Skip to main content

Advertisement

Log in

A systematic review of dysregulated microRNAs in Hashimoto’s thyroiditis

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Plenty of evidence suggests that dysregulated microRNAs are linked to developing autoimmune thyroid diseases. In this study, we aimed to identify commonly linked dysregulated microRNAs in Hashimoto’s thyroiditis(HT) and explore microRNA-targeted genes and the involved pathways.

Methods

Embase, PubMed, Web of Science, and Scopus databases were searched using the MeSH terms and free text terms, which yielded 11879 articles published up to July 2023. Two-step screening(first for titles and second for abstracts) was completed according to inclusion and exclusion criteria. The search strategy was formulated using the PEO format(Population, Exposure, and Outcome) for observational studies. The corresponding target genes and relevant signaling pathways were also identified using web servers of Diana Tools/its mirPath v.3 software, miRNA Enrichment Analysis, Mirpath DB2, miRPathDB 2.0, and miRmap.

Results

Review inclusion criteria were met by 16 studies. Thirty-three microRNAs were identified as differentially expressed in HT patients compared to a healthy control after qRT-PCR or RNA sequencing confirmation. Only three miR-146a, miR-142, and miR-301 showed significant results in more than two studies comparing HT cases with healthy controls.

Conclusion

Three key microRNAs in HT were identified by systematic review; the corresponding target genes and signaling pathways involved in the target genes were also identified. These microRNAs regulate the immune response and inflammation and may favor the development and progression of HT. These data may be beneficial to make a step forward to understand the exact etiology of HT and use of these MicroRNAs as possible diagnostic and prognostic biomarkers and as target therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Antonelli et al. Autoimmune thyroid disorders. Autoimmun. Rev. 14(2), 174–180 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. A. Weetman, Autoimmune thyroid disease. Endocrine 68(2), 258–260 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Amouzegar et al. The Prevalence, Incidence and Natural Course of Positive Antithyroperoxidase Antibodies in a Population-Based Study: Tehran Thyroid Study. PLoS One 12(1), e0169283 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. I. Lobo, Multifactorial inheritance and genetic disease. Nat. Educ. 1(1), 5 (2008)

    Google Scholar 

  5. D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Li et al. miR-142-3p encapsulated in T lymphocyte-derived tissue small extracellular vesicles induces Treg function defect and thyrocyte destruction in Hashimoto’s thyroiditis. BMC Med. 21(1), 206 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  7. H. Otsu et al. Intraindividual variation of microRNA expression levels in plasma and peripheral blood mononuclear cells and the associations of these levels with the pathogenesis of autoimmune thyroid diseases. Clin. Chem. Lab. Med. 55(5), 626–635 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Liu et al. Circulating microRNA expression profiling identifies miR-125a-5p promoting T helper 1 cells response in the pathogenesis of Hashimoto’s thyroiditis. Front. Immunol. 11, 1195 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Liu et al. Elevated microRNA-326 levels regulate the IL-23/IL-23R/Th17 cell axis in Hashimoto’s thyroiditis by targeting a disintegrin and metalloprotease 17. Thyroid 30(9), 1327–1337 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. M.J. Page et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021)

    Article  PubMed  Google Scholar 

  11. E.R. Dorris et al. MIR141 expression differentiates Hashimoto thyroiditis from PTC and benign thyrocytes in Irish archival thyroid tissues. Front. Endocrinol. 3, 102 (2012)

    Article  Google Scholar 

  12. J. Zhu et al. MicroRNA-142-5p contributes to Hashimoto’s thyroiditis by targeting CLDN1. J. Transl. Med. 14, 1–13 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  13. C. Bernecker et al. microRNA expressions in CD4+ and CD8+ T-cell subsets in autoimmune thyroid diseases. Exper. Clin. Endocrinol. Diabetes 122(02), 107–112 (2014)

    Article  CAS  Google Scholar 

  14. L. Zhao et al. Differential expression levels of plasma microRNA in Hashimoto’s disease. Gene 642, 152–158 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. L. Wei et al. MicroRNA-216a-5p Regulates Hashimoto’s Thyroiditis by Targeting KIAA0101. J. Biol. Regul. Homeost. Agents 37(3), 1537–1546 (2023)

    Google Scholar 

  16. T. Kagawa et al. Increases of microRNA let-7e in peripheral blood mononuclear cells in Hashimoto’s disease. Endocrine J. 63(4), 375–380 (2016)

    Article  CAS  Google Scholar 

  17. S. Tokić et al. miR-29a-3p/T-bet regulatory circuit is altered in T cells of patients with Hashimoto’s thyroiditis. Front. Endocrinol. 9, 264 (2018)

    Article  Google Scholar 

  18. O. Trummer et al. Expression profiles of miR-22-5p and miR-142-3p indicate Hashimoto’s disease and are related to thyroid antibodies. Genes 13(2), 171 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Yamada et al. Circulating micro RNA s in autoimmune thyroid diseases. Clin. Endocrinol. 81(2), 276–281 (2014)

    Article  CAS  Google Scholar 

  20. H. Peng et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol. Res. 62, 129–136 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. A. Rodríguez-Muñoz et al. Circulating microvesicles regulate Treg and Th17 differentiation in human autoimmune thyroid disorders. J. Clin. Endocrinol. Metabol. 100(12), E1531–E1539 (2015)

    Article  Google Scholar 

  22. R. Martínez-Hernández et al. A MicroRNA signature for evaluation of risk and severity of autoimmune thyroid diseases. J. Clin. Endocrinol. Metabol. 103(3), 1139–1150 (2018)

    Article  Google Scholar 

  23. J. Zou, H. Peng, Y. Liu, The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front. Immunol. 12, 757674 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Martínez-Hernández, M. Marazuela, MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract. Res. Clin. Endocrinol. Metabol. 37(2), 101741 (2023)

    Article  Google Scholar 

  25. B. Jin, S. Wang, Z. Fan, Pathogenesis Markers of Hashimoto’s Disease—A Mini Review. Front. Biosci. Landmark 27(10), 297 (2022)

    Article  CAS  Google Scholar 

  26. R. Mirzaei et al. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol. 358, 577640 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. S.S. Mortazavi-Jahromi, M. Aslani, A. Mirshafiey, A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol. Lett. 227, 8–27 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. S. Yu et al. B cell–deficient NOD. H-2h4 mice have CD4+ CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis. J. Exper. Med. 203(2), 349–358 (2006)

    Article  Google Scholar 

  29. M.J. Butcher et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs. Circ. Res. 119(11), 1190–1203 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L.-F. Lu et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142(6), 914–929 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.R. de la Vega et al. IL-10 expression in thyroid glands: protective or harmful role against thyroid autoimmunity? Clin. Exp. Immunol. 113(1), 126–135 (1998)

    Article  PubMed  Google Scholar 

  32. B. Kristensen et al. Characterization of regulatory B cells in Graves’ disease and Hashimoto’s thyroiditis. PLoS One 10(5), e0127949 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  33. J. Lu et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 7(1), 165 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. B. Hazra, K.L. Kumawat, A. Basu, The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci. Signal. 10(466), eaaf5185 (2017)

    Article  PubMed  Google Scholar 

  35. N. Zhang, M.J. Bevan, Dicer controls CD8+ T-cell activation, migration, and survival. Proc. Natl Acad. Sci. 107(50), 21629–21634 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Lu et al. miR‐301a as an NF‐κB activator in pancreatic cancer cells. EMBO J. 30(1), 57–67 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. A. Mohammad Hosseini et al. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv. Pharm. Bull. 5(Suppl 1), 605–614 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Fischer, M. Ehlers, Toll-like receptors in autoimmunity. Ann. N. Y. Acad. Sci. 1143, 21–34 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. A. Marshak-Rothstein, Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6(11), 823–835 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Banerjee, W.E. Thompson, I. Chowdhury, Emerging roles of microRNAs in the regulation of Toll-like receptor (TLR)-signaling. Front. Biosci. 26(4), 771–796 (2021)

    Article  CAS  Google Scholar 

  41. C. Zhou et al. MicroRNA-146a inhibits NF-κB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp. Ther. Med. 18(4), 3078–3084 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. M.C. Walsh, J. Lee, Y. Choi, Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol. Rev. 266(1), 72–92 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C.Z. Zheng et al. The role of miR-146a in modulating TRAF6-induced inflammation during lupus nephritis. Eur. Rev. Med. Pharmacol. Sci. 21(5), 1041–1048 (2017)

    PubMed  Google Scholar 

  44. F. Talebi et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J. Neuroinflammation 14(1), 55 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  45. W.L. Wang et al. microRNA-142 guards against autoimmunity by controlling Treg cell homeostasis and function. PLoS Biol. 20(2), e3001552 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Ding et al. Decreased microRNA‐142‐3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 64(9), 2953–2963 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. F. Talebi et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J. Neuroinflammation 14, 1–14 (2017)

    Article  Google Scholar 

  48. D. Günzel, A.S. Yu, Claudins and the modulation of tight junction permeability. Physiol. Rev. 93(2), 525–569 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Kuchen et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32(6), 828–839 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.P. Mycko et al. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc. Natl Acad. Sci. USA 109(20), E1248–E1257 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. X.O. Yang et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biological Chem. 282(13), 9358–9363 (2007)

    Article  CAS  Google Scholar 

  52. L. Zhou et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8(9), 967–974 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. G. Huang, Y. Wang, H. Chi, Regulation of TH17 cell differentiation by innate immune signals. Cell. Mol. Immunol. 9(4), 287–295 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. I.S. Vlachos et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 43(W1), W460–6 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. I.S. Vlachos et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 43(Database issue):D153–9 (2015).

  56. M. Reczko et al. Functional microRNA targets in protein coding sequences. Bioinformatics 28(28), 771–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. J. Jurkin et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J. Immunol. 184(9), 4955–4965 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. F.V. Karginov, G.J. Hannon, Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev 27(14), 1624–1632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. P.S. Hung et al. miR-146a induces differentiation of periodontal ligament cells. J. Dent. Res. 89(3), 252–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. E. Gottwein et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 10(5), 515–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. I. Balakrishnan et al. Genome-wide analysis of miRNA-mRNA interactions in marrow stromal cells. Stem Cells 32(3), 662–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. J.E. Cameron et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a,a modulator of lymphocyte signaling pathways. J. Virol. 82(4), 1946–1958 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. D.R. Hurst, M.D. Edmonds, D.R. Welch, Metastamir: the field of metastasis-regulatory microRNA isspreading. Cancer Res. 69(19), 7495–7498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. R.L. Skalsky et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Patho 8(1), e1002484 (2012).

    Article  CAS  Google Scholar 

  65. I. Haecker et al. Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Patho 8(8), e1002884 (2012).

    Article  CAS  Google Scholar 

  66. A. Grimson et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27(1), 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A.W. Whisnant et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio 4(2), e000193 (2013).

    Article  PubMed  Google Scholar 

  68. M.M. Pillai et al. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. BreastCancer Res. Treat 146(1), 85–97 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Grant No 32045-7 from Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam zarkesh or Atieh Amouzegar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh-Vakili, A., Faam, B., Afgar, A. et al. A systematic review of dysregulated microRNAs in Hashimoto’s thyroiditis. Endocrine (2024). https://doi.org/10.1007/s12020-023-03673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03673-4

Keywords

Navigation