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Abstract
Purpose To investigate the relationship between abnormal glucose metabolism, type 2 diabetes (T2D), and periodontal
disease (PER) independent of Body Mass Index (BMI), we employed a genome-wide cross-trait approach to clarify the
association.
Methods Our study utilized the most extensive genome-wide association studies conducted for populations of European
ancestry, including PER, T2D, fasting glucose, fasting insulin, 2-hour glucose after an oral glucose challenge, HOMA-β,
HOMA-IR (unadjusted or adjusted for BMI) and HbA1c.
Results With this approach, we were able to identify pleiotropic loci, establish expression-trait associations, and quantify
global and local genetic correlations. There was a significant positive global genetic correlation between T2D (rg= 0.261,
p= 2.65 × 10−13), HbA1c (rg= 0.182, p= 4.14 × 10−6) and PER, as well as for T2D independent of BMI (rg= 0.158,
p= 2.34 × 10−6). A significant local genetic correlation was also observed between PER and glycemic traits or T2D. We also
identified 62 independent pleiotropic loci that impact both PER and glycemic traits, including T2D. Nine significant
pathways were identified between the shared genes between T2D, glycemic traits and PER. Genetically liability of HOMA-
βadjBMI was causally associated with the risk of PER.
Conclusion Our research has revealed a genetic link between T2D, glycemic traits, and PER that is influenced by biological
pleiotropy. Notably, some of these links are not related to BMI. Our research highlights an underlying link between patients
with T2D and PER, regardless of their BMI.

Keywords Periodontal Diseases ● Glycemic Control ● Type 2 Diabetes ● Insulin Resistance ● Genome Wide Association
Analysis

Introduction

Periodontal disease (PER) refers to a set of inflammatory
disorders that affect the tissues that surround the teeth which
may lead to the loss of teeth [1]. Type 2 Diabetes (T2D) is a
common form of diabetes mellitus characterized by hyper-
glycemia, impaired insulin sensitivity and insufficient

insulin levels. Patients who had severe PER at the begin-
ning of the study were linked to a higher probability of
experiencing abnormal blood glucose levels, and vice versa
[2, 3].

A two-way relationship was found between T2D and
PER in previous study [4]. The impact of PER on indivi-
duals with T2D is negative as it affects both the control of
blood sugar levels and the development of complications
associated with diabetes [5]. Individuals who have T2D are
three times more likely to develop PER with greater
severity. One of how T2D contributes to the development of
PER is through inflammation burden on the periodontium
[4]. Accumulating evidence has suggested that obesity
increases the risks of periodontal diseases and type 2 dia-
betes [4, 6], which could potentially act as confounding
factors between them. In addition, observational studies also
suggest an effect that is independent of BMI [7, 8]. No such
analysis has been conducted to comprehensively investigate
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the relationship between PER and its primary coexisting
conditions, abnormal glucose metabolism and T2D
considering BMI.

The objectives of this research study were to examine the
genetic overlap between T2D, glycemic traits, and PER,
with a particular focus on their interaction with or without
BMI. A comprehensive genome-wide analysis was carried
out using the most extensive genome-wide association
study (GWAS) data that was accessible for each of these
characteristics. The study focused on individuals of Eur-
opean descent and investigated the impact of T2D and
glycemic traits (unadjusted and adjusted for BMI) on the
development of PER.

Methods

GWAS summary statistics for glycemic traits and
Type 2 diabetes

Figure 1 illustrates the overall study design. We obtained
GWAS summary data for T2D and T2DadjBMI from the
DIAGRAM consortium, which consisted of 74,124 cases
and 824,006 controls [9]. The summary statistics for
adjusted BMI glycemic traits (FGadjBMI, FIadjBMI, and
GladjBMI) and HbA1c were obtained from the Meta-
Analyses of Glucose and Insulin-related traits Consortium
(MAGIC), which included around 200,000 European

Fig. 1 Illustration of the genome-wide cross-trait analysis design. We
first quantified global and local genetic correlation then identified
specific pleiotropic loci and detected expression–trait associations.
Genome-wide global genetic correlation analysis: https://github.com/
bulik/ldsc and https://github.com/qlu-lab/GNOVA-2.0 ; local genetic
correlation analysis: https://github.com/qlu-lab/SUPERGNOVA;

cross-trait meta-analysis: http://hal.case.edu/~xxz10/zhu-web/ ;pair-
wise analysis: https://github.com/joepickrell/gwas-pw ; transcriptome-
wide association analysis: http://gusevlab.org/projects/fusion/ ; path-
way enrichment analysis: https://biit.cs.ut.ee/gprofiler/gost ; mendelian
randomization: https://mrcieu.github.io/TwoSampleMR/index.html
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individuals without diabetes [10]. In addition, GWAS
summary statistics for the homeostatic model assessment
of β-cell function adjusted for BMI (HOMA- βadjBMI)
and the homeostatic model assessment of insulin resis-
tance adjusted for BMI (HOMA-IRadjBMI) were also
obtained from the MAGIC consortium; the dataset
included 58,074 and 51,750 non-diabetic participants in
glucose and insulin respectively [11]. The summary sta-
tistics for glycemic traits were also obtained from the
MAGIC consortium, which included 140,595, 98,210,
46,186, and 46,186 non-diabetic participants for the FG,
FI, HOMA-β, and HOMA-IR datasets respectively
[12, 13]. We retrieved PER GWAS summary statistics
(meta-analysis of periodontitis and loose tooth) obtained
from the UK BioBank (UKB) consortium and the Gene-
Lifestyle Interactions in Dental Endpoints (GLIDE) [14].
Supplementary Table 1 contains additional information
regarding each of the datasets used in the study. The
human reference genome build 37 was used in the GWAS
summary statistics to perform the analysis.

Statistical analysis

Overall genetic correlation analysis

To evaluate the overall genetic correlation between PER
and glycemic traits or Type 2 diabetes, Linkage Dis-
equilibrium Score Regression (LDSC) and Genetic
Covariance Analyzer (GNOVA) were employed [15, 16].
Cross trait LDSC was performed by using LD scores
from 1000 Genomes Project and the Hapmap3 reference
panel with around 1.2 million SNPs [17]. In addition to
LDSC, GNOVA was also employed to estimate the
genetic correlation between PER and glycemic traits or
Type 2 diabetes. In contrast to LDSC, GNOVA utilizes
roughly 5 million SNPs from the 1000 Genomes Project,
which results in greater statistical power and more
accurate estimations. Both LDSC and GNOVA were
designed to account for potential sample overlaps
between each pair of traits.

Local genetic correlation analysis

To pinpoint the precise genomic regions responsible for
the genetic associations between the traits, we used
SUPERGNOVA to estimate the local genetic correla-
tions between traits in nearly independent LD blocks
[18]. In the analysis, 2353 local genomic regions were
used. To prevent any potential overlap between samples
across different traits, SUPERGNOVA was utilized for
control during the analysis. Significance local genetic
correlation was based on the threshold of p < 2.12 × 10−5

(0.05/2353).

Cross-trait meta-analysis

To identify shared pleiotropic loci between traits at the level
of individual SNPs, cross-trait meta-analysis was performed
using cross-phenotype association analysis (CPASSOC)
software through the Shet statistics [19]. By assigning
greater weight to trait-specific effect sizes, the Shet statistic
is able to maintain its statistical power even in the presence
of heterogeneity. Genome-wide significant SNPs were
considered if the SNPs reached a threshold of
pCPASSOC < 5 × 10−8 in CPASSOC and psingle-trait < 5 × 10−3

between PER and glycemic traits or T2D. Then, indepen-
dent pleiotropic SNPs were further extracted using the
PLINK LD clumping method (parameters: --clump-p1 5e-8
--clump-p2 1e-5 --clump-r2 0.2 --clump-kb 500) [20].

The Ensembl Variant Effect Predictor (VEP) [21] and
3DSNP [22] were used to annotate the independent pleio-
tropic SNPs between PER and glycemic traits or T2D and
find the interacting genes in the independent
pleiotropic SNPs.

Pairwise colocalization analysis

The GWAS-PW software was used to determine whether
there is co-localization between PER and glycemic traits or
T2D [23]. GWAS-PW employs a Bayesian framework to
compute four different models, each with a posterior
probability association. Model 1 indicates that the region
contains a genetic variant associated with PER. Model 2
assumes the region contains a genetic variant associated
with glycemic traits or T2D. Model 3 suggests that the
region has a genetic variant that’s associated with both
glycemic traits and PER (PPA3), while model 4 assumes
that the region contains two distinct genetic variants, one
associated with glycemic traits and the other with PER
(PPA4). Regions with PPA3 or PPA4 greater than 0.5 were
deemed to have evidence of a shared causal variant or
independent causal variants, respectively.

Pathway enrichment analysis

The g: profiler tool was used to evaluate the pathway
enrichment analysis using the shared loci between PER and
glycemic traits or T2D in Gene Ontology (GO) biological
processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [24]. A threshold of FDR < 0.05 are
considered as a significant pathway.

Transcriptome-wide association studies

The FUSION package was used to perform a transcriptome
wide association study in multiple tissues for PER, glycemic
traits and T2D. This analysis utilized expression weights
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derived from 48 post-mortem tissues that were obtained from
the GTEx database (version 7) [25]. Then, we compared the
significant gene-tissue pairs for each trait to determine if they
were shared across different traits. A false discovery rate
(FDR< 0.05) was used to account for the multiple testing.

Bidirectional Mendelian Randomization (MR) analysis

A bidirectional MR analysis using inverse-variance weighted
(IVW) as the primary method was conducted [26]. Sensitivity
analyses were performed using Median-based methods (simple,
weighted and penalized weighted) [27], MR-Egger [28] and
MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) [29]
methods and modified second weights of radial regression of
MR (RadialMR) [30]. The intercept of MR-Egger served as a
test to assess overall unbalanced horizontal pleiotropy. Het-
erogeneity of the MR results was assessed using Cochran Q-
test, and a significance level of p < 0.05 indicated the presence
of significant heterogeneity. Radial regression of MR
(RadialMR) was employed to identify and exclude outliers that
potentially had pleiotropic effects. For the instrument variables
(IV), we selected genome-wide significant SNPs (p < 5 × 10−8)
from GWAS summary statistics (p < 5 × 10−6 for PER due to
too less SNPs) and clumped SNPs with an r2 < 0.001 within a
10,000 kb range. After harmonization, palindromic and
incompatible SNPs were excluded. F-statistics and R2 were
used to evaluate the strength of the selected SNPs. Addition-
ally, single-SNP and leave-one-out analyses were conducted to
investigate whether any individual SNP had a considerable
influence on the IVW point estimate [31, 32]. A threshold of
p < 0.004 (0.05/12) and p < 0.05 were used to represent sta-
tistical significance and suggestive significance respectively.

Multivariable MR (MVMR) analysis

BMI has been reported to have a causal association with
PER [33]. The GWAS summary statistics for BMI was
obtained from the GIANT consortium without any
UKBioBank participants [34]. For the significant causal
association (p < 0.05) in the univariable MR analysis for
glycemic traits or T2D on the risk of PER, the MVMR was
performed using the MVMR-IVW and MVMR-MR-Egger
method aiming to adjust for potential confounding factor
BMI. MVMR-IVW with multiplicative random effects will
be used if heterogeneity (p < 0.05) is present.

Results

Overall genetic correlation

After adjusting for multiple testing (p < 0.05/12), we found
a substantial positive genetic correlation between PER and

T2D (rg= 0.235, p= 5.317 × 10−9), as well as T2DadjBMI
(rg= 0.130, p= 3.192 × 10−3), which decreased by almost
half using LDSC. (Supplementary Table 2). Regarding
glycemic traits, HbA1c showed a strong significant positive
correlation with PER (rg= 0.229, p= 1.766 × 10−6). How-
ever, no significant overall genetic correlation was observed
with other glycemic traits (FG (rg=−0.068, p= 0.214), FI
(rg=−0.180, p= 0.019), HOMA-β (rg=−0.019,
p= 0.853) and HOMA-IR (rg= 0.091, p= 0.450)). No
significant overall genetic correlations were observed
between glycemic traits (adjusted for BMI) and PER.
(FGadjBMI (rg= 0.044, p= 0.383), FIadjBMI (rg= 0.019,
p= 0.765), GladjBMI (rg=−0.002, p= 0.974), HOMA-
βadjBMI (rg=−0.060, p= 0.515) and HOMA-IRadjBMI
(rg=−0.048, p= 0.611)).

In GNOVA, we also found a strong positive overall
genetic correlation between T2D (rg= 0.261,
p= 2.65 × 10−13) and T2DadjBMI (rg= 0.158,
p= 2.34 × 10−6) (Supplementary Table 2). For glycemic
traits, HbA1c showed a significant strong genetic correla-
tion with PER (rg= 0.1817, p= 4.14 × 10−6) and other
glycemic traits: FG (rg=−0.031, p= 0.565), FI (rg=
−0.155, p= 0.049), HOMA-β (rg= 0.058, p= 0.457) and
HOMA-IR (rg= 0.171, p= 0.039) did not observe any
significant overall genetic correlation, while we did not
observe any significant overall genetic correlation with
other glycemic traits adjusted for BMI: FGadjBMI (rg=
−0.025, p= 0.503), FIadjBMI (rg= 0.035, p= 0.479),
GladjBMI (rg=−0.058, p= 0.284), HOMA-βadjBMI
(rg=−0.086, p= 0.161) and HOMA-IRadjBMI (rg=
−0.147, p= 0.048).

Local genetic correlation

For glycemic traits, we found four significant genomic
regions between FGadjBMI and PER, with three showing
positive local genetic correlation (Supplementary Table 4).
One significant genomic region was identified between
GladjBMI and PER, also with positive local genetic corre-
lation. Additionally, we discovered four significant genomic
regions between HbA1c and PER, all showing positive
local genetic correlation. Two significant genomic regions
were found between FG and PER, and one significant
genomic region was found between HOMA-β and PER. In
T2D, we detected five significant genomic regions asso-
ciated with PER, three of which exhibited positive local
genetic correlation. Furthermore, in T2DadjBMI, we found
four significant genomic regions related to PER, with three
showing negative local genetic correlation. Three genomic
regions (chr1:39537291-40933221, chr4:103388441-
104802530, and chr5:101101325-102681586) were shared
between T2D independent of BMI. We also identified a
shared genomic region (chr3:170159134-171311936)
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between PER and both T2DadjBMI and FGadjBMI.
Moreover, there was an overlapped genomic region
(chr17:46828412-48027295) among T2D, GladjBMI,
and HbA1c.

Cross-trait meta-analysis

There were 62 independent pleiotropic SNPs identified
between PER and glycemic traits or T2D (Supplementary
Table 3). Furthermore, none of these 62 SNPs had pre-
viously been associated with PER at a threshold of genome-
wide significance, while many of them (44 out of 62) had
been associated with at least one glycemic trait or T2D.

A total of 32 SNPs were found to be common between
T2D and PER. The location that was most prominently
shared between two conditions, T2D and T2DadjBMI-PER,
was found near TH. This location was identified by the
presence of a specific genetic variant, rs4929965
(pCPASSOC= 3.57 × 10−27) in T2D. The same location was
also shared by T2DadjBMI-PER, where the lead genetic
variant was rs7482891 (pCPASSOC=4.34 × 10−22). The sec-
ond strongest signal was rs5398, located near SLC2A2
(pCPASSOC= 2.79 × 10−23). Finally, the third strongest signal
was rs6971365 (pCPASSOC= 1.40 × 10−18), located near
LOC10537508, which was also shared by T2DadjBMI-
PER, where the lead SNP was rs697135
(pCPASSOC= 1.37 × 10−18). In addition, 12 independent
SNPs were shared between T2DadjBMI and PER. The most
significant SNP was the same as T2D located near TH. For
FGadjBMI and PER, the most significant shared locus was
near G6PC2, which was also shared by HbA1c-PER,
HOMA-βadjBMI-PER and FG-PER. For HOMA-β and
PER, two SNPs (rs560887 and rs1402837) were shared
which rs1402837 located near G6PC2 was also shared by
HOMA-βadjBMI. Two SNPs were shared between
FIadjBMI and PER (rs6855363 and rs6108030). One SNP
was shared between HOMA-IRadjBMI and PER, which
was also shared by T2DadjBMI-PER. Five SNPs were
shared between HbA1c and PER. No significant SNP was
found between FI, HOMA-IR, GladjBMI and PER.

Pairwise colocalization analysis

There were eight significant genomic regions with
PPA4 > 0.5 between T2D or glycemic traits and PER, and
three regions (T2DadjBMI: chr12:83502773-84303690 and
chr19:51533417-52984982, HbA1c: chr19:51533417-
52984982) with PPA4 > 0.9 (Supplementary Table 5). In
addition, sixteen genomic regions with PPA3 > 0.5 were
identified between T2D or glycemic traits and PER (Sup-
plementary Table 5). There were nine genomic regions with
PPA3 > 0.8 (T2D: chr12:83502773-84303690 and
chr12:84303844-85990038, FG: chr20:39611802-

40585492, HOMA-β: chr2:167355970-169967174,
chr10:677550128:69896336 and chr11:92077144-
93273729, FGadjBMI: chr15:73628714-76398392,
HOMA-βadjBMI: chr2:167355970-169967174 and
chr4:157486535-158742582), and two of the genomic
regions (chr12:83502773-84303690 and chr12:84303844-
85990038) were mediated by BMI in T2D. The genomic
regions for FGadjBMI (chr15:73628714-76398392 and
rs12905199) and HOMA-βadjBMI (chr2:167355970-
169967174 and rs537183) (PPA3 > 0.5) were also con-
sistent with the CPASSOC results.

Pathway enrichment analysis

Nine significant pathways were identified between T2D or
glycemic trait and PER after multiple correction testing
(Supplementary Table 6). For T2D, three pathways were
identified, with the response to the glucose pathway being
the most significant. For T2DadjBMI, two pathways were
identified, with the N6-threonylcarbomyladenosine
methylthiotransferase activity pathway being the most sig-
nificant. For HOMA-βadjBMI, three pathways were iden-
tified with the canalicular bile acid transmembrane
transporter activity being the most significant. For FG,
Ndc80 complex pathway was identified. There were no
significant enriched pathways for genes overlapping PER
and/or HbA1c, FI, HOMA-β, HOMA-IR, FGadjBMI,
FIadjBMI, GladjBMI and HOMA-IRadjBMI.

Transcriptome-wide association studies

After considering multiple testing correction (Supplemen-
tary Fig. 1), the single-trait TWAS method detected 36
genes that have a significant association with PER. For
T2D, a total of 5689 genes were found to be significantly
associated, while 3197 genes were associated with
T2DadjBMI, 2405 genes with HbA1c, 627 genes with FG,
152 genes with FI, 16 genes with HOMA-β, 6 genes with
HOMA-IR, 584 genes with FIadjBMI, 1402 genes with
FGadjBMI, 91 genes with GladjBMI, 60 genes with
HOMA-IRadjBMI, and 83 genes with HOMA-βadjBMI.
However, we did not find any genes that were common
between PER and glycemic traits or T2D.

Bidirectional Mendelian Randomization analysis

The genetic liability of PER was suggestively casually
associated with lower FG (beta: −0.084, [95%CI −0.166 to
–0.001; p= 0.048]) and FI (beta: −0.084, [95%CI −0.166
to –0.001; p= 0.048]) level. However, the effects disappear
after adjusted for BMI. The genetic liability of PER was not
causally associated with other glycemic traits and T2D
(unadjusted and adjusted for BMI) (Table 1).
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Significant causal effect of genetically predisposed
HOMA-β (OR: 0.823 [95%CI 0.697–0.950;
p= 2.63 × 10−3]) and FG (OR: 0.943 [95%CI 0.905–0.982;
p= 3.18 × 10−3]) (Table 2) on PER were observed using
the IVW approach. The estimates remain directionally
consistent in all approaches except the simple median
method. However, leave one out analysis revealed that
rs560887 in G6PC2 and rs853777 in ABCB11 as the SNP
causing the casual effect for HOMA-β and FG respectively
(Supplementary Fig. 3). In addition, a suggestive casual

effect of genetically predisposed T2D (OR: 1.016 [95%CI
1.005–1.027; p= 6.24 × 10−3]) and HbA1c (OR: 1.124
[95%CI 1.039–1.208; p= 7.00 × 10−3]) on PER were
observed using the IVW approach while other glycemic
traits showed no causal associations between PER. The
estimates remain directionally consistent in IVW radial and
MR-PRESSO approach. When the effect of BMI was
removed, only HOMA-βadjBMI (OR: 0.762 [95%CI
0.631–0.893; p= 4.55 × 10−5]) showed significant asso-
ciations with lower risk of PER.

Table 1 Associations of
genetically predicted periodontal
disease with Type 2 Diabetes
and glycemic traits risks in MR
analyses

Exposure Outcome Beta or Odd Ratio
(IVW)

SE P-value

Periodontal disease Type 2 Diabetes 1.108 0.073 0.159

Fasting Glucose −0.084 0.042 0.048

Fasting Insulin −0.084 0.042 0.048

HOMA-β 0.036 0.068 0.599

HOMA-IR −0.036 0.078 0.641

HbA1c 0.023 0.020 0.255

Type 2 Diabetes adjusted for body mass
index

1.023 0.096 0.816

Fasting Glucose adjusted for body mass
index

0.012 0.025 0.632

Fasting Insulin adjusted for body mass
index

0.019 0.024 0.410

2 h post oral glucose adjusted for body
mass index

0.006 0.022 0.780

HOMA-β adjusted for body mass index −0.045 0.054 0.398

HOMA-IR adjusted for body mass index −0.035 0.051 0.489

MR Mendelian randomization, HbA1c glycated hemoglobin, HOMA-IR Homeostasis Model Assessment of
Insulin Resistance, HOMA-β Homeostasis Model Assessment of Beta-cell function, IVW Inverse variance
weighted, SE Standard error

Table 2 Associations of
genetically predicted Type 2
Diabetes and glycemic traits
with periodontal diseases risks
in MR analyses

Exposure Outcome Odd Ratio
(IVW)

SE P-value

Type 2 Diabetes Periodontal disease 1.012 0.006 0.006

Fasting Glucose 0.943 0.020 0.003

Fasting Insulin 0.964 0.068 0.590

HOMA-β 0.823 0.065 0.003

HOMA-IR 1.058 0.076 0.456

HbA1c 1.124 0.117 0.007

Type 2 Diabetes adjusted for body mass
index

1.002 0.005 0.698

Fasting Glucose adjusted for body mass index 1.005 0.034 0.887

Fasting Insulin adjusted for body mass index 1.002 0.049 0.961

2 h post oral glucose adjusted for body mass
index

1.012 0.019 0.530

HOMA-β adjusted for body mass index 0.762 0.067 4.55 × 10−5

HOMA-IR adjusted for body mass index 0.939 0.085 0.460

MR Mendelian randomization, HbA1c Glycated hemoglobin, HOMA-IR Homeostasis Model Assessment of
Insulin Resistance, HOMA-β Homeostasis Model Assessment of Beta-cell function, IVW Inverse variance
weighted, SE Standard error
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MVMR analysis

In the MVMR-IVW analysis, the causal association
between HOMA-β and PER was similar (OR: 0.725 [95%
CI: 0.619–0.847; p < 0.001]), with conditional F-statistics
3.6 (less than 10), but the effect was confirmed by con-
sistent MVMR-MR-Egger method (Supplementary Table
11). However, the genetic liability of T2D and FG does not
affect the risk of PER after adjusted for BMI with condi-
tional F-statistics exceeding 10.

Discussion

As far as we know, this is the first comprehensive genome-
wide study that examines the genetic relationship, pleio-
tropic regions, and expression-trait associations between
PER and T2D or glycemic traits (unadjusted and adjusted
for BMI). Our findings show a positive global genetic
correlation between T2D-PER, T2DadjBMI-PER, and
HbA1c-PER, indicating a shared genetic basis. Pairwise
colocalization analysis also validated some pleiotropic
SNPs between PER and T2D or glycemic traits (unadjusted
and adjusted for BMI). Pathway enrichment analysis
showed that several pathways like bile acid secretion and
response to glucose were linked between T2D or glycemic
traits (unadjusted and adjusted for BMI) and PER. We also
discovered a significant causal relationship between
genetically predicted FG, HOMA-β, and HOMA-βadjBMI
for PER, with non-significant associations when excluding
specific SNPs (rs507666 in HOMA-β and rs853777 in FG).

Our research aligns with previous studies but expands on
these findings in significant ways. Firstly, by utilizing
summary data from previous GWAS, we significantly
increased the statistical power of genetic correlation ana-
lysis. Shungin et al. previously reported a positive genetic
correlation between T2D and PER (p < 0.05) in a T2D
GWAS with 12,171 cases and 56,682 controls. In our study,
with a sample size ten times larger, we also found a sig-
nificant positive genetic correlation between T2D,
T2DadjBMI, and PER. While a previous study by the same
author did not find a significant genetic correlation between
HbA1c and PER in 46,368 individuals, our analysis, with a
sample size four times larger, supports the finding of a
significant positive genetic correlation [14]. The second
important aspect of our study is the consideration of the
effect of BMI. Previous genetic studies have suggested that
the association between T2D or glycemic traits and PER
could be entirely explained by BMI. Our research shows
that there is a pathogenesis pathway that is independent of
BMI. Our study is the first to examine the overall and local
genetic correlation between T2D or glycemic traits that
have been adjusted for BMI and PER. Our bidirectional MR

analysis showed that FG, HOMA-β and HOMA-βadjBMI
were significantly associated with PER, while T2D and
HbA1c were suggestively associated with PER. Previous
MR analyses reported a null causal association between
T2D and PER [35, 36]. However, we discovered a novel
T2D-PER and HOMA-βadjBMI-PER association (univari-
able MR and multivariable MR). Removing the effect of
BMI resulted in no causal relationship between T2D-PER
and FG-PER. Our findings for HbA1c-PER aligned with
previous studies [35, 36].

Our pairwise colocalization and CPASSOC analysis also
identified pleiotropic SNPs shared between PER and gly-
cemic traits or T2D. We have identified three novel SNPs
(rs12905199 for FGadjBMI-PER near CSK, rs13108763 for
T2DadjBMI-PER near PDGFC, and rs560887 for HbA1c-
PER near G6PC2 and SPC25). The first of these SNPs,
rs12905199, is located near the gene CSK, which is shared
by FGadjBMI and PER, and overlaps with FGadjBMI-PER
in GWAS-PW with PPA3 > 0.8. CSK regulates SRC family
kinases, playing a role in T-cell activation and osteoclast
activity [37]. Altered osteoclast activity is seen in hyper-
glycemia and periodontitis [38, 39]. CBL, a SRC family
kinase, inhibits NLRP3 inflammasome activation by
downregulating glucose transporter 1 [40]. Individuals with
chronic or aggressive periodontitis show elevated NLRP3
expression levels in gingival tissue compared to healthy
controls [41]. A study found that patients with PER and
PER+ T2D had higher serum and salivary NLRP3 con-
centrations compared to T2D patients and normal controls
[42]. The expression of NLRP3 was influenced by patients
with T2D, regardless of their BMI status [43]. Hyperactive
SRC family kinases impair glucose metabolism in pan-
creatic beta cells, potentially raising fasting glucose levels
[44]. The second novel SNP is rs13108763 near PDGF-C, a
gene that encodes a protein in the PDGF family and com-
mon to T2D, T2DadjBMI and HOMA-IRadjBMI. PDGF
acts as a chemoattractant for neutrophils, monocytes/mac-
rophages, and fibroblasts, while also stimulating the pro-
liferation of mesenchymal cells such as periodontal
ligament cells [45, 46]. PDGFC has a critical role in
angiogenesis, and patients with PER often have abnormal
angiogenesis that leads to progressive inflammation, which
is a sign of the condition [47]. Increased liver methylation
expression in PDGFA is associated with hyperinsulinemia
and insulin resistance, even after adjusting for BMI and
other factors [48]. PDGFC is potentially involved in peri-
apical lesion pathogenesis through inflammation and con-
tributes to complications in type 2 diabetes, including
diabetic foot, microangiopathy, and nephropathy [49, 50].
Previous study showed that the third novel SNP rs560887,
shared by HOMA-βadjBMI, FGadjBMI, and HbA1c, is
located near G6PC2 and SPC25. G6PC2 encodes an
enzyme involved in releasing glucose into the bloodstream
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and is associated with lower fasting plasma glucose levels
in mice [51]. G6PC2 in pancreatic beta cells affects the
threshold for glucose-induced insulin secretion, impacting
FG levels [52]. Variants in SPC25 also showed an asso-
ciation with tooth morbidity but the biological mechanism
remains unknown [53]. A recent study demonstrated that
this SNP reached genome-wide significance and was asso-
ciated with reduced HbA1c levels after adjusting for BMI
[54]. These discoveries indicate that there is a biological
mechanism at play that is not related to BMI.

It is important to recognize some limitations of our
study. Firstly, we focused on populations of European
ancestry, which limits the generalizability of our findings
to non-European individuals. Secondly, we were unable
to conduct sex specific GWAS analyses on T2D and
glycemic traits due to limited data availability. This
meant that we were not able to match the exposure data
on PER with sex-specific data, even though males are
more susceptible to the risk and severity of PER and T2D
[55, 56]. Thirdly, the PER GWAS summary statistics
were obtained through a meta-analysis of GLIDE and
UKB datasets. It is important to acknowledge that the
UKB data relied on self-reported oral health information,
which introduces the possibility of misdiagnosis or
inaccuracies. Further cross-sectional, longitudinal, and
experimental studies, including animal experiments, are
needed to elucidate the biological mechanisms under-
lying the observed genetic correlation. Fourthly, limited
by small sample sizes, the available GWAS summary
statistics for HOMA-β and HOMA-IR (unadjusted and
adjusted for BMI) lack the power to establish a definitive
pleiotropic connection between PER and these traits
independent of BMI. More substantial GWAS summary
statistics are required for conclusive results. Replication
of our findings using publicly accessible T2DadjBMI
GWAS datasets is currently not feasible. Additionally,
the power for the results of T2D on PER in the MR
analysis is comparatively small (31%) due to smaller
effect sizes observed in the current MR study compared
to previous observational studies [57]. Lastly, both
GWAS summary statistics for T2D and PER involve
UKB participants which can lead to overfitting bias in
MR, but bias due to sample overlap is minimal when the
instruments have sufficient strength (F-statistics > 10)
[58, 59]. In addition, with relatively large sample sizes,
the bias due to sample overlap is expected to be very
small [60].

To summarize, our study utilized the most extensive
GWAS summary statistics and conducted a genetic corre-
lation analysis, which revealed a robust association between
PER and T2D or glycemic traits. The causal association
remained significant for HOMA-β after controlling BMI.
These findings offer valuable new insights into the observed

connections between these conditions at a molecular level.
Our research demonstrates that the genetic predisposition to
T2D or glycemic traits have pleiotropic effects on the
development of PER, independent of BMI, as shown by the
statistical significance of CPASSOC. This reinforces the
notion that there are shared biological processes between
these conditions.
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