Skip to main content

Advertisement

Log in

The impact of thyroid function on total spine bone mineral density in postmenopausal women

  • Research
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Osteoporosis has been a widespread concern for older women, especially postmenopausal women. Thyroid function is crucial for bone metabolism. However, the relationship between thyroid function variation within thyroxine reference range and bone mineral density (BMD) remains ambiguous. The objective of this study was to evaluate the effect of subclinical hypothyroidism or hyperthyroidism on total spinal BMD in postmenopausal women.

Methods

Based on data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010, multivariable weighted logistic regression was used to evaluate the relationships between total spine BMD and TSH among postmenopausal women aged ≥50.

Results

After accounting for a number of variables, this study discovered that the middle TSH tertile was associated with a decreased probability of osteoporosis. Additionally, the subgroup analysis revealed that postmenopausal women over the age of 65 or people with an overweight BMI had a clearer relationship between total spine BMD and TSH.

Conclusion

The total spinal BMD had a positive relationship with thyroid stimulating hormone in postmenopausal women, and that appropriate TSH level (1.38–2.32 mIU/L) was accompanied by higher total spinal BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The survey data are publicly available on the internet for data users and researchers throughout the world (www.cdc.gov/nchs/nhanes/).

References

  1. J.E. Compston, M.R. McClung, W.D. Leslie, Osteoporosis. Lancet 393(10169), 364–376 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. S. Song, Y. Guo, Y. Yang, D. Fu, Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharm. Ther. 237, 108168 (2022)

    Article  CAS  Google Scholar 

  3. O. Johnell, J.A. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17(12), 1726–1733 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. N. Salari, N. Darvishi, Y. Bartina, M. Larti, A. Kiaei, M. Hemmati, S. Shohaimi, M. Mohammadi, Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 16(1), 669 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  5. M. Hiligsmann, O. Bruyère, O. Ethgen, H.-J. Gathon, J.-Y. Reginster, Lifetime absolute risk of hip and other osteoporotic fracture in Belgian women. Bone 43(6), 991–994 (2008)

    Article  PubMed  Google Scholar 

  6. D.A. Doherty, K.M. Sanders, M.A. Kotowicz, R.L. Prince, Lifetime and five-year age-specific risks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporos. Int. 12(1), 16–23 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. M. Srivastava, C. Deal, Osteoporosis in elderly: prevention and treatment. Clin. Geriatr. Med. 18(3), 529–555 (2002)

    Article  PubMed  Google Scholar 

  8. E.R. Vina, C.K. Kwoh, Epidemiology of osteoarthritis: literature update. Curr. Opin. Rheumatol. 30(2), 160–167 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  9. J.H.D. Bassett, G.R. Williams, Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 37(2), 135–187 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. Baliram, R. Latif, M. Zaidi, T.F. Davies, Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. Front Endocrinol. 8, 252 (2017)

    Article  Google Scholar 

  11. P.A. Reddy, C.V. Harinarayan, A. Sachan, V. Suresh, G. Rajagopal, Bone disease in thyrotoxicosis. Indian J. Med. Res. 135(3), 277–286 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Apostu, O. Lucaciu, D. Oltean-Dan, A.-D. Mureșan, C. Moisescu-Pop, A. Maxim, H. Benea, The Influence of Thyroid Pathology on Osteoporosis and Fracture Risk: A Review. Diagnostics, 10(3) 149 (2020).

  13. H. Hase, T. Ando, L. Eldeiry, A. Brebene, Y. Peng, L. Liu, H. Amano, T.F. Davies, L. Sun, M. Zaidi et al. TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc. Natl Acad. Sci. USA 103(34), 12849–12854 (2006)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. A.P. Delitala, A. Scuteri, C. Doria, Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 9(4) 1034 (2020).

  15. J.J. Nicholls, M.J. Brassill, G.R. Williams, J.H.D. Bassett, The skeletal consequences of thyrotoxicosis. J. Endocrinol. 213(3), 209–221 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. M.R. Blum, D.C. Bauer, T.-H. Collet, H.A. Fink, A.R. Cappola, B.R. da Costa, C.D. Wirth, R.P. Peeters, B.O. Åsvold, W.P.J. den Elzen et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20), 2055–2065 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  17. W.M. Wiersinga, K.G. Poppe, G. Effraimidis, Hyperthyroidism: aetiology, pathogenesis, diagnosis, management, complications, and prognosis. Lancet Diabetes Endocrinol. 11(4), 282–298 (2023)

    Article  CAS  PubMed  Google Scholar 

  18. J.G. Hollowell, N.W. Staehling, W.D. Flanders, W.H. Hannon, E.W. Gunter, C.A. Spencer, L.E. Braverman, Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87(2), 489–499 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. L. Wartofsky, R.A. Dickey, The evidence for a narrower thyrotropin reference range is compelling. J. Clin. Endocrinol. Metab. 90(9), 5483–5488 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Baloch, P. Carayon, B. Conte-Devolx, L.M. Demers, U. Feldt-Rasmussen, J.-F. Henry, V. A. LiVosli, P. Niccoli-Sire, R. John, J. Ruf et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13(1), 3–126 (2003).

  21. J. Liu, Y. Tang, Z. Feng, Y. Chen, X. Zhang, Y. Xia, B. Geng, Metabolic associated fatty liver disease and bone mineral density: a cross-sectional study of the National Health and Nutrition Examination Survey 2017-2018. Osteoporos. Int. 34(4), 713–724 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. R.K. Marwaha, M.K. Garg, N. Tandon, R. Kanwar, A. Narang, A. Sastry, K. Bhadra, Thyroid function and bone mineral density among Indian subjects. Indian J. Endocrinol. Metab. 16(4), 575–579 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Sheng, F. Xing, J. Wang, X. Duan, Z. Xiang, T4 rather than TSH correlates with BMD among euthyroid adults. Front Endocrinol. 13, 1039079 (2022)

    Article  Google Scholar 

  24. C. Vendrami, P. Marques-Vidal, E. Gonzalez Rodriguez, D. Hans, G. Waeber, O. Lamy, Thyroid-stimulating hormone is associated with trabecular bone score and 5-year incident fracture risk in euthyroid postmenopausal women: the OsteoLaus cohort. Osteoporos. Int. 33(1), 195–204 (2022)

    Article  CAS  PubMed  Google Scholar 

  25. D.J. Kim, Y.H. Khang, J.-M. Koh, Y.K. Shong, G.S. Kim, Low normal TSH levels are associated with low bone mineral density in healthy postmenopausal women. Clin. Endocrinol. 64(1), 86–90 (2006)

    Article  CAS  Google Scholar 

  26. B. Ding, Y. Zhang, Q. Li, Y. Hu, X.-J. Tao, B.-L. Liu, J.-H. Ma, D.-M. Li, Low Thyroid Stimulating Hormone Levels Are Associated with Low Bone Mineral Density in Femoral Neck in Elderly Women. Arch. Med Res. 47(4), 310–314 (2016)

    Article  PubMed  Google Scholar 

  27. X. Zhu, M. Li, X. Dong, F. Liu, S. Li, Y. Hu, A systematic review of the relationship between normal range of serum thyroid-stimulating hormone and bone mineral density in the postmenopausal women. BMC Womens Health 23(1), 358 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S.P.G. Bours, T.A.C.M. van Geel, P.P.M.M. Geusens, M.J.W. Janssen, H.M.J. Janzing, G.A. Hoffland, P.C. Willems, J.P.W. van den Bergh, Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J. Clin. Endocrinol. Metab. 96(5), 1360–1367 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. E. Murphy, C.C. Glüer, D.M. Reid, D. Felsenberg, C. Roux, R. Eastell, G.R. Williams, Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 95(7), 3173–3181 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. L.E. van Rijn, V.J. Pop, G.R. Williams, Low bone mineral density is related to high physiological levels of free thyroxine in peri-menopausal women. Eur. J. Endocrinol. 170(3), 461–468 (2014)

    Article  PubMed  Google Scholar 

  31. J.H.D. Bassett, G.R. Williams, The molecular actions of thyroid hormone in bone. Trends Endocrinol. Metab. 14(8), 356–364 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. E. Abe, R.C. Marians, W. Yu, X.B. Wu, T. Ando, Y. Li, J. Iqbal, L. Eldeiry, G. Rajendren, H.C. Blair et al. TSH is a negative regulator of skeletal remodeling. Cell 115(2), 151–162 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. G. Mazziotti, F. Sorvillo, M. Piscopo, M. Cioffi, P. Pilla, B. Biondi, S. Iorio, A. Giustina, G. Amato, C. Carella, Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J. Bone Min. Res. 20(3), 480–486 (2005)

    Article  CAS  Google Scholar 

  34. I. Dumic-Cule, N. Draca, A.T. Luetic, D. Jezek, D. Rogic, L. Grgurevic, S. Vukicevic, TSH prevents bone resorption and with calcitriol synergistically stimulates bone formation in rats with low levels of calciotropic hormones. Horm. Metab. Res. 46(5), 305–312 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. G. Yoshida, T. Kawabata, H. Takamatsu, S. Saita, S. Nakamura, K. Nishikawa, M. Fujiwara, Y. Enokidani, T. Yamamuro, K. Tabata et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy 18(10), 2323–2332 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C.J. Crandall, J.C. Larson, J.T. Schousboe, J.E. Manson, N.B. Watts, J.A. Robbins, P. Schnatz, R. Nassir, A.H. Shadyab, K.C. Johnson et al. Race and Ethnicity and Fracture Prediction Among Younger Postmenopausal Women in the Women’s Health Initiative Study. JAMA Intern. Med. 183(7), 696–704 (2023)

    Article  PubMed  Google Scholar 

  37. U. Pingali, C. Nutalapati, Shilajit extract reduces oxidative stress, inflammation, and bone loss to dose-dependently preserve bone mineral density in postmenopausal women with osteopenia: A randomized, double-blind, placebo-controlled trial. Phytomedicine 105, 154334 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. N. Waltman, K.A. Kupzyk, L.E. Flores, L.R. Mack, J.M. Lappe, L.D. Bilek, Bone-loading exercises versus risedronate for the prevention of osteoporosis in postmenopausal women with low bone mass: a randomized controlled trial. Osteoporos. Int. 33(2), 475–486 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by J.J., Z.L., L.X., H.X., T.W., T.Y., Y.T., and T.M. The first draft of the manuscript was written by JJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Ma or Yihui Tu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The ethics review board of the National Center for Health Statistics approved all NHANES protocols.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Li, Z., Xue, L. et al. The impact of thyroid function on total spine bone mineral density in postmenopausal women. Endocrine (2024). https://doi.org/10.1007/s12020-024-03712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03712-8

Keywords

Navigation