ICV
due to the scanning sequence (t(640)=0.97, p=0.33), scanner
type (|t(640)|<1.24, p>0.22) or field strength (|t(640)|=1.79,
p=0.07).

Brain Volume

Effect of Gender and age on Brain Volume

The linear regression model for brain volumes
(Equation 2) yielded an adjusted R2=90.7 % and
F(12,639)=532, p<0.001. In addition to the previous
model, we added ICV as effect which had a highly sig-
nificant contribution (t(639)=65.4, p<0.001) and ex-
plained 61.9 % of the variance. Gender did not explain
any variance. Brain volumes are shown in Table 3 and
Fig. 6 for the different genders. Between men and women,
we did not find any significant effect for gender in the
total population (|t(639)|=0.44, p=0.66) or in the individ-
ual groups (|t(639)|<0.98, p>0.33). Men and women did
not differ in brain volume when correcting for ICV.

Age explained 0.6 % of the variance. We found a signifi-
cant age effect on brain volume (t(639)=−6.72, p<0.001)
signifying a decrease in brain volume with age in the total
population. This effect was significant in the open question
and negativeMS groups (t(61)=−2.38, p=0.02; t(335)=−5.93
p<0.001 respectively).

Effect of Groups on Brain Volumes

Group label explained 0.4 % of the variance of the
data. Brain volumes corrected for ICV differed signifi-
cantly among the five groups (F(12,639) = 7.77,
p<0.001). Post hoc analyses with Bonferroni correction
revealed that the difference between the positively and
negatively diagnosed dementia groups was highly sig-
nificant (t(639)=4.26, p<0.001) and that positively di-
agnosed dementia patients had smaller brain volumes.
Between the positive and negative MS groups the brain vol-
umes did not differ significantly (t(639)=0.087, p=0.93).

Effect of Scanner Parameters on Brain Volume

The variation in scanner parameters accounted for 0.1% of the
data variance. The model did not show any significant effects
on brain volume due to the scanning sequence (t(639)=1.73,
p=0.08), scanner type (|t(639)|<1.3, p>0.19) or field strength
(|t(639)|=1.08, p=0.28).

Discussion

We have presented an infrastructure to support the secondary
use of routinely acquired clinical imaging data for research.
This system is capable of extracting routinely acquired imag-
ing data from PACS databases, satisfying requirements with
respect to legal issues (anonymization) and logistical issues
(automation and quality assurance), and we showed in a proof
of principle study that the system is a useful research tool for
associating imaging biomarkers with other parameters such as
gender, age and disease. Although the secondary use of
electronic patient records for research is well established, we
have not encountered a feasibility study and quantitative
evaluation of using legacy clinical imaging data on the scale
of a thousand subjects before in literature.

Relationship to Literature

Hoogenboom et al. (2012, 2013) and Fennema-Notestine
et al. (2007) have previously reported on quantitative evalua-
tions of the use of multi-scanner legacy imaging data for
quantitative biomarker research. In their work, they investi-
gated extraction of more sophisticated quantitative imaging
biomarkers (subcortical structures and DTI measures) on im-
ages that satisfied certain quality criteria, such as field
strength, maximum slice thickness, image acquisition
orientation, and minimum brain tissue contrast. Applying
these quality criteria resulted in a smaller data set. For
example, in the work by Hoogenboom et al. (2012) 20 out
of 320 images were retained after quality criteria.

We foresee that when using legacy clinical imaging data
there will be a trade-off between the complexity of the imag-
ing biomarker and the number of data that satisfy the quality
criteria to be included in the analysis. Fairly gross quantitative
biomarkers such as brain volume can be extracted from a large
percentage of the legacy data, as is shown in this work,
whereas more sophisticated quantitative imaging biomarkers
can probably only be extracted from a smaller percentage of
datasets. We believe that both methods are very useful for
opening legacy imaging data for research, and that they com-
plement each other.

As we have encountered in this study, legacy clinical
imaging data is often acquired in a multi-scanner setting
with a variety of acquisition settings and protocols.
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Recently, there are significant efforts into standardizing
imaging protocols across scanners to reduce heterogene-
ity, which would greatly facilitate the sharing of imaging
data across institutes (Jack et al. 2008; Glover et al.
2012). However, owing to differences between scanner
vendors, technology development, and the fact that the
majority of imaging data in clinical routine is currently
not part of standardized multicenter trials, the develop-
ment of robust image processing tools also remains an
important key to address this problem.

Therefore, we think that the problem of heterogeneity of
imaging data is to be dealt with from two sides, both stan-
dardization of scanning protocols, and the development of
robust standardized image processing tools that can deal with
data heterogeneity. Many image analysis tools have been
designed and optimized on a limited data set. Apart from a
handful of publicly available image processing toolboxes, not
many tools are being applied outside their own research
environment. We think that there is a need for imaging tools
that have been tested on a variety of imaging data, to ensure
that they are robust for a wide range of images and to enable
the use in different institutes. Therefore we also welcome the
concepts of challenges on multicenter and multivendor data,
to objectively compare the performance of algorithms in dif-
ferent settings (Grand challenges in medical image analysis
2013: http://grand-challenge.org/All_Challenges/).

Discussion of the Results

The evaluation of the proposed infrastructure’s performance
has yielded promising results; the system is able to unlock and
process high percentages of legacy clinical imaging data for
research. Especially considering the dementia and multiple
sclerosis group, over 82.3 % of available data was useable in
this study. Although the success rate was lower for the open
question group, this wasmainly due to exclusion in the quality
assurance step. We identified two main causes, namely con-
trast agent in the image and an incomplete field of view. As
these cases would have led to untrustworthy biomarkers, the
successful identification by the quality assurance algorithms
indicates good performance by the system, despite a lower
final success rate. The small drop in success rate from bio-
marker extraction to visual inspection indicates that a large
percentage of obtained biomarkers are usable for research and
that fully automatic biomarker research on routinely acquired
clinical imaging data is feasible.

The proof of principle study showed that we could
replicate a number of findings which have previously
been reported in literature. We found ICV to be larger
for men, an association which has also been reported in
large studies on the elderly population, e.g. Ikram et al.
2008 and Sigurdsson et al. 2012.

In our investigation of the effect of age, we found ICV to
increase significantly in our open question group and nega-
tively diagnosed dementia subgroup. Although this is an
unexpected finding, the effect is not large (smaller than
0.1 % of the mean ICV) and might still be caused by data
heterogeneity.

We did not find any significant effect of group label or
scanner parameter in our ICV data. This is encouraging as we
do not expect a correlation between head size and disease.
Furthermore, our findings thus do not show that heterogeneity
in scanner types, scan sequences or magnetic field strength
affect automatic extraction of ICV.

Differences in ICV corrected brain volume due to gender
were not found in our study. A number of studies have found
ICV corrected brain volumes larger in women (Ikram et al.
2008; Sigurdsson et al. 2012). In our data we see the same
trend. This was, however, not statistically significantly.

We also found statistically significant associations between
brain volume and age in the open question group and negative
MS group, which could be attributed to normal aging. The
absence of such an age effect on brain volume in the positively
diagnosed groups may be caused by confounding by disease
severity in the patient groups. Patients undergo MRI exami-
nation at a certain time point in the diagnostic trajectory,
irrespective of their age. To assess an increased brain atrophy
rate due to disease would require a longitudinal study rather
than this cross-sectional study. Potentially, data acquired in
clinical routine could also be used to support such a longitu-
dinal study design.

Finally, positively diagnosed dementia subjects showed
significantly lower brain volume compared to negatively di-
agnosed subjects. This is in agreement with literature, in
which it has been reported that dementia is associated with
brain atrophy. The fact that the system is able to reproduce
such results underlines the feasibility of the approach.

Limitations

There are a number of limitations to our study. First, inherent-
ly with routine clinical data there will be a selection bias, since
patients undergo a scan after some indication. Second, the MS
protocol contained primarily T2-weighted and PD-weighted
images in contrast to the T1-weighted image in the other
groups. Therefore, differences in image acquisition could have
had impact on our results. In this light, results based on
routinely acquired clinical data must always be interpreted
with extra caution.

Thirdly, in this study we have looked at fairly global
imaging biomarkers for the brain; ICV and brain volume.
These can be robustly extracted from large portions of legacy
imaging data. The feasibility of the system to support the
extraction of more sophisticated quantitative imaging bio-
markers remains to be shown.

78 Neuroinform (2015) 13:65–81

http://grand-challenge.org/All_Challenges/


Future Perspectives

In our proof of principle study, we were able to reproduce
some known associations from literature. This provides evi-
dence that the system is potentially a useful research tool, e.g.
in associating imaging biomarkers with other parameters such
as gender, age, disease, or drug use.

In future work we will investigate whether the system can
also be used to extract more sophisticated MR imaging bio-
markers, including e.g. hippocampal volume, cortical thick-
ness, and structural connectivity. Also, we aim to include more
sophisticated natural language processing in the subject selec-
tion to eliminate the need of reviewing patient records for the
clinical characterization. Our goal is to implement this system
at other medical institutions to further increase the scale of
which routinely acquired clinical imaging data is used for
research. This also includes the linkage of imaging data with
other routinely acquired health care information sources such
as medical records in e.g. general practitioners databases,
national vaccination databases or hospital databases. This
enables us for example to conduct research on the effective-
ness and safety of medications, vaccinations (Martínez-
Sernández and Figueiras 2013) or treatments.

Conclusion

In a proof of principle study we have shown that ICVand total
brain volume can be extracted from legacy clinical imaging
data, despite image heterogeneity. This IT infrastructure can
be a useful tool for biomarker research on routinely acquired
clinical imaging data at a hitherto unprecedented scale.
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