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Abstract In the study of neurosciences, and of com-
plex biological systems in general, there is frequently
a need to fit mathematical models with large numbers
of parameters to highly complex datasets. Here we
consider algorithms of two different classes, gradient
following (GF) methods and evolutionary algorithms
(EA) and examine their performance in fitting a 9-
parameter model of a filter-based visual neuron to real
data recorded from a sample of 107 neurons in macaque
primary visual cortex (V1). Although the GF method
converged very rapidly on a solution, it was highly
susceptible to the effects of local minima in the error
surface and produced relatively poor fits unless the ini-
tial estimates of the parameters were already very good.
Conversely, although the EA required many more it-
erations of evaluating the model neuron’s response to
a series of stimuli, it ultimately found better solutions
in nearly all cases and its performance was indepen-
dent of the starting parameters of the model. Thus,
although the fitting process was lengthy in terms of
processing time, the relative lack of human intervention
in the evolutionary algorithm, and its ability ultimately
to generate model fits that could be trusted as being
close to optimal, made it far superior in this particular
application than the gradient following methods. This is
likely to be the case in many further complex systems,
as are often found in neuroscience.
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Introduction
Automated Procedures

The study of complex systems, which comprise multi-
ple interacting components with an overall behaviour
that becomes hard to predict from any of the indi-
vidual components, presents something of a challenge
for many modern scientific disciplines. For example,
having a good understanding of the response character-
istics of individual neurons and their synapses, does not
allow us to predict the behaviour of a network of such
neurons. By the fact that these systems’ behaviour is
hard to predict, our understanding of them typically re-
quires the development of quantitative computational
models. Systematic failures of the models to reproduce
the behaviours of interest are useful in highlighting
shortcomings in our understanding. To find such fail-
ures the typical approach is to try to fit a model to
data by manipulating its parameters until its outputs are
similar to those of the target system.

There are two technical challenges to this endeavour.
The first is how to quantify the goodness of a fit, a
problem for which there are several possible measures.
The second challenge is to find the best fit that the
model is able to achieve, by maximising the goodness of
fit measure(s). For simple problems, normally defined
by convex optimisation in low number of dimensions,
the choice of fitting algorithm may not be critical (Box
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1966; Nash 1984). For complex systems, however, it
is increasingly difficult to know whether the solution
arrived at is actually the closest fit to the data that the
model can achieve. That is, in cases where a model has
failed to provide a good fit to the data it may not be
that the model is unable to provide a good fit, merely
that the fitting procedure has failed to find the optimal
parameters. There is, therefore, an increasing need for
powerful methods that consistently find the optimal fit
to the data. Furthermore, there is also a great need for
methods that are able to run with minimal need for
manual human input.

Here we consider the advantages and disadvantages
of some of these methods as applied to a real-world
problem; the fitting of a nonlinear, multi-stage, high-
parameter model to somewhat noisy response data. In
our case these data came from extracellular in-vivo
electrophysiological recordings from primary visual
cortex (V1) of the macaque, but the problem is one
common to many other areas of neuroscience.

Quantifying Fit Quality

All fitting algorithms essentially come down to an op-
timisation problem in which the aim is to maximise a
goodness-of-fit measure or, equivalently, minimise an
error term, FE, that quantifies the discrepancy between
the model outputs and the data. There are several
options to quantify the goodness-of-fit, including;

(i) distance-based measures, e.g. sum of squared
residuals (SSQ)

(ii) quantifying the number of model outputs that
fulfil a certain criteria, e.g. ratio that fall within
the confidence interval (RCI), of the respective
data point

(iii) correlation-based measures, e.g. the percentage
of the variance in the data that is explained by
the model (R?)

The most commonly used error terms in these op-
timisation problems are the distance-based measures.
Usually these quantify the residual, the difference be-
tween the model and the data at each point for which
data were collected. One could simply take the sum
of the residual, but this would be a poor measure
because positive and negative deviations between data
and model outputs will cancel. The SSQ gets around
the problem of cancellation between positive and nega-
tive deviations by squaring all elements of the residual
and then summing them. The SSQ can be normalised
by the number of data points used to give the mean
squared residual (MSQ). This has the advantage of
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being independent of the number of data points used
in fitting, but the fit is functionally equivalent. Similarly
the root-mean-squared residual (RMS) can be used
which has the advantage that it is then expressed in the
same units as the original data.

Although commonly used during optimisation rou-
tines, the distance-based measures have disadvantages.
One of these is that the final value of the measure
does not signal the fit quality in a general case; it is
dependent on both the units and the amplitude of the
data. By describing the fit quality in terms of the ratio or
percentage of points falling within the confidence inter-
vals of the data (RCI), less prior understanding of the
data is required to judge the fit quality. For example,
finding that the fitting of model neuronal outputs to
data resulted in a RMS error of 40 impulses per second
(ips), is hard to interpret without prior knowledge of
typical responses, whereas the fact that 85% of the
model responses were within the confidence intervals
is more naturally informative. For this reason the RC/
may be useful in reporting fit quality. For the purpose
of the optimisation procedure the related error term is
quantified as 1 — RCI.

Another natural choice to quantify similarity be-
tween data and model outputs is to use the correlation
between them. The correlation coefficient squared di-
rectly expresses the percentage of the variance in the
data that is explained by the model (R?) (Howell 2004;
Kent 1983). The error that needs to be minimised is
1 - R%

In the limit, where the distance-based error (e.g.
SSQ) actually approaches zero, the correlation- and
criteria-based measures are also naturally optimised,
whereas the converse is not necessarily true. However,
for noisy systems, the SSQ is not likely to approach
zero, and minimising the SSQ might not optimise the
other measures. An example of this can be seen in
Fig. 1. In this example synthetic data has been created
and a pair of candidate model fits are presented. The
curve with the lower SSQ (solid line) actually cap-
tures the data less well according to the ratio in the
confidence interval (RCI) and the variance explained
(R?). An advantage of using correlation-based mea-
sures is their strong affinity to the characteristic shape
of the data. The disadvantage is that they take no
account of the overall amplitude of the data. The RCI
suffers from the problem that once a model output falls
outside the confidence interval, it no longer matters
how far it strays. As a result, some points may end
up with extreme errors for single points in order to
maximise the number of other points falling within the
criterion region.
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— SSQ=0.85, RCI=0.57, R*=0.81
== SSQ=1.06, RCI=1.0, R*=0.99

6 2l7r
Fig. 1 Example of two candidate model fits to sinusoidal data
with noise. All data are synthetic. Note that, according to the SSQ
measure of fit quality, the solid line would be considered a better

fit, whereas the RCI and R% measures would both find the dashed
line to be more representative of the data

Gradient Following Algorithms

For non-linear optimisation problems, in our case the
minimisation of the SSQ-error, Gradient Following
(GF) algorithms are the most commonly used. To vi-
sualise this optimisation problem we can imagine an
error surface as a landscape in which we attempt find
the lowest point. The principle of the GF method, is
to follow the gradient of the error down towards this
minimum. There are numerous practical approaches to
accomplish this task.

The Nelder-Mead method is a direct search scheme
that performs geometrical manipulations of a simplex
placed on the error surface (Heath 2002; Nelder and
Mead 1965). This is a method that is effective in low
dimensions where it is suitable to fit to non-smooth
objective functions (Lagarias et al. 1998). In higher
dimensions it is very computationally expensive com-
pared to other GF methods.

The Newton method for optimisation is an alterna-
tive and is guaranteed to converge to a minimum, at
a quadratic rate (Heath 2002; Nash and Sofer 1996)
for points on the error surface sufficiently close to
the minimum. For more distant points, however, the
convergence will be slower and it may fail altogether.
Furthermore, the method requires construction of the
Hessian matrix (the second derivative of the error sur-
face) and, as with the Nelder-Mead method, it is com-
putationally expensive for high-dimensional problems.
A number of quasi-Newton methods have been devel-
oped, which approximate the Hessian, making them
computationally cheaper, less sensitive to the starting
parameters, or both. They typically differ in the way

the Hessian approximation is made. The most common
quasi-Newton schemes are secant updating, conjugate
gradient, nonlinear least squares and truncated Newton
methods (Heath 2002; Broyden 1967; Dixon 1972; Nash
and Sofer 1996).

One obvious problem with following the gradient of
the error surface downwards to a minimum, is that we
cannot know if this is the lowest point the surface ever
is reached or just a local minimum. The choice of the
length of step to be taken may be critical in this, since a
large step size may allow local minima to be passed, but
may of course also prevent the global minimum from
being discovered. Ultimately the search is local and if
we choose a starting point far from the global minimum
there are no guarantees that this will be found. For a
system where the parameters, and their effects on the
overall behaviour of the system, are well-understood,
finding a starting point close to the global minimum
may be achievable. The very nature of complex sys-
tems, however, makes this task extremely difficult or
impossible. An alternative might be to use multistart
methods, whereby a number of GF searches are run in
parallel, with different initial conditions (Bolton et al.
2000).

Evolutionary Algorithms

A different approach to optimisation is to use evo-
lutionary algorithms (EAs). These algorithms are in-
spired by biological evolutionary processes, whereby
a population consists of individuals from one or more
generations that contribute in some form to future
generations in a non-deterministic manner. As of lately
this class of methods have become increasingly popu-
lar as a tool to fit complex models to neuronal data
(Van Geit et al. 2008). Each instantiation of the model
can be considered an individual whose characteristics
(described by the model parameters) can be mutated
and propagated to future instantiations. The probabil-
ity that an individual contributes to future generations
depends on its fitness. Depending on the EA being
used, this contribution may take the form of parameters
either being mutated and then passed directly to its
‘offspring’ (in a manner akin to cell division), or can be
mutated and combined with the parameters of another
individual (akin to breeding). Fitness of an individual is
determined by its quality of fit relative to the rest of the
population, which comprises other individuals of the
current, and possibly previous, generations. The system
is non-deterministic in that all mutations and breed-
ings are made on a random basis and even individuals
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with poor fitness may have an opportunity to influence
future generations.

EAs can differ in; the evolutionary strategy (ES)
governing the way in which future generations are
formed, the structure of the population (e.g. the size
and lifetime of each generation), and the calculation of
fitness for each individual. There are numerous ESs of
varying complexity which govern how the generations
are produced based on the fitness evolution (Hansen
et al. 1995; Hansen and Ostermeier 1997). For a given
EA there are numerous choices of which ES to im-
plement (Sbalzarini et al. 2000). In the simplest case
only mutations occur and these mutations are drawn
from a constant distribution. Alternatively the noise
distribution from which the mutation is generated could
be adaptive. More sophisticated strategies implement a
combination of mutation and breeding, where there are
also many potential ways to implement ‘breeding’. For
example, the method might make use of correlations
between the fittest individuals in different generations
to determine the most effective way to generate fol-
lowing generations. The structure of the population can
vary in the lifetime of each generation; in one extreme,
individuals are removed from the population as soon
as a new generation has been created such that only
the new generation can contribute to future gener-
ations, whereas in the other extreme, all individuals
in the history of the system can contribute to a new
generation. In practice, the least fit individuals from
past generations may be discarded since they are not
likely to contribute anyway. This leads to a population
structure containing the current generation and an elite
pool of fit individuals from previous generations. The
other consideration for the population structure is the
size of each generation; if this is too small the parameter
space of the model may not be well-explored, whereas
if it is very large the computational cost of quantifying
fit quality for each individual becomes large.

Quantifying the fitness of an individual in an EA is
more flexible than simply measuring the quality of fit
through a single error measure, as in GF methods. In
particular it is possible to perform multiple objective
optimisation (MOO) (Druckmann et al. 2007; Vrugt
and Robinson 2007) using EAs. If there are several
possible error measures that we wish to minimise, and
there may not be a unique solution that minimises
all, we can track all these errors simultaneously in the
fitness of the individual, which is not possible using
GF methods. There are also multiple options to imple-
ment this MOO. One commonly-used solution (e.g. see
Zitzler and Thiele 1999; Deb 1999; Druckmann et al.
2007) is to determine which individuals are on a Pareto
front in the error space—the set of individuals that
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are not improved upon by any other individual on all
error terms, they are non-dominated (see Fig. 2)—and
then calculate fitness based upon the distance of each
individual from that Pareto front.

Using the Algorithms in Complex Systems

Due to the probabilistic nature of the EAs, there are
no theoretical guarantees that a minimum will be found
in finite time. On the other hand they may be less
susceptible to converging on local minima, by the fact
that the set of solutions that are non-dominated span
several locations on the error surface and the fact that
they are non-deterministic. In a system about which we
have little prior knowledge, and where we expect local
minima to be a problem, it may be more important that
we are confident the algorithm has found something
close to the true global minimum than that it has con-
verged accurately and efficiently.

In our case, we have a 9-parameter nonlinear multi-
stage model of a neuron in primary visual cortex that
we wished to fit to response data from a large set of
recordings made in anaesthetised macaque monkey.
By performing manual fitting we found that the GF
methods that we initially used in this optimisation prob-
lem frequently converged on solutions that were clearly
not optimal. This led us to consider an evolutionary
approach and to explore its performance relative to
GF methods for tackling our real-world optimisation
problem. In particular we wished to uncover whether
the EA could find a superior solution to that found
by the GF method. We would also like to explore the
class of multiple objectives best suited to capturing the

Fig.2 An example of a two dimensional Pareto front. Each point
in the figure is a solution that gives values for two errors, £ and
E>. When attempting to mimimise both errors we get a Pareto
front. On the Pareto front the solutions are optimal in the sense
that there is no other point for which both E; and E; are smaller,
the filled dots connected with lines show the Pareto front in this
figure
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data, and contrast the computational cost of using GFs
to EAs. For the sake of this comparison we focus pri-
marily on an implementation of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton GF method
(Broyden 1967) and the Strength Pareto Evolutionary
Algorithm (SPEA) (Zitzler and Thiele 1999; Sbalzarini
et al. 2000; Zitzler et al. 2003).

We found that, although the BFGS method gener-
ated slightly better fits for some cells, the SPEA was
more consistent in producing good fits, such that it
substantially outperformed the BFGS for some neu-
rons. The BFGS typically took roughly an order of
magnitude less computational time to perform its op-
timisation, but required substantially more human in-
tervention in the choice of good starting parameters.
Fitting synthetic cells revealed that the model has a very
complex and flat error surface. BFGS turns out to stay
in the vicinity of initial parameters while SPEA does
a much more efficient global search. We also tested
a combined method in which the SPEA was used to
generate initial parameters for the BFGS. This memetic
approach indicated that the SPEA did typically con-
verge to a point close to the minimum even though this
was not guaranteed. The SPEA also had the advantage
of providing a family of fits that were, in some sense,
equally good rather than giving the illusion of there
being a single best fit.

Method
Data and Model to be Fit

Briefly, the data were spike rate measures taken from
extracellular recordings of single neurons in primary
visual cortex (V1) of paralysed, anaesthetised macaque
monkey (Macaca Fascicularis). The data used here
were recorded not for this purpose, but to charac-
terise the receptive fields of the neurons as needed for
other experiments (Solomon and Lennie 2005; Webb
et al. 2005; Peirce et al. 2008). We are grateful to the
members of Peter Lennie’s lab that allowed the data
subsequently to be used in this way. The neurons were
stimulated with drifting sinusoidal gratings, which could
vary in spatial frequency (SF), orientation, contrast
and drift rate (temporal frequency, TF). The gratings
were presented in circular apertures that could vary
in size. The neurons are tuned in different ways to
each of these characteristics; they each have a preferred
stimulus orientation, SF, TF and size and also differ in
the bandwidth of their tuning to these dimensions. For
stimulus contrast the majority of cells have a nonlinear
(typically saturating) response function. In Fig. 3 we

show sets of tuning curves for four sample neurons to
illustrate some of the characteristic behaviours that can
be seen.

Our aim was to fit a multi-stage nonlinear model
to the data in an attempt to capture all of these tun-
ing characteristics in individual neurons. The dataset
consisted of tuning curves for 107 cells, collected from
13 macaques. The data are somewhat noisy for vari-
ous reasons, both physiological and technical. Neurons
themselves can adapt; changing their responses to the
same stimuli after prolonged stimulation. The nature of
in vivo extracellular recordings means that spikes can
be missed as the target neuron moves closer or further
from the electrode during recording sessions. Lastly, in
the particular recordings made here for which the ex-
perimenter primarily wanted to establish the preferred
orientation, for example, without necessarily needing a
full high-quality characterisation of the entire tuning
curve and so there are numerous cells for which the
confidence interval for some datapoints is rather large.
All of these are common problems when models are
being fit to real-world complex data from relatively
noisy environments.

The model is based on Gabor filters and has 9
parameters. Earlier filter-based models have captured
the behaviour of single neurons to individual tuning
dimensions. The main ingredients of the model are a
temporal filter, f(¢), and a spatial filter, R(x, y). These
are combined in the same manner as in Watson and
Ahumada (Watson and Ahumada 1985). Importantly
we also need a stimulus, S(x, y, t) which we will con-
volve with the filters. The stimulus is mathematically
described in Appendix A. The spatial filter consist
of a classical receptive field (CRF), a broadly tuned
suppressive field and a contrast normalisation pool. The
CRFis a Gabor filter which can be used to model a neu-
ron with tuning to the orientation and spatial frequency
of stimulus gratings (Marcelja 1980; Daugman 1985).
The broadly tuned suppressive filter is also a Gabor
with larger size and lower spatial frequency than the
CREF. This filter provides the size tuning of neurons by
adding the suppressive in either a divisive or subtractive
manner (Simoncelli and Schwartz 1999; Sceniak et al.
2001; Cavanaugh et al. 2002). In our model we will use
divisive suppression. The contrast normalisation pool is
modeled as a Gaussian window of the same size as the
CRF. This filter is not sensitive to orientation, spatial or
temporal frequency but only to stimulus contrast. This
filter effects the shape of the contrast tuning curve and
also works in a divisive way (Heeger 1992; Carandini
and Heeger 1994; Carandini et al. 1997). The temporal
filter is a low pass filter that gives a temporal frequency
tuning (Watson and Ahumada 1985). To achieve a
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Fig. 3 Four sets of tuning curves that we will attempt to fit using
different methods. These cells show typical shapes of the curves
and typical firing rates, bars indicate standard errors. We see a
wide spread of tuning properties, for example both sharp (A and
D) and flat (B and C) orientation tuning. In A we have almost no
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direction selectivity while this effect is very strong in D although
both cells are similar in terms of orientation bandwidth and firing
rates. Note the wide range of tuned values for size and spatial
frequency tuning across cells



Neuroinform (2012) 10:199-218

205

directional selectivity of the model we have to take the
Hilbert transform of both the spatial and temporal parts
of the model. The Hilbert transform H(g) transform
a function g into a quadrature of it-self (Khvedelidze
2001; Watson and Ahumada 1985). In accordance with
Watson and Ahumada the responses from the origi-
nal filters and the Hilbert transformed filters are then
summed. The total response is then calculated as

0 = 5 [ / (R S](x, y) dxdy] ®
R2

+H(f)*8*[ / [H(R) ® SI(x. y) dxdy} o,
R2
1)

where ® indicates two dimensional spatial convolution.
Temporal convolution is denoted with * and we also in-
troduce a small time delay § = §(¢ — ) to avoid numer-
ical singularities that can occur when taking the Hilbert
transform. The temporal response for each stimulus
condition is then denoted Q(¢). For a full description
of the calculations leading up to Eq. 1 see Appendix B.
The symbolic names of the nine parameters that
we fit in the filter model are listed and described in
Table 1. There we also state which filter each parameter
is associated with. These components of the model are
relatively well understood, but when combined nonlin-
early, as is the case here, they form a complex system.

Implementation

The stimulus, model and optimisation routines are all
written in the Python programming language. The full
source code to implement the model is available from
http://code.google.com/p/findvl/. For a number of rea-
sons Python is becoming a popular choice of language

Table 1 Symbolic names and descriptions for the nine parame-
ters of the filter based model of a V1 cell

6 Orientation of the Gabors, both classical and tuned
suppressive receptive fields

ke Gain of the CRF

o Standard deviation of the Gaussian that windows
the CRF and normlistation pool

ks Gain of the tuned suppressive receptive field

oy Standard deviation of the Gaussian
that windows the tuned surround

e Spatial frequency of the CRF

ng Exponent of the contrast gain normalisation
that decides the shape of the contrast curve

7] Parameter that determines the time course
for the temporal filter

%) Parameter that determines the time course

for the temporal filter

for solving problems in computational neuroscience
and neuroinformatics. In particular it is cross platform,
open source, object oriented and many scientific and
computational libraries are already implemented, e.g.
the Scipy library (Jones et al. 2001). A number of recent
articles in neuroinformatics journals have recently ap-
peared that further make the case for the use of Python
as a tool to unite community activity (Goodman and
Brette 2008; Einevoll 2009; Davison et al. 2009; Spacek
et al. 2009).

Calculation of Error Measures

All error measures are based on the difference of tun-
ing curves between the electrophysiologically recorded
cells and model cells. For each of the five tuning dimen-
sions, u, we calculate a model tuning curve, Ty, that is
compared with the corresponding electrophysiological
tuning curve, T,. The SSQ for tuning dimension p is
then calculated as

N

50, = | > (T, - Tin). ©)

i

where i indicates the N recorded points, for example
the 8 orientations used to obtain the orientation tuning
curve. To get the total SSQ we then sum according to

5
$SQ=>"550,. 3)

pn=1

where naturally u are our five tuning dimensions.

For the RCI we calculate the 95% confidence inter-
vals for each recoded point to get an interval 7, £ c.
The ratio is then calculated as

ZzN e (Ti,u +c¢i— Tz*) S (Tz*u - (Ti-u - Ci))
N ,
4)

where ©(x) is the Heaviside step-function. The total
RCI is then the averaged across tuning dimensions

RCI, =

5
>3_, RCI,

RCI =
5

®)
In the same fashion we calculate the variance ex-
plained using the Pearson’s correlation coefficient

SN (T =T, (T, - T
Riz w 1( 23 /’“)( N7 l’-) ’ (6)

oT,0T%
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where T, and T; are the mean of the tuning curves
while o7, and or; are the standard deviations. This is
then averaged to give

5
Z;/.:l Rlzl.

R = %)

Gradient Following Algorithms

The BFGS method has proven successful in many
real world applications in areas such as systems biol-
ogy, chemistry and nanotechnology (Kim et al. 2007;
Pankratov and Uchaeva 2000; Zhao et al. 2002). We
chose a version of BFGS with limited memory usage
and box constraints, namely the L-BFGS-B method,
already implemented in the Scipy library. The lim-
ited memory aspect of the implementation means that
the whole gradient history is not considered when
the Hessian is calculated, thereby saving memory.
L-BFGS-B combines the well known computational
effectiveness of BFGS (Nocedal 1980; Fiore et al. 2003)
with box constraints on the parameters. Such con-
straints are necessary in our model since some para-
meters must be positive. To further assess the com-
putational cost and convergence properties of BFGS
we compare it with a truncated Newton code (TNC)
(Nash 1984; Nash and Sofer 1996; Schlick and Fogelson
1992) with parameter constraints (also implemented in
Scipy), which is known to be robust in convergence but
computationally costly. We use the SSQ error as the
one to be minimised by the GF algorithms, in line with
common practice.

When we use the Scipy BFGS implementation we
limit the number of function evaluations to 10,000. In
practise the run from a single initial condition stops far
earlier. The most common reason for termination of the
optimisation is that the method converge, i.e. a minima
is found. Other reasons can be that the gradient can
not be properly evaluated to advance the optimisation,
this can be due to saddle points, maxima or other
degenerate states in error space. If this would be the
case new initial conditions are selected and the method
is run again until convergence is reached.

GF algorithms generally converge much faster than
EAs, though not necessarily to the global optimum.
Convergence to a global optimum is highly dependent
on good initial parameters. To find appropriate initial
parameters requires a good understanding of the model
and the effects of parameters on model output. The
interdependencies between different model parameters
in our case makes this a challenging task, requiring
expert knowledge of the system. For example, the
effects of the CRF and suppressive field gain para-
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meters are highly dependent on their size difference.
One main method that we have employed to find initial
parameters is to utilise known effects that parameters
have on things such as maximum values and maximum
arguments of the tuning curves. To illustrate this notion
consider the time constants for the temporal filter 7,
and 7. By appropriate choices of the time constants
(11, ) = (ki, ko) /o], where (ki, k;) are constants, then
a temporal tuning curve is generated that has a peak
at a preferred frequency ;. The pair (k, k) can either
be fitted numerically or deducted from the model equa-
tions that governs the temporal filter. Other parameters
that are more interdependent can not naturally be cho-
sen so easily, and we have had to adopt more ad hoc
approaches. For example, consider the normal pool ex-
ponent parameter, n, that determines in part the shape
of the contrast tuning curve. For ng = 1 the contrast
tuning curve is a linearly increasing function of contrast.
For high values of n, the curve is sub-linear whilst for
small values of n, grows faster than linear. However,
the exact shape of these curves is further determined
by the two gain parameters k. and k. Hence depending
on the desired shape of the tuning cure we set n, = 1
(for a near linear tuning curve), n, = 0.8 small (for an
accelerating tuning curve) and n, = 1.6 for a sub-linear
shape, for fixed values of (k., ks;) (which can also be
initialised in a manner that makes them consistent with
the desired shape of other tuning curves). In Table 2 an

Table 2 Descriptions of how initial parameters for BFGS are
chosen

Parameter ~ Method to acquire starting value

0 Pick the orientation from the electrophysiological
curve with highest firing rate

ke This gain is proportional to the maximum value
of the size tuning curve

oc The stimulus size when experimentally
deciding the temporal tuning curve

ks Dependent on the ratio between the maximum
response and the response for the largest
stimulus in the size tuning curve

O The size of the biggest stimuli
from the size tuning curve

e If a clear peak occurs in the data then the value

is chose at that peak. If not, the value used when
collecting later electrophysiological
tuning curves is chosen

ng If the curve accelerates then initiated as 0.8, nearly
linear curve 1.0 and if the contrast saturates
the initial value is 1.6

1.2 Decided by (11, 1) = (k1, k2)/w], for constants
(k1, ko), where o] is the desired peak frequency
The constants (k1, k») are picked by fitting how
choices of the constants give rise to a particular
peak frequency
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overview is given of how the initial model parameters
are chosen. For BFGS we choose initial parameters
based on the criteria in Table 2.

Strength Pareto Evolutionary Algorithm

The SPEA is based on the notion of Pareto optimal-
ity (Zitzler and Thiele 1999; Sbalzarini et al. 2000;
Zitzler et al. 2003). We can define a Pareto front as
the set of individuals that are not dominated, that is
to say, not improved upon by any individual in all
error measures. The SPEA advances such a front in
the MOO error space such that each component er-
ror gradually decreases (or remains stationary). The
Pareto optimum is the solution for which no further
front advances can occur. In the SPEA the population
structure consists of the current generation (described
in Section “Evolutionary Algorithms”) together with
an elite population of non-dominated individuals re-
gardless of which generation they were created in. The
elite population is in fact the Pareto front. A member
of the elite population survives until a new individual
that dominates it is created. The new individual then
takes the place of the individual(s) it dominates. The
size of the elite population is limited and if the number
of individuals on the Pareto front exceeds the maximum
itis reduced through clustering, whereby the individuals
lying closest together in the error space are grouped
together. The cluster is then replaced by a single point
that is the individual closest to the centre of the cluster.
The fitness function for an individual in SPEA is based
on domination. The individuals that lie on the current
Pareto front determine their fitness based on how many
individuals in the population they dominate. The fitness
for the rest is based on how many other individuals
in the population dominate the individual in question.
The mating pool is filled by randomly selecting two in-
dividuals from the population, the one with best fitness
is added to the mating pool. This is then repeated until
the pool is filled (to a pre-determined size).

The evolution strategy that we use is the (u/uy, A)-
CMA-ES first introduced by Hansen and Ostermeier
(Hansen and Ostermeier 1997). This variant of the Co-
variance Matrix Adaptation Evolution Strategy (CMA-
ES) looks at the covariance between generations and
aligns the hyperellipsoid of mutation distributions
along the axis of greatest predicted progress. In prac-
tice this means that information about the evolution
path, the direction in which new and improved indi-
viduals are generated, is gathered and correlations are
recorded. If movement in certain directions in the para-
meter space tends to improve solutions this is recorded
thorough correlations in the evolution path and col-

lected at the mth generation in the correlation matrix
C(m). In our case, this is a 9 x 9 matrix due to the 9
parameters that are being fitted in the model. Let us
denote individual i in the current generation as x;(m) €
R” and members of the mating pool as X;(m) € R°. The
mutation step from generation m to m + 1 is done by

xi(m+ 1) =X;(m) + §(m)B(m)D (m)z(m), (®)

where §(m) is a global scaling parameter and z(m) is
a normal distributed vector. The square roots of the
eigenvalues of the correlation matrix are arranged in
the diagonal matrix D(m) and the orthogonal matrix
B(m) are such that C(m) = B(m)D(m)(Bm)D(m))”.
The update rules for all matrices and the global scaling
parameters are given in (Hansen and Ostermeier 1997).
We consider 32 individuals in each generation and we
limit the number of generations to 250. The calculation
of the errors for all individuals at a given generation is
naturally implemented in a parallel fashion, whilst the
fitness calculation and the mating step is performed in
a serial manner.

The parameters for the individuals in the initial pop-
ulation are drawn from different random distributions.
These distributions are generally uniform between two
limits that are chosen to span possible values of the pa-
rameter. If the SPEA produces unrealistic parameters,
as negative gains or time constants, these individuals
are weeded out due to poor fitness.

Results
Computational Cost

All numerical tests have been performed on a 2 x
2.26 GHz Quad-Core Intel Xeon with 6 GB 1066 MHz
DDR 3 memory. Each of the 8 cores has has 256 KB L2
cache and each processor has 8 MB L3 cache.

For SPEA the question about how to measure com-
putational costs depends on the decision of how many
individuals are included per generation and how many
generations to run. Figure 4 shows the evolution of the
SSQ for three example cells across 250 generations of a
32-individual SPEA. By 250 generations improvements
in fit quality are uncommon and small.

The fitting of cells using TNC (Nash 1984; Nash
and Sofer 1996; Schlick and Fogelson 1992) takes ap-
proximately 36 h and 30 min per cell while SPEA
reaches 250 generations in 14 h. The quickest algorithm
by some margin is BFGS that converges in 1 h and
20 min per cell. TNC is exemplary stable and manages
to find (potentially local) minima from a wide range
of initial data. The quality of the minima found by
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= Cell 164n, 32 individuals, 250 generations
== Cell 164r, 32 individuals, 250 generations
= Cell 164s, 32 individuals, 250 generations
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Fig. 4 The evolution of the SSQ over 250 generations for three
cells fitted with SPEA

BFGS is, in general, as good as those found by TNC
but BFGS is much more sensitive to the choice of initial
parameters. If the initial parameters cause very low
firing of the model cell BFGS often appears to get stuck
in this very undesirable local minimum. This does not
generally happen to TNC and it finds a minimum that
is reasonable but the time to converge is considerable
higher. If we have reliable and good initial conditions
the result is that BFGS is much quicker at finding a
good fit but TNC is much more stable but requires
a great amount of time to converge. This is due to
the greater number of function-gradient evaluations
that TNC is performing for each iteration (Nash and
Nocedal 1991). Hence it might not require more iter-
ations but more function evaluations and is therefore
more costly. When comparing BFGS with SPEA we
find that it is roughly ten times faster to converge.
SPEA is insensitive to local minima.

BFGS and SPEA Fits

More important than computational cost, particularly
given the low financial cost of computing, is that we
are able to produce fits of high quality. Consider the
fits to the tuning curves of Fig. 3. In Fig. 5 we plot
the electrophysiological tuning curves but this time with
the 95% confidence intervals for each data point. We
also plot model tuning curves for fits to each of the
four cells for both BFGS (dotted) and SPEA (dashed).

@ Springer

Across the set of tuning curves we see that the two
methods can find very different solutions. Figure 5SA
and B show cases where both methods find solutions
that look reasonable while in C and D we have cases
where BFGS have settled for solutions that are not
close to the electrophysiological recordings for at least
two of the tuning dimensions. Another common prob-
lem for BFGS are that the method gets stuck in a state
of no firing and is unable to escape from this. For each
BFGS fit we get only one solution (by the very nature
of the GF algorithm), whereas for the SPEA this is not
the case because it performs MOO. This typically gives
a Pareto front of optimal fits rather than a single best
solution. The number of solutions on this final front
is bounded by the number of allowed individuals in
the SPEA elite population but, in our case, commonly
comprises 20-30 different individuals. In Fig. 5 we plot
the SPEA fit that has the smallest SSQ error along the
front. The solutions along the Pareto front can vary
fairly strongly (in the shape of their tuning curves)
among each other as can be seen in Fig. 6 where five
fits from a Pareto front have been plotted. All the fits
on the front are viable ‘best’ solutions for MOO, not
being dominated by any individual on all error terms.

When comparing the performance of the methods
this spread of solutions along a Pareto front for the
SPEA should be kept in mind. If we are only interested
in optimising one of the errors we can simply pick the
solution from the front that gives the best value for
this error. In Fig. 7 we show the average values for
min(SSQ), max(RCI) and max(R?) on the final Pareto
fronts together with the BFGS results. In the large
majority of cases a solution on the Pareto front can
be chosen that outperforms the solution obtained by
BFGS (for all choices of our goodness of fit measures).
However, it is worth noting that BFGS is able to pro-
duce good fits. In Fig. 5 we see that examples A and
B are very good fits to the data both in the case of
BFGS and SPEA. We have in Table 3 given the means,
medians and standard deviations for the fitted cells
and in Fig. 8 we have the error distributions for all
cells. From the histograms in Fig. 8 the mode is almost
unchanged for all errors when comparing SPEA with
BFGS. Here, the SPEA results have the lowest errors
and the standard deviation is greater for BFGS in all
errors. As a consequence many of the BFGS solutions
do not provide good fits at all (being far from the
mode).

In Fig. 9 we have scatter plots of the error measures
for each individual cell. For the RCI and R’ mea-
sures SPEA performs better than, or equal to, BFGS
for almost every single cell. There are extremely few
examples where BFGS is better than SPEA. It might
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Fig. 5 Examples of fitted model (curves) to electrophysiologi-
cal data (rings with bars indicating 95% confidence intervals).
Dashed lines are SPEA fits and dotted are BFGS. In A and B
both BFGS and SPEA do a good job of fitting the data. In C

not be so surprising that SPEA outperforms BFGS on
RCI and R? but in Fig. 9 C and D it is obvious that
SPEA manages to find a better SSQ-solution is almost
all of the individual cases. It is actually only 11 of the
107 fitted cells for which BFGS finds a better solution.
The mean and median improvement seen in Fig. 8
might seem small but here we see the improvement
is incredibly consistent across cells. This tells us that
BFGS is generally incapable of finding global minima
and that SPEA does a much better job of this. The
overall aim of this fitting is to examine how well our

Stimulus Diameter (deg)

Stimulus Contrast (Michelson) Temporal Frequency (Hz)

the results of both methods are questionable although SPEA lies
reasonably close to the recordings. D is an example of where
SPEA does a good job while BFGS is very far from the recoded
data

model captures electrophysiological data and as SPEA
is finding better, or at least equal, fits in almost every
single case we can state that the GF method is not
appropriate for the task.

Although the vast majority of fits were better when
using the SPEA than BFGS we can see in Fig. 9 that
this is not always the case. In some cases the SSQ value
given by BFGS is lower than by SPEA. To explore
the reasons for this we look closer at a few cells with
different fitting results. The first cell is m!77ae with the
S8 Q values of 323.3 for BFGS and 578.8 for SPEA, this
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Fig. 6 Five fits from the SPEA to cell A in Fig. 5. We have the min(SSQ) (dash-dotted), max(RCI) (solid), max(R?) (dashed) and two

randomly chosen points (dotted)

is actually the cell that is highest above the unity line in
Fig. 9C. Due to the stochastic nature of EAs there is
a natural risk that the global optimum is not found at
each run, and in this case it seems that SPEA settled
quite far from the global optimum. To investigate the
effects of altering the number of iterations and the size
of each generation in the SPEA we reran that fit; 10
times with the original configuration (32 individuals,
250 generations); 10 times with 64 individuals, 250 gen-
erations; and 10 times with 32 individuals, 500 genera-

SSQ

tions. The results of these fits are displayed in Fig. 10
(left panel). For this cell the BFGS appears to find a
genuinely optimal solution. SPEA normally, but not
always, settles close to the BFGS solution for all three
choices of individuals and generations. The fact that the
first recorded solution had a much worse SPEA result
than BFGS can therefore be attributed to the stochastic
nature of EAs. Increasing the number of generations or
individuals does not improve the results dramatically,
although the version using extra generations has no

RCI R?

600

400 -

200

BFGS

SPEA SPEA SPEA
min(SSQ) max(RCl) max(R?)

BFGS

Fig. 7 The average values for SSQ, RCI and R? after fitting.
Note that low values for SSQ indicate good fits, whereas high
values for RCI and R? indicate good fits. For SPEA fits three
choices from the final Pareto front are made. The mean minimal
errors from the fronts are significantly better than those from
BFGS, but a fairer comparison to BFGS might be to look at
the errors from the min(SSQ) point of the fronts, since that is
what the BFGS was optimising. At these points the minimised
quantity SSQ is considerably lower in the fits produced by the
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SPEA
min(SSQ) max(RCl) max(R?)

SPEA SPEA BFGS SPEA SPEA SPEA

min(SSQ) max(RCl) max(R?)

SPEA which indicates that it performs better at finding global
minima than the BFGS. The values of RCI (centre panel) are
very similar between the two methods, although the SPEA fit
with max(RCI) performs poorly here. The SPEA outperforms
the BFGS on the (R?) measure (right panel) regardless of which
final point on the pareto front, indicating that the entire front is
taking better account of the ‘shape’ of the tuning functions in
generating fits. Error bars indicate standard errors of the mean
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Table 3 The mean, median and standard deviations of our fitted
cells using SPEA and BFGS

BFGS SPEA

SSQO RCI R* SSQ RCI R?
Mean 37317 048 0.61 27315 0.69 0.79
Median 247.69 047 063 170.81 0.70 0.80
Standard deviation 340.52 0.19 0.17 241.06 0.15 0.09

The distributions are plotted as histograms in Fig. 8. In the cases of
SPEA the best obtained value for each error measure is reported.
The values for other points along the final Pareto front are
presented in Fig. 7

extreme outliers. We conducted a similar analysis on
another neuron (cell m169x), for which the original
BFGS fit (SSQ = 534.3) was considerably worse than
the original SPEA fit (SSQ = 348.8). As for the pre-
vious cell, the SPEA fits show a range of solutions. In
this case BFGS clearly does not converge on the global
minimum, and the fits of the SPEA are nearly all supe-
rior. Still however, the SPEA occasionally settles on a
solution that is poor, and the occurrence of this seems

20

largely unrelated to the number of iterations that are
made or the number of individuals in the populations.

Fitting Synthetic Cells

We need to know whether the reason for the SPEA
algorithms better performance was simply that it was
run for longer (roughly ten times the number of evalu-
ations). Obviously simply running the BFGS for longer
once it has converged on a minimum does not further
reduce the error. Starting multiple BFGS instances with
different initial parameters might reduce the error if
one of the starting values is in the basin of attraction
of the global minimum. In order to know how close
our starting values would need to be to the global
minimum in a system such as ours, we have created
synthetic neurons for which we know what the true
parameters are. In these synthetic cells we know that
there is at least one global minimum with zero error.
By starting BFGS analyses repeatedly from points in
the parameter space with known distances from the

SPEA

0 500 1000 0.0
SsQ

30 T T 20

20 |

10

RCI

20

BFGS

0 500 1000 0.0

SSQ

Fig. 8 Histogram showing the goodness of fit values for our
fits. The upper row shows the SPEA fits and below we see the
respective BFGS results. The solid triangles show medians and

0.5 1.0 0.0 0.5 1.0

RCI R?

white ones show means of the distributions. The BFGS fits have
a wider spread for all error measures, indicating more variable fit
quality
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Fig. 9 The goodness of fit measures for the 107 cells as scatter
plots.For R? values (A) and RCI values (B) the large majority
of points lie above the unity line (dashed), thereby indicating
that SPEA is performing better than BFGS. Performance on the
BFGS appears uncorrelated with the equivalent performance on

global minimum and measuring how close it gets in its
final parameters, we can better understand the required
proximity for the algorithm to find a fit as good as
the SPEA.

Besides tracking the errors, as we do for the elec-
trophysiological recordings, we can also track the eval-
uation of the parameters compared to the true values.
The true parameters of the synthetic cell are denoted as
P*. The tuning curves are then fitted with both methods
with initial parameters P” which are chosen as
P’ =P+ N (0,37, )
where N(0, £2) is a normal distributed stochastic vec-
tor with the same dimension as P*. The covariance
matrix is defined as £ = oP, where P is the diagonal
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SPEA. Panels C and D show the scatter plot for SSQ (D is a
zoomed view showing the lowest values of panel C). The points
show a strong correlation between BGFS and SPEA values,
indicated by the linear regression line (solid)

matrix with the elements of P* on the main diagonal. By
varying ¢ we can move away from the true parameters
and see if we relax back to the them.

The parameters of the model have different units
and widely varying magnitudes and we need to define a
dimensionless distance as,

(10)

where P; is the ith component of the parameter vec-
tor P.

The SPEA we used had a population of 32 individ-
uals and to allow for a fair comparison with the BFGS
here we also gave the BFGS 32 start points. The SPEA
was run as usual while for the BFGS we ran the 32
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Fig. 10 The stochastic nature of the SPEA causes it to settle on
different solutions each run. The lines indicate the level of the
original SPEA (solid) and BFGS (dashed) results for two cells.
In one case (left) BFGS performs considerably better than SPEA
and in the other (right) the performance is opposite. The latter
is the the more common case, as presented earlier. By re-running
SPEA anumber of times (shown by circular points) with different

instances and selected the one with the lowest SSQ
error after convergence.

In Fig. 11 we see the result of fitting from initial
parameters chosen according to Eq. 9. In A and B we
see the SSQ before and after fitting using both BFGS
(dashed) and SPEA (solid) as a function of ¢ and in
C we have the final parameter distances, D. We first

64 individuals,
250 generations

32 individuals,
500 generations

32 individuals,
250 generations

population settings we can see the spread of solutions that are
found. In the majority of the cases SPEA settles reasonably close
to what is presumably the global minimum. Although there may
be a tendency to be more clustered around the global minimum
when more generations or individuals are included, the SPEA in
all settings occasionally fails to to find the global minimum

notice that even small initial deviations from P* result
in a non-zero SSQ and D. This very well exemplifies
how complex the error surface is as the deterministic
BFGS is not able to recover P*. For o < 0.5 the fitting
result of both methods are similar but, while BFGS
keeps an approximately linear increase of SSQ, SPEA
flattens out after ¢ = 0.75. From D it is clear that the

A Initial SSQ B SSQ after fitting C Parameter distances
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Fig. 11 The fitting results to a synthetic cell as a function of
o using SPEA (solid line) and BFGS (dashed line). Bars indi-
cate standard errors. A The SSQ given the initial parameters, a
distance metric between the model data and the neuronal data.
B The equivalent metric for the best final solution found by
each of the methods. C The distance between the final fitted
parameters and the true parameters, created for this synthetic
neuron. Beside the distance after SPEA and BFGS we have
the parameter distributions for the initial parameter set giving

the lowest SSQ averaged over both methods. BFGS is clearly
confined to the local area determined by the initial parameters. It
is notable that even as we add quite small errors to the parameters
we do not retrieve the exact solution with either method. For
small o the two methods give practically the same results but
when o is larger than 1.0 SPEA is considerably better. SPEA is
more prone to explore the error space and settle to a solution far
from the initial distance. This may be closer to or further away
from the real parameters in the case of synthetic cells
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Fig. 12 The effect of using 04

Mimimum SSQ SPEA point

Random SPEA point

our EA fits as initial data for
BFGS. To the right we see
the effect as we pick initial
data randomly from the final
Pareto front. In the left panel
we pick the point on the
Pareto front with min(SSQ)
as initial data. Bars show
standard errors
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BFGS is heavily dependent on the distance of the initial
data while SPEA naturally explores different parts of
parameter space. It is not uncommon for SPEA to
move away from P* during fitting where this reduces
the SSQ. The dependence of BFGS on its starting
parameters is also apparent from the close relationship
between initial parameter distance (dotted line) and
distance after BFGS fitting (dashed) in the right hand
panel. It is therefore unlikely that running 5 or 10
BFGS would greatly improve the performance without
being able to pick better initial conditions. This is not
surprising but it highlights the fact that for a multi
start it is of greater importance to pick many initial
conditions than the actual GF-fitting.

These data illustrate the point that for starting pa-
rameters even a short distance from the true optimum
(as measured by o) the BFGS fails to compete with
SPEA in reducing D. In this synthetic analysis values
of o above 1.0 introduced divergence between the per-
formance of the algorithms in Fig. 11. For comparison
we used our original scheme to choose the starting
parameters for real cells on this synthetic neuron. That
yielded parameter values with a distance D = 9.21 form
the true values, considerably larger than the critical
distance where the two algorithms perform similarly.

Since our SPEA algorithm took roughly 10 times
the number of evaluations to find its solution we might
equate the BFGS and SPEA by using 10 start points
for the BFGS. The 9-dimensional space of this model
means that adding only 10 start points would be un-
likely to result in one being close enough to the global
minimum to find it. The greater performance of the
SPEA did not result from its longer computational
time. Furthermore the SPEA algorithm did not need
any human input in identifying good choices for starting
parameters.
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SPEA Fits as Initial Data for BFGS

Having established that SPEA typically outperforms
BFGS, due to the problem of finding good starting
conditions for the BFGS, it is natural to ask whether
further improvement can be made by using the SPEA
solution as initial data in a BFGS optimisation. In
the previous section we noted that picking the initial
condition with lowest SSQ from a population of 32
initial conditions does not give BFGS any clear advan-
tage against SPEA. What we do know is that BFGS
converges to a local minima while SPEA might pick
points that are not close to a minima. This can be seen
as a very elaborate way of picking initial data and we
regard this as a type of memetic algorithm (MA) (Vrugt
and Robinson 2007; Krasnogor and Smith 2008). The
results of this are shown in Fig. 12. When picking the
min(SS Q) point from the final Pareto front BFGS does
not improve the SSQ very much at all. This indicates
that SPEA is typically successful in settling close to a
minimum and the use of a GF method does not improve
upon that. If picking a point at random from the front
then the SSQ is clearly improved upon by BFGS. In
both choices of points from the front RCI is only
slightly improved and R? is made considerably worse.
This amounts to yet another evidence that the error
space we are faced with is very flat with many local
minima and a stochastic approach is more effective than
a GF algorithm.

Discussion
We have fitted a multi-stage filter-based model to elec-

trophysiological data from macaque V1, using both
traditional GF methods (in particular the BFGS) and
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evolutionary methods (SPEA). We have examined the
computational cost of each method as well as the
quality of solutions that they ultimately found for 107
neurons.

The BFGS certainly has the lowest computational
cost of the methods used here; converging roughly an
order of magnitude faster than the SPEA. In terms of
fit quality, however, it was highly variable. For many
cells, fits generated by this algorithm were very good
and sometimes slightly better than the SPEA fits, ac-
cording to the SSQ. For the vast majority of cells SPEA
reached solutions with lower SSQ, the improvement
was not always very large but in 90% of the cells SPEA
was better. In a number of neurons the BFGS fit was
extremely poor and in these cases it was dramatically
outperformed by the SPEA. Probably these very poor
fits were caused by the fact that we were unable, despite
a great deal of effort, to provide sufficiently good initial
parameters for the model. The quasi-quantative criteria
we used to pick initial parameters worked reasonably
well for some neurons but in the cases where it did not
BFGS was simply unable to recover a reasonable solu-
tion. This again highlights the need for expert knowl-
edge of the system and man-hours needed to get any
success with GF fitting. With an evolutionary approach
this is greatly reduced as we have demonstrated. At
points very far from the global minimum, the SSQ
is typically very insensitive to changes in parameters;
if the model response is extremely poor then small
changes to the parameters will not improve it. The TNC
is designed to be less sensitive to starting parameters,
but carries much higher computational cost. For the
dataset and model tested here we found the TNC to
take roughly 30 times longer than the BFGS for the
subset of neurons on which we tested it. For the SPEA
the computation time was slower by roughly a factor
10, but there was much greater consistency in finding
solutions that we considered to be plausible.

A multi-start GF, in which several parallel GF
searches are conducted from different start points, is
one way to alleviate this problem. This has been shown
to be superior to EAs in benchmark tests (Bolton
et al. 2000) and comparable with EAs in certain real-
world applications (Mendes and Kell 1998; Pettinen
et al. 2006). This is surely dependent on the number
of parameters required for the model being fitted.
For a 9-parameter model, as we have here, to span
the parameter space evenly, with only 2 points per
parameter (which most likely would be insufficient to
find the neighbourhood of the global minimum) we
would need 2° start points, making the algorithm more
than 500 times more costly than the original BFGS.
That would make it much more expensive than the

SPEA which does not require this large number of
individuals to cover the parameter space adequately.
The results from fitting on synthetic cells and the use
of SPEA fits as initial data for BFGS also suggests that
for this complex, high-dimensional system the result of
a multi-start would be determined to a higher degree
on how to pick the initial parameters than the BFGS
performance.

To get around the problem that the SPEA is not
theoretically guaranteed to converge to a minimum,
one could use a memetic approach in which the SPEA
is used to find starting parameters for the BFGS. We
examined this for a subset of neurons tested here and
found relatively modest improvements in terms of the
SSQ and RCI, and these often actually decreased the fit
quality as measured by the R?.

An advantage of the SPEA is its ability to optimise
multiple objectives simultaneously (MOO). Different
error measures emphasise different aspects of fit qual-
ity with SSQ, for example, being biased towards overall
amplitude of response and R? being biased towards the
shape of the tuning curves. A method capable of MOO
allows the fitting to search for solutions that optimises
both shape and amplitude. Methods using single ob-
jective optimisation could use a compound error term,
such as a weighted average of these errors, to try to
optimise both, but would always reveal a single solution
and would not care about the respective size of the
individual terms. For example a low compound error
term might be reached by having a very low SSQ or a
very high R?, or a moderately good fit in both terms.
In reality there are likely to be an infinite number of
solutions with identical compound errors, trading off
one term against another. In SPEA a set of solutions
that are, in some sense, equally good is represented by
the Pareto front and this makes obvious to the user
the reality that there are many good solutions, whereas
single objective methods provide the illusion of there
being a single ‘best’ solution to a given optimisation
problem. That, of course, leaves the user with the task
still of deciding which of the optimal set of solutions
they wish to use or report.

The biggest advantage of the method has been the
fact that there was a relatively small need for human
intervention for each cell. For GF algorithms the need
to manually tune initial parameters, or to create so-
phisticated algorithms to find such parameters, requires
substantial man-hours and expert knowledge of the
system being modeled. In our case, even with that effort
and knowledge, the initial parameters were still often
insufficiently close for our GF method to find the global
minimum. In contrast, although the SPEA needed a
little extra coding effort initially because EAs currently
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need custom implementations for each problem. This
effort was far outweighed by the much-reduced effort
of determining initial parameters for the algorithm.

In this instance the SPEA has been extremely
beneficial in fitting the data to our neuron model. We
fully expect that the same would be true in numerous
other applications of forward models of complex sys-
tems in neuroscience. For instance, EAs have already
been used to fit conductance-based single neuron mod-
els to spiking data (Druckmann et al. 2007), and is
likely also to be applicable to computational modeling
of EEG, LFP, fMRI and MEG data.
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mation and availability on the electrophysiological
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Acknowledgement This project is supported by Welcome Trust
grant number 085444/Z/08/Z.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix A: Stimuli

The stimulus is a drifting grating in a circular aperture
described by

S(x, y, 1) = sin (@sim&sim + v0) O (r — x* — y?);
&Estim = X €08 (Bstim) + ¥ sin (Bsim) , (11)

where @ is the Heaviside function, r is the radius of the
aperture, v is the drift velocity of the grating and wgin is
the spatial frequency of the stimulus. The variable &,
is a direction orthogonal to the sinusoidal carrier.

Appendix B: Responses

We will work out the final response Q(¢) by successively
introducing the filters and convolving them with the

@ Springer

stimulus or previous responses. The CRF is represented

by a Gabor filter

x> 4y
2

c

2

Fcre(x, y) = exp (— > sin (weé + @) ;

& = xcos(9) + ysin(6), (12)

where 0 is the orientation of the CRF, the width is
controlled by o, while w, is the spatial frequency of the
filter and ¢ is the phase of the carrier. The response
resulting from this filter is then the spatial convolution
of itself with the stimulus:

Ocrr(x, y, 1) = kc [S ® Ferr] (%, y. 1), (13)

where k. is the gain of the CRF. In the Watson—
Ahumada spatio-temporal filter we also need the re-
sponse from the Hilbert transform of the CRF. The
Gabor function is symmetric except in the direction &,
this means that the effect of the Hilbert transform is
simply that it advances the phase of the carrier by 7 /2.
This means that we will have

2,2
H (Fcrr(x, y)) = exp <_x ;y )

Cc

x sin(w€ + ¢ + 1/2), (14)

The response to the Hilbert transformed CRF is
given by

Ou.cre(X, y. 1) = k¢ [S ® H (Fcrp) ] (x. y. ). (15)
Secondly we introduce the broadly tuned surround

filter:

xZ + 2
Frunea(x, y) =exp <_ Gzy

N

) sin(pwc€ + ¢). (16)

The width is determined by o, and the spatial frequency
of the carrier is slightly broader than that of the CRF
(w) as a result of the scaling factor p. As in the CRF ¢
is the phase of the carrier. The response of this filter is

Otuned (X, v, 0= ks [S & Ftuned] (x, y,0), (17)

where k; is the gain of the untuned surround. In the
same manner as for the CRF we also need the response
from the Hilbert transform of the filter given by

OH-tuned (X, ¥, 1) = kg [S ®H (Ftuned)] (x,y,0). (18)

The Hilbert transform effects the tuned suppressive
filter in the same way as the CREF filter, see Eq. 14.
The last part of the spatial component emulates the
effects of a contrast normalisation pool. To model the
effects of this pool we multiply the envelope of the CRF
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by the stimulus and then take the standard deviation
(RMS contrast) of the resulting matrix:

2

2
Quntuned(t) = Stdx,y <eXP <_xo_#)$(x7 Y, t)) s (19)

c

where std, , (X) is the spatial standard deviation (RMS
contrast) of the object X. The Hilbert transform does
not effect the filter so therefore we do not need to
calculate this response specifically. The Gaussian mask
that is applied to the stimulus has the same width as the
CREF envelope. The responses from the three filters are
then combined as

L Ocrr(x, y, D]
LQtuned(xs Vs t)J:lf LQuntuned(t)JZg 7
(20)

Qspatial (x,y,0) =

where | Qcrre(x, y, )]+ is the rectified response of the
CRF (See Eq 13)7 LQtuned(xa Y, t)J+ and LQuntuned(I)J-&-
are the rectified responses from the tuned and untuned
respectively (see Egs. 17 and 19). The exponent ng
represents self excitation and n, is the contrast normal-
isation pool exponent. The self excitation exponent is
fixed at the value 2.0 while the normal pool exponent
is a free parameter. For the Watson—-Ahumada method
we also need to calculate a response from the Hilbert-
transformed version of the spatial filter, which is
given by:

L On.cre(x, y, )%
LQH—tuned (x, Y, 1] T LQuntuned ®] :ng ,
(21)

QH—spatial (Xv 2 t) =

where Qu.crr(x, y,f) and Oy iuned(X, y, ) are the re-
sponses from Hilbert-transformed versions of the CRF
filter and the surround supression (see Egs. 15 and 18).

With the responses from the spatial filters,
Ospatial (X, ¥, 1) and  Op.spatial (X, y, 1), We can create
the full response following the Watson—Ahumada
formalism. To do this we need the temporal filter, f(¢),
with impulse response

fo=n[H®-fHO], (22)

$I0)

e VA A

fi) = ie{l,2). (23)

We consider t; and 1, to be free parameters while for
the rest we have n=1, £ =0.9, n; =9 and n, = 10.

All the components are temporally convolved and the
spatial dimensions are integrated out:

Q(t) = /]RZ [Rspatial * f* 8] (x, Y )]

+ [RH-spatial * H(f) * 8] (x, Y, 1) dXdy (24)
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