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Abstract A declarative extensible markup language
(SpineML) for describing the dynamics, network and
experiments of large-scale spiking neural network simula-
tions is described which builds upon the NineML standard.
It utilises a level of abstraction which targets point neuron
representation but addresses the limitations of existing tools
by allowing arbitrary dynamics to be expressed. The use
of XML promotes model sharing, is human readable and
allows collaborative working. The syntax uses a high-level
self explanatory format which allows straight forward code
generation or translation of a model description to a native
simulator format. This paper demonstrates the use of code
generation in order to translate, simulate and reproduce the
results of a benchmark model across a range of simulators.
The flexibility of the SpineML syntax is highlighted by
reproducing a pre-existing, biologically constrained model
of a neural microcircuit (the striatum). The SpineML code
is open source and is available at http://bimpa.group.shef.
ac.uk/SpineML.
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Introduction

There is currently no clear consensus on the appropriate
biological abstraction level for capturing the information
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processing aspects of the brain. Consequently there is a
wide range of simulation tools and languages within the
domain of computational neuroscience focusing on differ-
ing biological levels from networks of artificial neurons to
molecular modelling of individual ion channels. In the con-
text of specification and simulation of networks of spiking
point neurons it is important that modelling tools provide a
level of abstraction w is computationally efficient to simu-
late but while still allowing a sufficient degree of flexibility
to describe a wide range of neuronal phenomena.

Conceptually and practically, it is also now recognised
that it is desirable to separate the functions of a model
specification and model simulation. The model specifi-
cation should be easily human readable, unambiguous,
and comprehensive, but also facilitate translation into exe-
cutable code. Additionally, the model specification should
be easily translated to multiple simulation platforms, both
existing and new. Consider, for example, the microcircuit
model described in (Humphries et al. 2009b) described
by a mixture of hand written C and Matlab code. This
is an anatomically accurate model of the striatum - the
main input nucleus to the basal ganglia (a group of inter-
connected subcortical nuclei). The model uses 2-variable
point neurons with physiologically realistic attributes such a
dopaminergic modulation (Humphries et al. 2009a) and gap
junctions (Humphries et al. 2009b). Translating this model
into a higher level modelling description facilitates sharing,
portability, repeatability and collaboration. Representation
in a high-level format requires the flexibility to specify
modified Izhikevich neuron body dynamics, enabling the
behaviour resulting from differing ion currents to be cap-
tured. Similarly, to model inter-cell communication via
gap junctions, support for neural components to commu-
nicate without using typical ‘synaptic’ connectivity is also
essential.

http://bimpa.group.shef.ac.uk/SpineML
http://bimpa.group.shef.ac.uk/SpineML
mailto:p.richmond@sheffield.ac.uk
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Fig. 1 An incremental addition
to the NineML model
specification format. The
SpineML syntax is a proposed
extension to the NineML
modelling format which
provides a complete syntax for
describing models of spiking
point neuron models with
varying biological complexity.
In contrast with libNineML
which provides code generation
for only the component layer, the
completeness of the SpineML
syntax allows full simulator
support for all three layers of
components (neurons, synapses,
etc.), networks and experiments

An ideal modelling format to describe biologically con-
strained models would be simulator independent. Aside
from specification clarity, simulator independent formats
allow a developer to cross-check models through execu-
tion on a range of simulator engines (assuming simulator
support is available). A number of simulator independent
tools are available for describing a neural network models
at various abstraction levels (Davison et al. 2009; Gleeson
et al. 2010; Raikov et al. 2011). For the modelling require-
ments of the striatum, NineML (Raikov et al. 2011;
Gorchetchnikov et al. 2011) was found to be the most
suitable format. NineML was initiated by the INCFs Multi-
scale Modelling Program to address the limitations of both
PyNN and NeuroML v.1. More specifically, it bridges the
gap between the fixed library of standard neuron types in
PyNN and the focus of conductance-based compartmental
cell models in NeuroML by allowing neurons with arbi-
trary dynamics and networks with arbitrary connectivity to
be expressed in a declarative simulator independent format.
A library ‘libNineML’ exists for loading, saving and manip-
ulating the NineML abstraction layer components as well as
providing some translation of components to common simu-
lators (NEST, Neuron and Brian). Unfortunately the current
NineML format and simulator integration is incomplete,
making it difficult to simulate complete network models
described entirely in NineML.

This paper builds upon NineML, utilising its layered
inspired design (Raikov and De Schutter 2012) to pro-
pose an incremental extension to the existing NineML
syntax. In particular a new network and new experimen-
tal description layer have been designed, both for max-
imising the flexibility of models which can be described
(while retaining a point neuron focus) and providing a
route for simple code generation of complete network
model descriptions. The syntax proposed is given the

name ‘SpineML’ (Spiking Neural Mark-up Language).
Actual integration with the NineML core will be consid-
ered through INCF task force meetings. Figure 1 clarifies
the relationship between NineML and the SpineML for-
mat. A three layer modelling approach is used to specify:
components (e.g. Neurons, synapses, etc.), a network of
connected components instances with individualised mod-
elling parameters (e.g. differing starting membrane poten-
tials) and an experimental layer describing the specification
of a simulation such as runtime conditions, inputs and
outputs.

This paper first outlines the design goals of the SpineML
object format and toolchain before introducing examples
of the syntax. Results from a benchmark model are pre-
sented in addition to results from reproducing a biologically
constrained model of the striatum. The flexibility and the
modelling syntax, code generation details and a description
of the supported simulators are then presented. The paper
concludes by discussing the advantages of the SpineML
format in comparison with alternative notations.

Design Goals

The primary design goal for extending the NineML syntax
is to provide a simulator independent XML format to spec-
ify dynamics, network structure and experimental design of
large-scale spiking neural network models. The SpineML
format is based on a simulator independent XML format
which facilitates a work flow promoting the use of indepen-
dent content creation and simulation tools. The aims of the
format can be summarised as:

1. To support the declarative specification of a wide range
of (neuronal) dynamics and network connectivity.
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2. To improve the ease and speed of model design and
implementation.

3. To improve the understanding of model definitions
through a clear descriptive format.

4. To facilitate and promote the sharing of models.

In order to meet these aims the following design goals
are proposed;

A separation of implementation from model description
minimises implementation error by reducing the modelling
task to that of simply describing the biological system.
This ensures models can be easily reproduced from mathe-
matical and diagrammatic descriptions which are common
in journal publications. This design goal is highlighted
as the main benefit of the NineML format. SpineML
embraces this design goal by following the same layered
specification which allows modular components describing
neural dynamics to be expressed as differential equations
rather than as solutions (i.e. implementations of equa-
tions using a given numerical solver) and by ensuring
experimental details of a simulation (i.e. the numerical
solver, duration, inputs and outputs and parameter changes)
are specified separately from other aspects of the model
description.

A platform independent model description format pro-
motes collaborative working and meets the aim of facili-
tating the sharing of model data. Reducing external soft-
ware dependencies allows model development to take
place without access to simulation tools. SpineML uses
a declarative XML syntax to describe all aspects of
models and simulation experiments. The use of XML
ensures models are represented in a stand alone plain
text form achieving the maximum level of independence
from external tools e.g. simulators or graphical modelling
tools.

A self explanatory syntax ensures that models can be eas-
ily understood and interpreted without the addition of either
ambiguous plain text descriptions or assumed knowledge of
procedural programming languages. To achieve this goal,
SpineML uses a high-level and highly structured model
representation with an expressive syntax ensuring that the
aims of improving model clarity and ease of creation are
fulfilled.

An unambiguous model description requires a suc-
cinct form with a guarantee of syntactical correctness.
SpineML ensures models follow a structured and syn-
tactically valid format through the use of a declarative
syntax governed by XML Schemas. A well structured
syntax is essential for automated code generation as it
ensures that simulation code can be generated which
is free from errors. Most importantly, an unambigu-
ous format ensures that independent tools can be used

to create or simulate models. Finally schema integra-
tion within common XML editors (e.g. Eclipse, Visual
Studio) encourages the use of content assistance and
auto completion aiding the speed and ease of model
creation.

Allowing a wide range of biological phenomena to
be represented requires that model designers can go
beyond a limited (library) set of pre-selected neuron and
synapse implementations by providing equations to describe
behaviour. Furthermore, model designers should not be
constrained by the functional limitations of any partic-
ular simulator which would require hand-written code
(which is considered the least portable and understandable
form of representation). SpineML allows the description
of such models by providing a clear separation between
‘components’ which describe behavioural (i.e. neurons and
synapses) and the network which describes how compo-
nents are connected.

Good integration with existing simulators should be
demonstrated. It is inevitable that not all simulators will be
able to provide support for all aspects of any proposed spec-
ification, particularly with respect to network connectivity.
It is therefore proposed that there should be an extendible
network description format for the SpineML specification.
Primarily the network layer should consist of a ‘high-
level’ format to describe populations and projections, con-
cepts supported by the majority of point neuron simulators
and a ‘low-level’ network format extension that allows
communication other than through chemical synapses
between components (e.g. gap junctions and neuromodula-
tors) for a smaller subset of simulators which support this
functionality.

Object Model and Examples

The SpineML format is composed of three distinct lay-
ers of object model specification. This layered approach to
modelling is inspired by the design goals of: separation of
implementation from model descriptions and being able to
express a wide range of dynamics. The three modelling lay-
ers within SpineML consist of: a ‘Component’ layer (with
equivalent semantics to the NineML abstraction layer spec-
ification) for describing neuronal dynamics, a ‘Network’
layer (derived from the NineML user layer) describing a
network of connected component instances and an ‘Exper-
iment’ layer describing a series of simulations including
inputs and outputs which form an ‘experiment’. Figure 2
illustrates the overall dynamics and modular connectivity of
components for the three layers.

The following three sections of this paper describe each
of the layers in detail using an example of a network of
inhibitory and excitatory neurons (Vogels and Abbott 2005)
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Fig. 2 The modular dynamics within the three layers of SpineML.
The figure shows the modular dynamical structure of the three layers of
SpineML specification. A ComponentClass described within the com-
ponent layer defines the dynamical behaviour of modular functional
objects within a simulation (e.g. a neuron, synapse or neuromodula-
tor). The dynamics of a ComponentClass manipulate state variables
and emit outputs by evaluating sets of differential equations using only
read-only parameters, inputs and aliases (an expression consisting of

a mixture of parameters and state variables). The Input and Output
ports define an interface allowing a component instance (a component
with a unique set of parameters and state variables) to be connected to
other instances within the network layer. The figure shows the connec-
tivity of a Neuron and Synapse (Composed of a set of WeightUpdates
and a single PostSynapse). The experiment layer defines any additional
inputs to the network of connected component instances, e.g. spike
sources or current injections

to highlight the XML modelling syntax. The example has
been selected because it has been subjected to extensive
benchmarking (Brette et al. 2007) for a range of simulators.

The Component Layer

Cellular level ‘ComponentClass’ definitions provide the
building blocks of neural dynamics within a complete net-
work model description. The ‘component’ level syntax of
SpineML is directly derived from the NineML ‘abstraction’
layer which shares a number of features and common goals
with LEMS1 and NeuroML 2.0.2 A complete object model
for this layer is described on the NineML website and a
complete Schema for SpineML is available on the SpineML
website. The SpineML ‘component’ level and NineML
‘abstraction’ level differ only with respect to the syntax
describing ports (shown in the subsequent examples) and
that within SpineML dimensionality and unit are specified
as a single SI attribute.

1http://www.neuroml.org/lems/
2http://www.neuroml.org/neuroml2.php

A visual representation of the dynamics of an example
component is shown in Fig. 3 which is visualised using
the Graphviz library (Gansner et al. 1993). The compo-
nent describes a standard Leaky Integrate and Fire (LIF)
neuron body with refractory period. Graphical representa-
tion of this form gives a clear overview of the component
demonstrating how state-like ‘regimes’ change the underly-
ing dynamics in response to events and changing conditions
during simulation. The SpineML definition of the LIF neu-
ron body consists of two independent regimes of behaviour
which define the dynamics of the model in differing states.
Within a regime, a time derivative indicates a differential
equation governing the progression of a named state vari-
able. The following fragment of XML is a definition of the
‘integrating’ regime labelled A in Fig. 3. Line 4 defines how
the voltage v changes over time. The regime has a transi-
tion (to a regime named ‘refractory’) triggered (line 7) when
the voltage reaches a threshold level which instantaneously
resets the voltage (line 8), emits a spike event (line 14) and
also records the time of the spike emission (line 11). For
clarity the symbol > is replaced with XML safe representa-
tions &gt; (line 16). Transitions are also able to assign state

http://www.neuroml.org/lems/
http://www.neuroml.org/neuroml2.php
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variables explicitly or emit events or impulses (events with
a value).

A subsequent regime ‘refractory’, labelled within Fig. 3
as B is described below. A Trigger condition (line 3) causes
the component to transition into the ‘integrating’ regime
after a tau ref ractory period of time.

Aside from regimes of a component, state variables form
the final specification of the dynamics. The following exam-
ple shows the complete LIF component class (with the two
regimes omitted). Two state variables v and t spike are
shown on lines 15 and 16 respectively. Parameters are non-
changing variables of the model which are referenced by
time derivatives, state assignments and triggers (i.e. wher-
ever a MathInline element is used). As with state variables,
parameters have both a name and a dimension consisting
of an SI unit. The SI unit can be converted into a separate
dimension and unit using a simple lookup within simulators
and modelling tools to ensure dimensional consistency.

As shown in Fig. 2, ports are used within the ‘compo-
nent’ layer as hooks to provide communication channels
between components. Analogue ports send and receive val-
ues at each simulated time step and have a special case, a
reduce port, which allows values from multiple components

Fig. 3 Visual representation of
a Leaky Integrate and Fire (LIF)
neuron body component. The
component transitions between
two Regimes (black) according
to conditions which test internal
state variables of the model. The
refractory regime b has no
behaviour but persists until the
simulation time t exceeds the
refractory period
tau ref ractory. The
‘integrating’ regime a is the
initial regime, indicated by the
asterisk symbol (*). All
Parameters and State Variables
referenced within any time
derivatives or conditions are
shown within the disconnected
red box. A single analogue
reduce port I Syn which sums
synaptic current inputs and an
event output port spike are also
shown (in the disconnected blue
box) for completeness
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to be reduced (via a reduce operator) to a single value. The
LIF neuron demonstrates an analogue (input) reduction port
(line 4) by summing an input I Syn representing synap-
tic current and an event send (output) port (line 5). Event
and impulse (and event with a value) receive ports can be
used to trigger transitions between regimes; as with con-
ditional transitions, an OnEvent or OnImpulse can trigger
state assignments or event and impulse outputs. Event ports
and impulse ports are used within the component definitions
of a fixed-weight update and an exponentially decaying
post-synaptic current, shown in Fig. 4. The SpineML code
for each component is available on the SpineML website.

In addition to parameters, an alias definition can also
be used as a mechanism to group mathematical expression
which refer to parameters, state variables and other alias
definitions. For example an alias ref ractory end could be
defined as follows;

This new alias can then be used within the trigger expres-
sion of the condition linking the refractory regime to the
integrating regime as follows;

The Network Layer

Following the specification of a set of ‘components’, the
‘network’ level description allows instances of components
to be connected via ports using terminology familiar to neu-
ral modellers, e.g. populations and projections. The com-
plete object model of the network layer is shown in Fig. 5;
the SpineML website contains additional detailed element
descriptions. The core object of the network layer is an
AbstractComponentInstance, where each of the subclasses
which inherit this object (i.e. Neuron, WeightUpdate, Post-
Synapse and Group) represents a set of instantiated com-
ponents with unique property values. The high-level syntax
imposes a building block structure using Neurons, Weigh-
tUpdates and PostSynapse primitives to form a hierarchy.
More specifically, a Population can contain one or more
Projections (to a named target population). Each Projection
can contain one or more Synapses which have a unique con-
nectivity pattern and sets of instantiated WeightUpdate

and PostSynapse component models. Having a neuron
clearly separated from the post-synaptic response allows
multiple synaptic models (each with differing post-synaptic
responses) to be projected to a neuron population. Separa-
tion of the model components in this way also allows for

Fig. 4 Diagrammatic representation of a synapse consisting of a
fixed-weight update and post-synapse component. The figure shows a
fixed-weight update component a which has a single event-based tran-
sition causing the emission of an impulse of the synaptic weight. b
Shows a exponentially decaying post-synaptic current which decays
according to the shown time derivative. On the receipt of an impulse
the post-synaptic current (I Syn) is increased by the impulse value

maximum flexibility, promoting re-usability of components,
facilitating fast model design and improved model clarity.
For example a fixed-weight synapse can be changed eas-
ily to a learning synapse without changing the post-synaptic
response.

Continuing from the previous LIF component model, the
following example demonstrates the syntax to describe an
Excitatory population of LIF neurons. Each of the 3200
neurons within the population follow the model dynamics
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Fig. 5 An object model for describing networks of connected com-
ponents. The figure shows the object model of the SpineML Network
Level syntax. Each box represents a high (white) or low (blue)
level object corresponding to an XML element within the SpineML
description format. The low level format contains only Input and
Group allowing the definition of sets of component instances and
connections which are able to communicate through mechanisms
other than chemical synapses. Relationships between objects are

indicated by ownership. i.e. a single a Population contains (or owns)
a single Neuron and a single Population contains zero or more Pro-
jections. Abstract objects and the Inheritance relationship are shown
in grey i.e. a Neuron, WeightUpdate, PostSynapse and Group all
inherit AbstractComponentInstance which instantiates a component
layer model description. A single SpineML object forms the root of
the network layer

of the LIF component model which is referred to within
an XML file ‘Integrate and fire.xml’ located by the url

attribute.

Within the neuron element (line 4) any number of prop-
erties may be defined. The property attribute name refers to
either a parameter or state variable name from the compo-
nent definition with values indicating the initial value prior
to simulation of the component. Units and dimensionality
are inherited from the component description. Parameters or
state variables which do not set property values in the net-
work layer (e.g. i off set and t spike) are assumed to have
a default value of 0. Property values can be set using a fixed
value for all instances (shown above using the F ixedV alue

element), uniform, normal and Poisson distributions as well
as explicit property lists. For example, as an alternative to
using a normal distribution to specify the initial values of
the neuron body voltage v, a value list can be used as shown
in the following example. An attribute index is required
to allow the specification of out of order or partial sets of
explicit values.
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Using the high-level network syntax, a fixed
probability synaptic connectivity (described using a
F ixedP robabilityConnection element) between the
above ‘Excitatory’ population and an ‘Inhibitory’ des-
tination population (described using the same syntax)
can be expressed as is shown in the following example.
Figure 5 shows the additional connectivity patterns. For
further detail, readers are directed to the network layer
documentation on the SpineML website.

The WeightUpdate (line 9) and PostSynapse (line 14)
element definitions follow the same property syntax as that
of a neuron body. A url and name attribute must be speci-
fied however size is omitted as it is dynamically derived by
either the connectivity pattern or the destination population
size respectively.

Additional attributes within WeightUpdate and
PostSynapse describe the dynamics connectivity of com-
ponent ports to form a chain consisting of the pre-synaptic
population, the weight update, the post-synapse and the
post-synaptic neuron models. Within the WeightUpdate

element the input source attribute (line 11) and input des-
tination attribute (line 12) name the ports in which the
pre-synaptic neuron (source) component connects to the
weight update component (destination). Weight update
input ports are typically linked by event ports which trans-
mit instantaneous spike events. Within the PostSynapse

element the input source attribute (line 16) and input desti-
nation attribute (line 17) name the ports in which the weight
update component (source) connects to the post-synapse
component (destination). Post-synapse input ports are typ-
ically linked by impulse event ports which, in the worked
example, injects a current into the post-synaptic model fol-
lowing a spike event. The output source (line 18) and output
destination (line 19) attributes within the PostSynapse

element name the ports which link the post-synapse
(source) to the post-synaptic population (destination).
Analogue ports typically are used to emit current values
from a post-synaptic model. An analogue reduce port within
the post-synaptic neuron allows multiple post-synapse
values to be summed. The WeightUpdate element has
an additional, optional feedback source and destination
port enabling information to be channelled from the post-
synaptic neuron back to the weight update for learning
(not required in the example). As with neuron bodies, both
a weight update and post-synapse definition are used to
specify properties (not shown). The full benchmark model
including fully specified weight update and post-synapse
properties is available from the tool-chain website.

Extending the Network Layer

The use of high-level conceptual constructs such as popula-
tions and projections simplifies the processes of describing
traditional point-based network descriptions. In particular
the implied fan-out and fan-in of connectivity between neu-
rons, weight update and the post-synapse items makes the
high-level network description particularly compact and
intuitive. Additionally the concept of a projection is shared
by many neural simulators, simplifying the mapping pro-
cesses during the code generation stage. Unfortunately, sole
use of projection based connectivity is not suitable for
describing communication other than chemical synapses
(e.g. gap junctions and neuro-modulators). Consequently
the ‘high-level’ object model is extended to form a ‘low-
level’ object model (also shown in Fig. 5) which allows the
direct connection of components via Inputs and Groups

of component instances which do not specifically represent
neuron bodies. The implications for simulators needing to
support the ‘low’ level schema is that a generic (communi-
cation other than chemical synapses) method of connecting
components must be available.

Within the low level network format, a Group object
inherits AbstractComponentInstance and represents a
set of component instances with a fixed size. Functionally
a group is equivalent to a population with no projections,
however the term group is used to distinguish between
populations which do not represent neuron objects. The con-
nection of a Group within a network is provided through
the use of a generic Input . An Input uses a connectivity
type to describe a remapping of an analogue, impulse or
event value from a named source component. For worked
examples of the low level network syntax, readers are
directed to the Striatal modelling example which demon-
strates gap junctions connected via inputs, available in full
on the SpineML website.
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The Experimental Layer

The final phase of specifying a model is describing a sim-
ulation, to be conducted. The syntax of the experimental
layer is similar to the SEDML experiment design language
(Waltemath et al. 2011) but adds essential support for exper-
iment inputs. It consists of details including the network
model to be simulated, the period of simulation and the
numerical integration scheme to be used. In addition to
specifying model outputs, the experimental layer also sup-
ports the definition of model inputs, both of which interact
directly with the dynamics of a model by logging or sending
data to named component ports (shown in Fig. 2).

The following example defines an experiment which
indicates a single independent simulation. The Model ele-
ment (line 4) specifies a single attribute which references
a network layer model. The Simulation element (line 5)
specifies the simulator, length of simulation time, simu-
lation duration and integration method. In this example,
forward Euler integration is used although Runge Kutta
methods are also supported. No explicit inputs are required
within this experiment file as spike activity within the
model is self propagating. Outputs are recorded from the
simulation in the form of a LogOutput which speci-
fies a log name (log file name) a target network layer
ComponentInstance name and a port . No distinction is
made between event ports or analogue ports. Each support-
ing simulator will check the port type and log either event
times or values accordingly.

Simulation Toolchain and Results

To demonstrate the simulator independence of models com-
pletely described within SpineML, a tool-chain is proposed
which uses eXtensible Stylesheet Language Transforma-
tions (XSLT) to generate native simulator code through
transformation of SpineML model descriptions into plain

text formats. Figure 6 shows the tool chain structure where
each supported simulator uses a specific set of templates to
generate simulation code. Each object modelling layer can
be validated using an XML schema which defines the syn-
tax and structure of each modelling layer using the XML
language. Whilst XML models can be generated by hand,
the use of a declarative common format allows independent
tools to be generated for model design and creation using
SpineML as a common storage format. Prototype graphical
tools have been constructed for this purpose and will be the
subject of future work.

Currently code generation templates have been devel-
oped for a reference simulator, BRAHMS (Mitchinson et al.
2010) (see section “BRAHMS”), a multi-processor multi-
threaded event-driven form of C designed for emulating
and compiling code for the SpiNNaker (Plana et al. 2007)
hardware architecture, DAMSON (see section “DAM-
SON”) and a number of other simulators via PyNN (see
section “PyNN”). Generating simulation code using the
XSLT code generation tool-chain (as shown in Fig. 6)
requires an XSLT 1.0 compliant processor. For example,
using XSLTProc, simulation code for the PyNN simula-
tor can be generated using the following command line
argument.

The generated simulation code can then be compiled
or loaded using the simulator specific execution technique.
Figure 7 shows a comparison of the results from running the
above benchmark model in all three supported simulators;
NEURON via PyNN, BRAHMS and the DAMSON emula-
tor. In the case of PyNN, post-synaptic behaviour is intrinsic
to the model of a neuron body. PyNN therefore requires
a modified LIF neuron body component (which integrate
post-synaptic behaviour as part of the neuron body). Each
of the other supported simulators has been checked for
consistency using the modified LIF component. A more
detailed discussion of PyNN compatibility is given in
section “System Implementation”.

Reproducing a Model of the Striatum

The Striatal model was originally composed of large sec-
tions of C++ code with some smaller sections of MATLAB
scripting (for generating connectivity and parameters). It
proved straightforward to fully represent the model using
SpineML with the low level network format. Generic com-
ponents are used to form models of gap junctions and
generic inputs are used in order to connect these to neural
cell models. Owing to the use of the low level network layer,
it is not possible to generate code for simulation in PyNN,
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Fig. 6 A tool-chain for simulation through code generation using the
SpineML modelling syntax. The SpineML modelling syntax is com-
posed of the Component, Network and Experiment XML description
layers, where each is structured according to an XML Schema. Mod-
els can be generated manually using XML editors or using graphical

user interface (GUI) tools. Translation of a model to any simulator is
achieved by using a simulator specific set of XSLT templates to gen-
erate simulator code or native simulator model descriptions. Simulator
code then logs results in a standardised format which can be used for
plotting and analysis

Fig. 7 Results of running the worked example described using the
SpineML format in three different supported simulators. The spike
times and membrane potentials of two neurons were logged in NEU-
RON via PyNN, BRAHMS and the DAMSON emulator and subse-
quently post processed to produce the resulting graphs a through to
c which are consistent with results reported in (Davison et al. 2009;
Nordlie et al. 2009) and also with results reported by a model designed
natively in PyNN. a Shows the membrane potential for two excitatory

neurons. Traces diverge after a short period of time due to differences
in numerical integration between simulators which is compounded by
the complexity of network activity. b Shows the spike raster plot of
excitatory (blue) and inhibitory (green) neurons. c Shows the distri-
bution of pooled inter spike intervals (ISIs) for excitatory (exc) and
inhibitory (inh) neurons. d Shows the distribution of the coefficient of
variation of the ISI over the populations of neurons
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therefore the results from simulations using BRAHMS and
DAMSON code generation are reported. In order to test the
veracity of the model against the original Matlab and C code
version the statistical and numerical performances are com-
pared with both SpineML simulations, as shown in Fig. 8.
The results demonstrate that the statistical and numerical
outputs of the model from the original C++ are reproduced
by code generated from SpineML in both BRAHMS and the
DAMSON emulator.

System Implementation

The flexibility of the SpineML Syntax and the robustness
of the XSLT code generation tool-chain are demonstrated
by implementing three complete sets of templates for each
of the three supported simulator back ends. Each set of
translation templates varies from generation of a simula-
tor configuration files (BRAHMS), to the generation of

simulator API code (PyNN and BRAHMS), through to the
generation of low-level C like code (DAMSON) for simula-
tion on neuromorphic hardware. Because the range of code
generation outputs for each of the supported simulators is
different, specific code templates are required for each sim-
ulator (without shared templates). The advantage of unique
simulator templates is that optimisations for each simulator
level ensure optimal performance. Adding support for a new
simulator requires that a suitable XSLT template (or set of
templates) is constructed to map the dynamics or the com-
ponent layer models, the structure of the network layer and
the simulation details of the experimental layer. Simulators
which have a close correlation with the SpineML object
model (such as PyNN) require simpler code generation tem-
plates. The range (in terms of simulator architecture) of
currently supported simulators also provides a good starting
point for adding new simulator support.

The following sub-sections describe the design of
the SpineML Schemas with particular emphasis on the

Fig. 8 Statistical and
Numerical comparison of a
Striatal microcircuit model
simulated in Native C++ and
SpineML via BRAHMS and
DAMSON. The Figure shows; a
A numerical comparison of the
membrane potential of a single
Medium Spiny Neuron (MSN)
over one and a half seconds of
simulation in the C++ model
(Green), BRAHMS (Red) and
the DAMSON emulator (Blue).
b Raster plot of MSN D1
neurons spike times over
700-1400ms of the simulation.
Colours as for a. c Cumulative
proportion of neurons (y-axis)
with an average spike rate
greater than the frequency
(x-axis) for a simulation (at two
input frequencies, F in=4Hz
and 5Hz) over a duration of 10
seconds (discarding the first
second as this is when the model
is reaching equilibrium).
Colours as for a
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extension mechanisms used to differentiate between low
and high-level network descriptions and to add new network
layer functionality. The XSLT code generation strategy is
also presented with examples, followed by a description of
the implementation of code generation templates, including
any limitations, of each of the three supported simulators.

Flexible XML Schemas

Various techniques can be used to design XML Schemas
which range in their simplicity and flexibility. The simplest
of these is often referred to as a ‘Russian Doll’ design
and comprises a highly nested set of elements where only
the root element has a global scope. Whilst very com-
pact, this design technique is highly self-contained and
changes made to types within the narrow local scope are
not propagated to other Schemas or global definitions. The
ridged structure offers similar functionality to Document
Type Definition (DTD) validation but is unable to take
advantage of type reuse. In contrast, the ‘Flat’ model (or
sometimes known as the Salami Slice design) is highly
reusable and consists of entirely globally defined elements
which may be referenced by other element definitions
within a Schema (or within Schemas which import it). The
Flat model offers the ability to exploit substitution groups
which offer similar functionality to object oriented poly-
morphism. This capability is desirable as new extensions
can be easily integrated without daisy chaining changes
in a schema. The final schema design type, the ‘Com-
plex Type’ model (or Venetian Blind design) consists of
a hierarchy of globally defined complex types with a sin-
gle root element. This schema design method allows type
extensions or restrictions offering functionality similar to
object oriented inheritance. Consequently, this design type
is used within NineML, NeuroML and LEMS and provides
a sound method for designing schemas to describe hier-
archies of increasingly complex neuron types. Its limiting
factor is that it does not support the use of substitution.
Therefore, new additions require the original schema to be
changed.

With respect to SpineML there are a number of points
where future extensions are highly desirable. Connectivity
types are one such example where new connection primi-
tives, such as distance-based connectivity or CSA (Djurfeldt
2012), may need to be added. In order to create a mecha-
nism to allow the maximum degree of schema flexibility,
a hybrid of the Flat and Complex Type schema methods
has been used. This is the only method which affords the
advantages of both inheritance and polymorphism. Within
the Schemas, concrete element definitions are defined for
each complex type at the global scope. These are refer-
enced within other complex types and can therefore form

the head of potential substitution groups where new types
may be used. For example, the complex type (lines 1-3)
and (abstract) global element definition (lines 5-7) for an
AbstractConnection are shown below;

The global AbstractConnection element may be ref-
erenced within other type definitions. In the case of
connectivity the AbstractConnection element is refer-
enced within a SynapseType as follows.

The inheritance mechanism of the complex type method
then allows a new complex type to be defined as an exten-
sion to the AbstractConnectionType. In the example
below, the definition of a type for one-to-one connectivity
is shown (on lines 1-9). This type adds an element (Delay).
A concrete element which references this new type (lines
11-14) can then specify that this element can be used in
substitution with the AbstractConnection element.

The above method provides an extension mechanism
that allows a core schema to remain unchanged whilst new
schemas are proposed to add new functionality such as con-
nection types. This method is used to enable the addition of
Groups with the low level schema and to ensure that the low
level schema forms an extension of the high-level schema,
adding new functionality in the form of inputs for all types
of component instances (e.g. Neuron, WeightUpdate and
PostSynapse).
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XSLT Code Generation

The mapping of a SpineML model to a simulation engine
requires translation of the model using code generation
(Goodman 2010). Code generation for SpineML has been
provided through the use of XSLT templates. XSLT is used
widely in the translation of XML documents to other HTML
or other XML document formats on the web. Neverthe-
less, there is no restriction on the type of file that can be
generated from an XSLT template and it is hence suitable
for the generation of native simulator source code. XSLT
standards are well defined and a number of compliant pro-
cessors are available which can be used to generate identical
output (e.g. XSLTProc, Saxon, Xalan and Visual Studio). In
all cases, an XSLT processor works by recursively query-
ing XML nodes through XPath expressions and applying a
template to process the content of each node. In the case of
generating simulator code, a model is processed by querying
experiment, network layer and component layer documents
recursively using the branching and control elements of
XSLT to generate plain text.

XSLT affords several advantages over designing a cus-
tom template system. For example, XSLT can be used as
a full functional programming language allowing complex
data queries and output functions to be constructed. As
XSLT is based upon XML technology, it is also possible to
import schemas for each of the three SpineML modelling
layers to ensure that models are validated before they are
processed. Furthermore the XSLT templates themselves can
be validated against the W3C XSLT Schemas. The follow-
ing example (taken from the PyNN code template) shows
how a simple XSLT query can be used to loop through
all populations within a network layer to output Python
code consisting of a population size variable using the neu-
ron name. Complete documentation on the complete XSLT
syntax is available on the w3schools website (http://www.
w3schools.com/xsl/).

The f or-each statement loops through each element
which matches the select attributes XPath expression.
The XSLT variable $network layer refers to a network
layer document. Within the f or-each loop a new vari-
able pop name is constructed from the populations neuron
name attribute. The function translate replaces any blank
space character with an underline to comply with Python
syntax rules. The value-of element then outputs the text
value of the population name followed by the value of the

neurons size attribute. The resulting output from the work-
ing example presented within section “Object Model and
Examples”, is shown below;

BRAHMS

BRAHMS is described as middleware for integrated sys-
tems computation which has roots in the domain of bio-
logical modelling. Internally it contains a modular based
execution framework (MEF) which links a number of soft-
ware components with varying levels of abstraction. It has
been used extensively for the simulation of spiking neural
systems (Sullivan et al. 2012; Fox et al. 2009). As a result
of its modular design, there is a straightforward conceptual
mapping from the SpineML modelling syntax. BRAHMS
supports both the high and low-level network format with-
out any restrictions and serves as a reference simulator.

PyNN

The PyNN simulator utilises a Python representation of a
neuronal network model which is used to build a set of
internal data structures. This internal model can then be
simulated using a range of common simulators by passing
the model structure through simulator specific APIs (usu-
ally with Python bindings). In order to translate a SpineML
model into PyNN a translation template maps a model
description into a single Python script which imports the
respective PyNN modules. Support for the ‘low-level’ net-
work layer is not possible within PyNN as only synaptic
connectivity is supported through projections. The PyNN
‘synapse’, shown in Fig. 9, differs from that of SpineML.
The encapsulation of the post-synaptic response model
within a neural cell model prevents multiple projections to
a single population which express different post-synaptic
responses. In contrast, SpineML provides a separation of
neuron and post-synaptic response model to allow any
number of differing post-synaptic responses to a single
population. To retain compatibility with PyNN, any neu-
ron body components referenced within the network layer
must match the implied dynamics of one of the standard
PyNN library neuron model types, therefore incorporat-
ing the post-synaptic response. A ‘PyNN PSP.xml’ model
can then be used as a ‘pass through component’ which,
rather than modelling the post-synaptic response, performs
only a simple summation of any synaptic values, which
are immediately passed through to a post-synaptic neuron
model. Alpha based post-synaptic dynamics within a neuron

http://www.w3schools.com/xsl/
http://www.w3schools.com/xsl/
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Fig. 9 A comparison on the SpineML and PyNN synapse and post-
synaptic response models. The Figure shows; a The SpineML synapse
encapsulates separate synaptic weight update and post synapse mod-
els with a clear separation between the synapse and neuron body
model. Typically a neuron will connect to a weight update via event-
based communication, weight updates will connect to a post synapse
using impulse communication and the post synapse will connect to
a projected neuron via analogue communication. There is however
no restriction imposing this and any form of event/impulse/analogue

communication can occur between models. b PyNN combines the
model of post-synaptic response with the model of a post-synaptic
neuron. The synapse model (encapsulating only the weight update) is
responsible for modelling the synaptic delay, weight and any dynamic
behaviour of the synaptic weight. Within PyNN only event-based com-
munication between a neuron (including the post-synaptic model) and
a weight update is supported however weight updates may have non
event-based internal dynamics i.e. short or long term plasticity

model are calculated according to the methods described in
Srinivasan and Chiel (1993) which avoids both the compu-
tational and storage overhead of computing synaptic con-
ductance for each weight update in the network. Currently,
only a fixed-weight update is implemented although support
for learning can be easy integrated in the future by cre-
ating appropriate weight update models. A weight update
feedback attribute provides a port for communication from
post-synaptic neuron models.

Translation of a PyNN model to SpineML has not yet
been implemented. However PyNN stores a model descrip-
tion by building an internal ‘flat’ model representation
within memory. Any procedural techniques used within
Python to generate properties or connections within PyNN
can be converted to explicit lists and exported to the
SpineML network layer format.

DAMSON

Given the scale and power efficiency of the SpiNNaker
hardware system, aimed at a million ARM processing cores
supporting up to a billion real-time neurons, translation of
SpineML to a suitable SpiNNaker format is highly desir-
able. The DAMSON3 language is an event-driven version
of C with both SpiNNaker hardware support and functional
emulation. Templates for generating DAMSON code map
individual populations to SpiNNaker processors and cre-
ate functions for handling simulation events (either spike
based or analogue) which are routed between SpiNNaker

3http://damson.sites.sheffield.ac.uk/

cores as broadcast messages. In the case of large popula-
tion sizes, an additional splitting stage (beyond the scope of
this paper) can be used to aid parallelisation by evenly dis-
tributing the model across processing cores. Owing to the
limited functionality of SpiNNaker ARM processing cores,
all arithmetic within DAMSON is performed using an inte-
ger fixed-point format. The simulation results within this
paper and from previous work (Sharp et al. 2012) demon-
strate that this resolution is sufficiently accurate if scaling is
handled carefully. The flexibility of the DAMSON language
allows full implementation of both the high and low-level
network layer formats with a few restrictions relating to
weight update dynamics which are imposed by the require-
ment of real-time simulation. The first of these restrictions is
that weight update components must (currently) be entirely
event-based to reduce computational load. This constraint
requires that the weight update component model commu-
nicates only via event or impulse ports and does not contain
any time derivative within any of its regimes. For the same
reason weight updates are not able to have generic inputs.
Although it is possible to circumvent both restrictions by
splitting a projections weight update and post-synapse into
separate generic components (which will be allocated to dif-
ferent cores) future work will examine more effective ways
of reducing the computational load per processing core in
order to handle non event-based weight updates.

Discussion

In this paper, SpineML, a declarative XML syntax extend-
ing the NineML format has been presented. The pro-
posed extensions to NineML allow complete specification

http://damson.sites.sheffield.ac.uk/
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of complex biologically constrained point neuron network
models, demonstrated in this paper through the specifica-
tion of a model of the striatum. A code generation tool
chain demonstrates the completeness of the syntax and its
suitability for code generation with respect to point neuron
networks of varying complexity.

Flexibility of modelling, in order to allow a wide range of
biological phenomena to be represented, has been addressed
within the SpineML network layer. The modular design pro-
vides a separation of the post-synaptic model and the model
of a neural cell. The extension point mechanism allows
a distinction between models containing only projection-
based connectivity (high-level) and models which con-
tain additional non-neural components and communication
through mechanisms other than chemical synapses. The
separation of the post-synaptic response is an important
factor in reproducing biologically constrained models. For
example, within the Striatal model, different post-synaptic
dynamics are required for the NMDA component of the
glutamatergic synapses of Medium Spiny Neurons (MSNs)
compared to the GABAergic synapse and AMPA compo-
nent which require a term to reproduce the effect of a
blocking Magnesium current. Similarly, the post-synaptic
currents have differing effects on AMPA and NMDA recep-
tors in D2 MSNs and D1 MSNs respectively.

Both the PyNN API and NeuroML provide an alternative
approach to model standardisation for simulator indepen-
dent point neuron modelling. PyNN uses the high-level
Python programming language to unify a range of simu-
lators which have Python interfaces (Hines and Carnevale
1997; Eppler et al. 2009; Goodman and Brette 2008). The
drive towards Python as a common language for simula-
tors is understandable. As a high-level language it is open
source, has a simple yet powerful syntax and supports
extensive libraries for scientific computing data analysis
and visualisation. NeuroML v1.0 is a declarative XML
based description language for model specification and
exchange with a focus on morphological neural systems.
NeuroML v2.04 has extended its remit to also include
the specification of point neuron networks. It has been
developed alongside the Low Entropy Model Specification
(LEMS) for specifying generic models of dynamical sys-
tems. The NeuroML v2.0 schemas provide a hierarchical
structure of cell and synapse models which make refer-
ence to LEMS components (called ComponentTypes). A
NeuroML v2.0 model description can therefore be used to
either map a cell description to native simulator param-
eters or be used in conjunction with LEMS for code
generation.

4http://www.neuroml.org/neuroml2.php

A comparison of SpineML can be made with PyNN and
NeuroML both with respect to specification of neural com-
ponents and networks. In terms of component specification,
the SpineML component layer makes relatively few changes
to the NineML abstraction layer; the two are largely com-
patible and have some degree of overlap with LEMS (and
hence NeuroML). SpineML differs from PyNN in that there
is a focus on more flexible (biologically constrained) model
specification (e.g. allowing specification of new neuron,
learning or post-synaptic response models), rather than on
extensive simulator support. As a result, PyNN is unable
to provide the functionality for describing new neural com-
ponents in a simulator independent fashion. Some initial
attempt at integrating LEMS and the NineML abstraction
layer with PyNN have however been made. The integration
relies on non-standard PyNN neurons being translated to
simulator specific implementations through code generation
with only the network described by PyNN. The NeuroML
v2.0 schema defines support for point neurons with a strong
overlap with standard PyNN neuron types. Both PyNN and
NeuroML v2.0 descriptions of PyNN standard cell types
utilise a combined post synapse and neuron cell models (the
disadvantages to this approach have been covered in section
“PyNN”).

Both SpineML and NeuroML v2.0 present a large degree
of flexibility in that LEMS can be used to describe new
dynamics. Where NeuroML v2.0 and SpineML differ with
respect to network specification in that a new LEMS model
requires the additional specification of a compatible schema
(extending one of the core NeuroML v2.0 model types) in
order to provide XML validation of a parametrised (LEMS)
model description. Within NeuroML v2.0 a parametrised
model description can then be referenced by a popu-
lation object with the advantage that the parametrised
model may be reused by multiple populations. In contrast,
SpineML does not require any additional schema specifi-
cations to allow XML validation for paramaterisation of
new ‘component’ model. Neuron, synapse, post synapse
(and groups) are instantiated directly within a network
layer model description by referencing a component layer
object directly. The underlying schema remains unchanged,
simplifying the XSLT code generation process. Although
SpineML is not currently able to reuse parametrised com-
ponents, the decision to omit this functionality is based on
the need to be able to visually represent the networks of
instantiated components within graphical editing tools. How
parametrised but unused components would be represented
within a conventional visual design tool is not immedi-
ately clear but will be considered in future work. PyNN’s
lack of support for connectivity through mechanisms other
than chemical synapses within a network description has
already been documented. Aside from differences in the
specification of synapses, SpineML and PyNN differ in

http://www.neuroml.org/neuroml2.php
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that PyNN utilises a procedural programming language.
Although Python code can be written in a declarative way,
the procedural nature of the Python language can make it
more difficult to infer the overall structure of a model and
discovering the value of a modelling parameter can often be
less intuitive than in a purely declarative specification.

Considering model storage, XML is advantageous in
terms of readability and portability but can perform poorly
in file size. Models containing large explicit lists of prop-
erties of connectivity can easily become unwieldy due to
the mark up notation used. XML tags contain large data
redundancy although compression techniques work well in
reducing file sizes. Alternatively, binary file formats for
explicit lists will be added to the high-level network schema
format at a later date. Additional distance based connectivity
primitives would also help to alleviate file size for models
such as the Striatal example where complex distance based
connectivity functions (Humphries et al. 2010) are currently
described as explicit lists, contributing to over 99 % of the
total file size.

Performance of the XSLT processor in translating a
model to native simulator format is dependent on the sim-
ulator specific templates. XSLT stores both a model and
the template entirely in memory (within a DOM tree)
ensuring that XPath queries are fast, restricting models to
those which fit entirely in memory. Although the bench-
mark model presented within this paper has been scaled
to gigabyte network layer model sizes and has been used
for code generation, beyond this scale, the use of stream-
ing templates may be necessary to reduce memory usage.
Alternatively a combination of XSLT to generate native sim-
ulator ‘programs’ with a more optimised streaming code
generation method for native simulator ‘data’ is entirely
feasible.

The main focus for future work will be in advancing
the development of graphical user tools for declarative
model specification. Current prototype tools require the
addition of a layout layer for saving layout of neurons and
populations within 3D space for use in both generating
complex spatially-based connectivity patterns and visuali-
sation. Integration between SpineML and NineML will be
pursued via community driven discussions. Translation to
a range of other simulator formats including NEST and
NEURON which each offer support for custom compo-
nents will also be considered as will support for GPU based
simulation.

Information Sharing Statement

The model layer schemas and example models pre-
sented within this paper (namely the benchmark model
and Striatal model) are available in complete form

from the SpineML website (http://bimpa.group.shef.ac.uk/
SpineML). Additional documentation and additional sim-
ulator configurations are also available to aid users in
reproducing the experiments and results presented.
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