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Abstract
Purpose Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from cells with a
neuroendocrine phenotype. The complex relationship between lipid metabolism and cancer is gaining interest and a potential
anti-cancer effect of lipid lowering agents is being considered. This review aims to discuss the current understanding and
treatment of dyslipidaemia in NENs, focusing on the role of lipid lowering agents, including new therapeutic approaches,
and future perspectives as possible tool in cancer prevention and tumor-growth control.
Methods We performed an electronic-based search using PubMed updated until December 2023, summarizing the available
evidence both in basic and clinical research about lipid lowering agents in NENs.
Results Dyslipidemia is an important aspect to be considered in NENs management, although randomized studies speci-
fically addressing this topic are lacking, unlike other cancer types. Available data mainly regard statins, and in vitro studies
have demonstrated direct antitumor effects, including antiproliferative effects in some cancers, supporting possible pleio-
tropic effects also in NENs, but data remain conflicting. Ezetimibe, omega 3-fatty acids, fibrates and inhibitors of proprotein
convertase subtilisin/kexin type 9 (PCSK9) may enhance the regulation of lipid homeostasis, as demonstrated in other
cancers.
Conclusions Targeting dyslipidemia in NENs should be part of the multidisciplinary management and an integrated
approach may be the best option for both metabolic and tumor control. Whether lipid lowering agents may directly
contribute to tumor control remains to be confirmed with specific studies, focusing on association with other metabolic risk,
disease stage and primary site.
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Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous
group of malignancies originating from cells with a neu-
roendocrine phenotype, diffused in many organs and tis-
sues, with variable aggressiveness and clinical behavior [1].
They mainly arise in the gastroenteropancreatic (GEP) tract
and are mostly sporadic, but they can be associated with
genetic syndromes [2]. NENs usually occur in adulthood or
in elderly patients, usually show slow growing behavior, but
metastases are often displayed already at diagnosis
(40–76% of cases) and advanced stage negatively affects
the prognosis [3]. Surgical treatment is preferred when
feasible, but several therapeutic approaches used in diverse
combinations and sequences are available, including
somatostatin analogs, targeted therapies, peptide receptor
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radionuclide therapy, chemotherapy and liver directed
therapies [4–6]. The therapeutic options are currently
expanding, and new drugs are under development, with
gaining interest towards functional pathways and molecular
signatures in NENs aiming at tailored approaches [5, 7–9].

The correlation between dysregulation of lipid home-
ostasis and cancer is acknowledged, with genetic and
environmental factors modulating tumorigenesis [10–12]. In
particular, reprogramming of lipid metabolism plays a sig-
nificant role in survival and proliferation of cancer cells, as
well as in metastatic spread [13]. The Cancer Genome Atlas
project evaluated the mutational status and expression levels
of all genes, including also those involved in cholesterol
metabolism in different neoplastic tissues, supporting the
role of upregulation of cholesterol synthesis in cancer
development [14–16]. High circulating cholesterol levels
have been considered as a risk factor for increased cancer
occurrence, recurrence rates and treatment resistance [17].
Noteworthy in GEP-NENs type 2 diabetes and obesity have
been reported as independent risk factors, highlighting the
relevance of metabolic alterations in this cancer type [18].
Recently, it has been reported that low-density lipoprotein
receptor (LDLR) is aberrantly expressed in numerous can-
cer histotypes, including those occurring in the gastro-
intestinal tract, in the liver, in the pancreas but also breast
and lung carcinomas [19, 20]. LDLR has also been found to
be involved in MAPK, NF-κB and PI3K/Akt signaling
pathways, which affect cancer cells and their surrounding
microenvironment [21]. Furthermore, elevated serum levels

of low-density lipoprotein cholesterol (LDL-C) have been
reported as a feature of endocrine and non-endocrine related
tumors [22, 23]. The complex relationship between lipid
metabolism and NENs is being thoroughly analysed, though
molecular mechanisms remain far to be fully understood
and the potential pleiotropic effects of lipid lowering agents
needs in-depth analysis [24, 25]. A cross-sectional, case-
control, observational study enrolling 109 grade 1 or 2 (G1/
G2) GEP-NETs patients, compared with controls, reported
that progressive and/or metastatic disease in GEP-NETs
was associated with higher evidence of metabolic syndrome
and non-alcoholic fatty liver disease [26]. In particular,
LDL-C were significantly higher in GEP-NET patients than
in the controls (p < 0.001), while high-density lipoprotein
cholesterol (HDL-C) was lower (p= 0.034) [26]. Several
molecular mechanisms have been proposed to explain the
lipid-mediated cancer initiation and progression, including
the induction of oxidative stress and the activation of
oncogenic signaling pathways, but comprehensive data
about NENs are lacking. Lipid lowering agents in NENs
patients are currently used when dyslipidaemia is diag-
nosed, also as a side effect of anti-cancer treatments
[24, 27]. In several cancer types, lipid lowering agents,
statins in particular, have been supposed to have anticancer
activities Figure. 1. It has been recently demonstrated that
fasting may enhance the anti-tumor activity of several
cholesterol biosynthesis inhibitors, including simvastatin,
reducing Akt-Stat3 signaling and oxidative phosphorylation
[28]. Interestingly Akt pathway is also involved in NENs,

Fig. 1 Interplay between lipids
and pancreatic neuroendocrine
tumor cells with effcts of oral
lipid lowering agents. LDLR:
low density lipoprotein receptor
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consequently, a role in cancer prevention and care for lipid
lowering agents could be reasonably supposed [13, 29–32].

In this review we discuss the current understanding and
future perspectives of dyslipidaemia in the context of
NENs, focusing on the role of the mainly used lipid low-
ering agents, including new therapeutic approaches, as
possible tool in cancer prevention and tumor-growth con-
trol. We performed an electronic-based search using
PubMed updated until October 2023, summarizing the
available evidence both in basic and clinical research about
lipid lowering agents in NENs. The main studies carried out
in the field of NENs, regarding both statins and other lipid
lowering agents, with preclinical and clinical data, are
summarized in Tables 1, 2, respectively.

Statins and NEN

Statins lead worldwide consumption of lipid-lowering
drugs, whose prescriptions is significantly growing due to
the increasing incidence of dyslipidemias also in cancer
patients [33]. Statins are commonly used drugs in the
therapeutic arsenal for patients with metabolic syndrome or
type 2 diabetes mellitus, and specifically they are prescribed
in clinical practice to treat hyperlipidemia and in cardio-
vascular or coronary heart diseases, as well as in both pri-
mary and secondary prevention [34]. Statins inhibit the
enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reduc-
tase, affecting the rate-limiting step in cholesterol synthesis.
Besides their cholesterol-lowering effects, statins have been
demonstrated exerting a wide range of pleiotropic effects,
including immunomodulatory, anti-oxidant and anti-
inflammatory effects acting through cholesterol-dependent
and -independent mechanisms [34, 35]. NETs exploit a
variety of complex signaling molecular pathways for their
development, growth and survival, including the phospha-
tidylinositol 3-kinase-Akt (PI3K-Akt) and the Ras/Raf/
mitogen-activated protein kinase (MEK)/extracellular
signal-regulated kinase (ERK), which could also represent a
therapeutic target for statins [36, 37]. Despite molecular
mechanisms underlying anticancer effects of statins in
NETs are far to be fully elucidated, is it possible to assume a
similarity with other cancers due to common signaling
pathways, as in breast cancer cells, where simvastatin has
been demonstrated to activate the ERK1/2 and Akt path-
ways, suppressing autophagy and promoting cell death [38].
Likewise NETs share signaling pathways with renal cell
carcinoma (RCC) and interestingly in RCC statins are
known to inhibit the phosphorylation of AKT, mammalian
target of rapamycin (mTOR), and ERK reducing cells
motility [39].

In the last ten years, several studies have also related the
use of statins with antineoplastic properties in different

tumors [40–44]. A meta-analysis evaluating several types of
cancer revealed that the use of statins seems to be beneficial
for overall survival and cancer-specific survival [45]. In
vitro studies have demonstrated that statins exert direct
antitumor effects, including antiproliferative effects, inhi-
bition of migration and invasion, proapoptotic actions, and
cancer-stem cells inhibition [42, 43, 46].

Recently, based on the potential association among type
2 diabetes mellitus, metabolic syndrome, and cancer,
Herrera-Martinez and coworkers explored this association
in a population of 181 NETs, among which 81 were lung
carcinoids and 100 were GEP NETs and analyzed the use of
statins in these cohorts, exploring their putative relationship
with clinical and histological characteristics [31]. The
results of the study showed no clinical, histological, or
molecular variable associated with the presence of hyper-
lipidemia, with a higher proportion of patients treated with
statins free of disease during the follow-up. Conversely,
none of the other clinical, histological, or evolution para-
meters were associated with the use of statins. Moreover,
the authors investigated the potential in vitro antitumoral
effects of different statins (namely, atorvastatin, lovastatin,
rosuvastatin, and simvastatin) in two different NET-cell
models: BON1 and QGP1 cell lines and found that effects
of statins on proliferation rate depended on the statin and
cell types, and time. Specifically, only simvastatin and
atorvastatin decreased proliferation in BON1 cells, whereas
all statins decreased proliferation rate in QGP1 cells. Sim-
vastatin decreased migration capacity in BON1 cells and
increased apoptosis in QGP1 cells. Furthermore, they
observed an inhibition of phosphorylated AKT and ERK
pathways, whose exerted role in NETs’ pathogenesis is well
known, after treating cells with simvastatin, which reveals
the AMPK-dependent and -independent effects of statins in
NET cells [31].

Another study from the same group explored the effects
of statins in cell proliferation/viability, hormone secretion,
and signaling pathways in tumor cells from cortico-
tropinomas, somatotropinomas, pituitary tumors (PitNET),
PitNET cell-lines (AtT20/GH3-cells) [47]. The results of
this study showed that all statins decreased AtT20-cell
proliferation with stronger effects of simvastatin. Indeed,
simvastatin reduced cell viability and/or hormone secretion
in all PitNETs subtypes and cell-lines, unveiling direct
antitumor effects of simvastatin on PitNET-cells and sug-
gesting these compounds as a possible tool to treat this kind
of NEN [47].

On the other hand, a recent study by Awwad et al.
evaluated retrospectively the influence of metabolic syn-
drome in 120 patients with curative intended resection of
pancreas NETs (pNETs) on overall survival, recurrence-free
survival, and outcome after recurrence and, analyzing single
metabolic syndrome components, found that IFG/TDM2,
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hypertension, and use of statins were associated with an
increased hazard for mortality in pNET patients after
curative intended surgery [48]. It is conceivable that this
finding could reflect the increased mortality of the under-
lying disorder leading to statin use rather than a direct drug-
mediated effect on the course of the neoplastic disease.

Previously, statins have been reported to exert their anti-
neoplastic effect amongst others by MAPK pathway inhi-
bition [49, 50]. The MAPK pathway plays a role in
numerous aggressive tumors and, specifically, it has been
associated with a subgroup of malignant pheochromocyto-
mas and paragangliomas, including K-RAS-, RET-, NF1-
and SDHB-mutated tumors, thus suggesting that inhibition
by statin treatment could be beneficial in these settings
[40, 41].

Based on this assumption, Fliender et al. assessed the
anti-proliferative effect of different statins on mouse PHEO
cells (MPC) and the more aggressive mouse tumor tissue-
derived cells (MTT). The results of their study showed a
higher anti-proliferative potency of simvastatin and fluvas-
tatin compared to lovastatin, with the more aggressive
MTT cells the more sensitive to statin treatment, suggesting
that more aggressive cells may be more receptive to the
anti-proliferative effects of statins. Moreover, the authors
found increased levels of CASP-3 and PARP cleavage,
confirming induction of apoptosis following the treatment
and spontaneous migration of MPC and MTT was sig-
nificantly inhibited within 24 h, thus unveiling lipophilic
statins as a promising therapeutic option for treatment of
aggressive human paragangliomas [40].

Of note, also the combination of statins and the mTOR
inhibitor everolims has been tested in vitro [51]. In this
preclinical study, the activity of lovastatin plus everolimus
has been investigated in several cancer cell lines, including
human midgut (GOT), pancreatic (BON1), and pulmonary
(H727) NET, hepatocellular carcinoma (HepG2, Huh7) cell
lines, and mouse pheochromocytoma (MPC, MTT) cell
lines. The authors a synergic effect of the two agents, both
administered at clinically relevant doses, in pulmonary
NET, mouse pheochromocytoma and hepatocellular carci-
noma cell lines, whereas this additive activity was not
confirmed in midgut or pancreatic NET cells.

With regard to statins’ immunomodulatory effect,
increasing evidence has suggested that, beyond promoting
atherosclerotic plaque stability, it also hinders the host
antitumor immune response, therefore potentially increasing
cancer risk in a subset of patients, especially in those tumors
of viral origin. In particular, the immunosuppressive actions
of statin therapy have been linked to increasing Merkel cell
carcinoma (MCC) risk and progression [52–54].

MCC is a rare and severe cutaneous neuroendocrine
malignancy with a tendency to early and frequent
locoregional-to-systemic metastasis and relapses. MerkelTa
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cell polyomavirus (MCPyV), a small polyomavirus with
double-stranded DNA, has been recognized as a new etio-
logical pathway leading to MCC, confirmed by the inte-
gration and truncation of large T (LT) viral antigen in MCC
cells [55, 56]. A Finnish study evaluating a cohort of 224
715 male and 230 220 female statin users during
1994–2007, identified from the Prescription Register of the
National Social Insurance Institution, found a standardized
incidence ratio (SIR) for MCC of 1.94 in ages 60–74 and a
SIR of 3.16 in ages <60 years among statin users compared
to statin nonusers, suggesting a role of statins in increasing
the risk of MCC in atypically younger individuals, com-
parable to that observed in patients with immunocompro-
mising states [54].

Statins’ immunomodulatory effects are mediated by
several mechanisms including inhibition of natural killer
cell cytotoxicity and degranulation, decrease of dendritic
cell function, increase of the numbers and functionality of
peripheral regulatory T cells (Tregs), whose decrease has
been recently linked to the reduction of T-cell responses in
MCC [52, 53]. Thus, statin therapy might in part explain the
increasing incidence of MCC and result in poorer MCC-
specific survival.

Overall, statins’ role on cancer risk is still controversial.
Nevertheless, published evidence of their anti-neoplastic
effects in NETs, the lack of a satisfactory antineoplastic
therapy in advanced NETs, together with statins’ low-cost,
commercial availability, safe profile and large experience in
clinical use, suggest further exploration of their therapeutic
potential for patients with NETs.

Other lipid lowering agents and NENs

Other lipid lowering agents mainly include ezetimibe,
omega 3-fatty acids, fibrates and inhibitors of proprotein
convertase subtilisin/kexin type 9 (PCSK9). Ezetimibe, is
an oral lipid lowering drug usually taken after statins or in
combination with them; it blocks Niemann–Pick C1-like 1
protein (NPC1L1), a human sterol transport protein
expressed both on the apical side of jejunal enterocytes and
on hepatobiliary tract [57]. Through its action ezetimibe
both inhibits intestinal cholesterol absorption and decreases
biliary cholesterol secretion, lowering LDL-C and reducing
the occurrence of cardiovascular events. Ezetimibe has been
associated with increased cancer risk, and a recent meta
analysis mainly identified a possible increase in intestine
cancer risk and a trend of increasing risk of breast cancer
[58]. Nevertheless, other studies are inconsistent, support-
ing ezetimibe as a potential anti-cancer drug, thus the
potential harm of ezetimibe remains debated [59]. Nowa-
days data regarding ezetimibe and NENs are not available
yet, and the supposed mechanism of ezetimibe as a tumor

inhibitor is not yet completely understood. One of the
mechanisms proposed to explain the role of ezetimibe in
cancer development and growth is that it may be able to
inhibit CD31 (platelet endothelial cell adhesion molecule
and increase TSP-1 and SMA) (smooth muscle actin, a
perivascular cell marker) expression inhibiting the angio-
genesis, promoting apoptosis and preventing cell prolifera-
tion. These observations could support an investigation in
NENs, which usually are highly vascular cancers [60].

Omega 3-fatty acids and fibrates are approved in case of
persistent hypertriglyceridemia despite an appropriate diet
[61]. Fatty acids (FAs) are a large group of aliphatic
monocarboxylic acids formed by long chains with an even
number of carbon atoms without ramifications and cyclical
forms (saturated fats, without double bonds between car-
bons and unsaturated fats, with double bonds between
carbons). They lower plasma levels of very-low density
lipoproteins (VLDL) – and consequently of triglycerides -
by increasing fatty acids oxidation, therefore decreasing
hepatic lipogenesis; they also seem to improve the clearance
of chylomicrons [62]. One of the most studied FAs in the
search for anti-cancer drugs from food sources is doc-
osahexaenoic acid (DHA). DHA is a type of omega-3 long-
chain polyunsaturated FA with role in the prevention of
cardiovascular diseases and premature retinopathy, pro-
moting anti-inflammatory action and anticancer activity
[63–66]. In vitro studies investigated DHA anti-cancer
activity on breast, lung, colorectal, prostate and blood
cancer cell lines [67–77]. These results led to human study
and clinical trials especially in colonic, breast and hema-
tological cancer population [78–84]. Particularly, its bene-
ficial effect was observed as chemotherapy coadjuvant
treatment helping to better tolerate this intensive therapy.
Some enzymes involved in FAs and cholesterol’s synthesis
have been suggested as prognostic biomarkers in common
cancer types, including prostate and breast cancer, in which
FA synthase (FASN), a key lipogenic enzyme catalysing the
terminal steps in FA biogenesis, was found to be upregu-
lated [85]. If similar findings could be demonstrated in
NENs, inhibition of FASN could be tested to prove tumor
growth inhibition. However, data in NEN regarding FAs
therapy as anti-cancer drug are currently lacking. Never-
theless, in light of the available data on other diverse cancer
types it could be supposed a beneficial effect also in NEN
patients affected by poorly differentiated and metastatic
disease requiring chemotherapy. Regarding fibrate, it
mainly reduces triglycerides, variably lowering LDL-C. It
explicates its action through peroxisome proliferator-
activated receptor-α (PPAR-α), a transcription factor
which, when activated, increases lipoprotein lipolysis and
hepatic fatty-acid uptake [86]. It has been demonstrated in
rats that oral administration of ciprofibrate, for 2 or more
weeks at doses of 20 mg/kg/day or more caused
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hypertrophy and increased eosinophilia of the oxyntic cells
in the gastric mucosa. Hyperplasia of the neuroendocrine
cells occurred after prolonged administration for more than
2 months and after 2 years the formation of gastric NET was
documented. Importantly the formation of gastric NET
following ciprofibrate administration was not confirmed in
mice and marmoset thus supporting that this cancer speci-
fically arises in species such as the rat when significant
gastric antisecretory activity occurs [87]. Promising ther-
apeutic drugs for the treatment of hypercholesterolemia and
associated cardiovascular disorders are the inhibitors of
PCSK9, namely evolocumab, alirocumab, inclisirian and
bococizumab. The latter was withdrawn from development
due to conflicting data about its efficacy. PCSK9 inhibitors
are recommended in primary prophylactic treatment for
cardiovascular disease when the lipid target in accordance
with cardiovascular risk is not achieved during treatment
with statins at the highest tolerated dose or in secondary
prevention to a cardiovascular event [61]. Regulation of
neuronal apoptosis and modification of plasma lipid
homeostasis via LDLR expression, both intracellular and
extracellular, are PCSK9’s two primary biological activities
[88, 89]. Hepatic LDLR are destroyed thanks to PCSK9
action, causing an increase in LDL-C levels. PCSK9 inhi-
bition, therefore, significantly reduces plasmatic LDL-C by
improving hepatocytes capacity to re-move it from the
bloodstream [90]. PCSK9 can also interact with other
LDLR-like family members, particularly the very-low
density lipoproteins receptor (VLDLR) and apoER2 [91].
Importantly, anti-cancer and immune-stimulating char-
acteristics of PCSK9 inhibitors have emerged from recent
preclinical and clinical findings. In some studies, using lipid
lowering medications, a link between low levels of LDL-C
and incident cancer risk has been shown, however con-
trasting data emerged about the use of these drugs [92–94].
In addition to its function in cholesterol metabolism,
PCSK9 is also involved in the cell cycle, inflammation, and
apoptosis and is overexpressed in both differentiating cells
and numerous human cancer cell lines [95–98]. Indeed,
Neural apoptosis-regulated convertase 1 (NARC-1) is
encoded by the PCSK9 gene and is involved in the propa-
gation of apoptotic signaling in neurons [99]. Regarding
this, Bath et al. speculated that decreased PCSK9 expres-
sion could promote hepatocellular carcinoma (HCC) [100].
This study enrolled 39 patients with HCC, their liver tissue
samples were analysed by immunostaining for PCSK9 after
surgery revealing an increased LDLR expression together
with a decreased PCSK9 expression in HCC cells. More-
over, with this phenotype HCC cells can provide for cho-
lesterol intake, hence PCSK9 inhibition may be useful in
reducing the metabolism of HCC and, consequently, the
growth potential of the disease. Importantly the liver is the
main metastatic site of NENs, but analysis of PCSK9

expression in neuroendocrine liver cells is not currently
available [101]. On the contrary PCSK9 expression was
upregulated in colon cancer cells compared with non‐tumor
cells and correlated with the degree of tumor invasiveness,
indeed PCSK9 appeared to mediate MIF and lactate levels
to influence tumor-associated macrophage polarization
towards activated or anti-infammatory phenotype that pro-
mote tumor growth [102]. A Chinese study found that
PCSK9 participates in cell growth and cell cycle of HCC,
being able to reduce apoptosis by interacting with GSTP1
and inhibiting the JNK signaling pathway [103]. Similarly,
Demidyuk et al. analysed human lung cancer samples to
identify PCs genes comparing to no-tumor tissue samples.
In this study, in tumor tissue a statistically significant
reduction of PCSK9 mRNA levels (PCSK2, PCSK5,
PCSK7, PCSK9) and an increase in PCSK1 mRNA
expression was demonstrated [104]. More recently a pilot
study has investigated the prognostic role of PCSK9 in
patients with non-small lung cancer (NSCLC), and they
found that in patients with advanced, previously treated
NSCLC, serum PCSK9 levels greater than 95 ng/mL at the
second cycle of nivolumab therapy was an independent
predictor of decreased overall survival (OS) [105]. For this
result, the authors suggested to follow up patients with
advanced NSCLC evaluating serum PCSK9 [105]. Like-
wise, PCSK9 systemic level was found higher in stage III
lobular or ductal breast cancer patients than in patients with
benign disease or less aggressive stage [106]. The lack of
reliable prognostic marker in NENs could lead to consider
the evaluation of PCSK9 as a possible tool in the ther-
apeutic management [107]. Furthermore, inflammation is
also involved in the relationship between cholesterol and
cancer. Indeed, LDLR increases after a 24-hour stimulation
with lipopolysaccharide (LPS) of HCC cell leading to a
higher cholesterol uptake that may contribute to cancer cell
survival as already proposed [108]. More data are available
regarding the PCSK9 role in the oncological immune tol-
erance [109]. Indeed, PCSK9 prevents the recycling of
major histocompatibility complex type I (MHCI) to the cell
surface promoting intratumoral infiltration of cytotoxic
lymphocytes [110, 111]. The same mechanism is used to
promote lysosomal degradation of CD81 and CD36, as well
as LDLR already mentioned [112]. Hence, PCSK9 inhibi-
tors may develop peripheral immunological tolerance
against tumor cells improving T-lymphocyte identification.
In preclinical study, in neuroglioma and NSCLC knock-
down of PCSK9 gene determinants cancer apoptosis using
the caspase‐3 and XIAP/p‐Akt pathways and in melanoma-
bearing mice PCSK9 gene silencing considerably boosts the
response to immune checkpoint inhibitors (ICIs) [113, 114].
Considering the elevated risk to develop atherosclerotic
plaques and consequently atherosclerotic cardiovascular
disease in cancer patients who underwent ICIs therapy,
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PCSK9 inhibitors may increase their OS by reducing LDL-
C. In the neuroendocrine field PCSK9 role has been mildly
analysed and the results are not in line with previous
observations. A retrospective study enrolled 205 NENs
showing that mean levels of total triglyceride, total cho-
lesterol, HDL-C, and LDL-C were all significantly lower in
NENs patients than in healthy controls. Moreover, low
LDL-C level was significantly correlated with survival rate
and median OS, namely patients with LDL-C > 159 mg/dl
appear to have a better OS than patients with LDL-C < 101.
Hence, lowering LDL-C may be inappropriate in this dis-
ease. In addition, tissue samples of pNENs were analysed
performing an immunohistochemistry assay and the authors
found out that PCSK9 is a direct target of miR-224. The
increase of miR-224 causes the decrease of PCSK9 and this
could promote apoptosis and suppress proliferation, inva-
sion of BON-1 cells in pNENs (cell line frequently used in
pNEN model) [115]. In conclusion, PCSK9 inhibitors may
be considered in human trials to control cholesterol meta-
bolism verifying who could benefit from this therapy,
supporting the possible role of these drugs in combination
with avelumab that is the only ICI approved in NENs for the
treatment of MCC.

Squalene epoxidase (SQLE), a cholesterol biosynthetic
pathway enzyme, has been recently identified as a potential
therapeutic target in NENs. Indeed, in neuroendocrine cell
lines a sensitivity to NB-598, a known inhibitor of SQLE, has
been demonstrated with cell growth defects and animal models
confirmed this finding in vivo [116]. These observations shed
a light on novel potential therapeutic targets, that need to be
tested in clinical trial to confirm their efficacy.

Conclusions and future directions

Tailored therapy is the current aim in NENs, to obtain tumor
mass reduction or stabilization, improvement of patients’
symptoms and quality of life, as well as survival rates’
growth, thus a multidisciplinary approach is essential
[5, 117, 118]. In this light, a better understanding of the
interactions between lipid lowering agents and NENs’ onset
and progression could lead to more effective and custo-
mized treatments for patients. Beneficial effects of lipid
lowering agents, especially statins, have been documented
in several diseases including chronic kidney disease and
chronic inflammatory disease, but confounding factors
when evaluating their anti-cancer effect may exist [119].
Randomized controlled trials regarding the effect of lipid
lowering agents in NENs are lacking as the majority of
reported data mainly concern their relationship with
malignancy in general. Consequently, robust data clarifying
the relationship of dyslipidemia and lipid-lowering agents

with NENs are currently difficult to obtain. Metabolic
alterations including dyslipidemia have been shown to
augment the risk of cancer and to worsen its prognosis in
NENs [26]. Specifically, dyslipidemia is a strong predictor
of cardiovascular disease, which may become, as in other
cancers, the leading contributor to morbidity and mortality
with ageing also in NENs, that usually have an indolent
course [120, 121]. Current indications for lipid lowering
agents in NENs only indirectly target tumor growth,
through decreasing associated risks in both primary and
secondary prevention of cardiovascular risk. The current
challenge remains the assessment of tumor growth control
with lipid lowering agents, which could expand their use
with new therapeutic indications. Nonetheless, early
detection and treatment of dyslipidemia should be inte-
grated in the multidisciplinary NENs patients’ management.
A role of lipid lowering agents in cancer prevention is
difficult to assess, also due to the late diagnosis in NENs,
but a close lipid profile control is advisable irrespective of
disease stage, since beneficial effects on long-term survival
could be obtained. The future looks bright for promising
treatments that improve lipid profile and further studies
focused on association with other metabolic risk, disease
stage and primary site are needed to identify the best lipid
lowering agent and the optimal timing of therapy adminis-
tration. Further investigations should be designed also with
the aim to clarify the conflicting data emerging within each
lipid lowering drug and to understand if novel biomarker as
PCSK9 or FASN can be recognized and usefully integrated
in the therapeutic management. Prospective randomized
study, also with combined therapies with new agents, may
be the key to identify individual approaches integrating both
lipid and tumor control.
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