Skip to main content
Log in

Association of serum osteocalcin with bone microarchitecture and muscle mass in Beijing community-dwelling postmenopausal women

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Osteoporosis is a systemic skeletal disease with increasing bone fragility and prone to fracture. Osteocalcin (OC), as the most abundant non collagen in bone matrix, has been extensively used in clinic as a biochemical marker of osteogenesis. Two forms of OC were stated on circulation, including carboxylated osteocalcin (cOC) and undercarboxylated osteocalcin (ucOC). OC was not only involved in bone mineralization, but also in the regulation of muscle function.

Objective

This study explored the relationship between serum OC, cOC, ucOC levels and bone mineral density (BMD), bone microarchitecture, muscle mass and physical activity in Chinese postmenopausal women.

Method

216 community-dwelling postmenopausal women were randomized enrolled. All subjects completed biochemical measurements, including serum β-isomer of C-terminal telopeptides of type I collagen (β-CTX), N-terminal propeptide of type 1 procollagen (P1NP), alkaline phosphatase (ALP), OC, cOC and ucOC. They completed X-ray absorptiometry (DXA) scan to measure BMD, appendicular lean mass (ALM) and trabecular bone score (TBS). They completed high resolution peripheral quantitative CT (HR-pQCT) to assess peripheral bone microarchitectures.

Results

Serum OC, cOC and ucOC were elevated in osteoporosis postmenopausal women. In bone geometry, serum ucOC was positively related with total bone area (Tt.Ar) and trabecular area(Tb.Ar). In bone volumetric density, serum OC and ucOC were negatively associated with total volume bone mineral density (Tt.vBMD) and trabecular volume bone mineral density (Tb.vBMD). In bone microarchitecture, serum OC and ucOC were negatively correlative with Tb.N and Tb.BV/TV, and were positively correlated with Tb.Sp. Serum OC and ucOC were positively associated with Tb.1/N.SD. Serum OC was negatively related with Tb.Th. Serum ucOC was positively associated with ALM. The high level of serum OC was the risk factor of osteoporosis. ALM was the protective factor for osteoporosis.

Conclusion

All forms of serum OC were negatively associated with BMD. Serum OC and ucOC mainly influenced microstructure of trabecular bone in peripheral skeletons. Serum ucOC participated in modulating both bone microstructure and muscle mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N.A. listed, Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650 (1993). https://doi.org/10.1016/0002-9343(93)90218-e

    Article  Google Scholar 

  2. N.E. Lane, Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 194, S3–S11 (2006). https://doi.org/10.1016/j.ajog.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  3. Research, C.S.o.O.A.B.M, Epidemiological survey of osteoporosis in China and release of the results of the special action of “healthy bones”. Chin. J. Osteoporos. Bone Min. Res. 4, 317–318 (2019)

    Google Scholar 

  4. P.D. Delmas, R. Eastell, P. Garnero, M.J. Seibel, J. Stepan; Committee of Scientific Advisors of the International Osteoporosis, The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos. Int. 11, S2–S17 (2000). https://doi.org/10.1007/s001980070002

    Article  PubMed  Google Scholar 

  5. P.V. Hauschka, J.B. Lian, D.E. Cole, C.M. Gundberg, Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989). https://doi.org/10.1152/physrev.1989.69.3.990

    Article  CAS  PubMed  Google Scholar 

  6. C. Vermeer, K.S. Jie, M.H. Knapen, Role of vitamin K in bone metabolism. Annu Rev. Nutr. 15, 1–22 (1995). https://doi.org/10.1146/annurev.nu.15.070195.000245

    Article  CAS  PubMed  Google Scholar 

  7. T. Komori, What is the function of osteocalcin? J. Oral. Biosci. 62, 223–227 (2020). https://doi.org/10.1016/j.job.2020.05.004

    Article  PubMed  Google Scholar 

  8. L. Jia, M. Cheng, Correlation analysis between risk factors, BMD and serum osteocalcin, CatheK, PINP, β-crosslaps, TRAP, lipid metabolism and BMI in 128 patients with postmenopausal osteoporotic fractures. Eur. Rev. Med Pharm. Sci. 26, 7955–7959 (2022). https://doi.org/10.26355/eurrev_202211_30147

    Article  CAS  Google Scholar 

  9. F. Lumachi, V. Camozzi, V. Tombolan, G. Luisetto, Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus. Ann. N. Y Acad. Sci. 1173(Suppl 1), E64–E67 (2009). https://doi.org/10.1111/j.1749-6632.2009.04955.x

    Article  CAS  PubMed  Google Scholar 

  10. J.T. Chen, K. Hosoda, K. Hasumi, E. Ogata, M. Shiraki, Serum N-terminal osteocalcin is a good indicator for estimating responders to hormone replacement therapy in postmenopausal women. J. Bone Min. Res 11, 1784–1792 (1996). https://doi.org/10.1002/jbmr.5650111123

    Article  CAS  Google Scholar 

  11. K.J. Kim, K.M. Kim, K.H. Park, H.S. Choi, Y. Rhee, Y.H. Lee, B.S. Cha, M.J. Kim, S.M. Oh, J.K. Brown, S.K. Lim, Aortic calcification and bone metabolism: the relationship between aortic calcification, BMD, vertebral fracture, 25-hydroxyvitamin D, and osteocalcin. Calcif. Tissue Int 91, 370–378 (2012). https://doi.org/10.1007/s00223-012-9642-1

    Article  CAS  PubMed  Google Scholar 

  12. M. Papageorgiou, T. Sathyapalan, R. Schutte, Muscle mass measures and incident osteoporosis in a large cohort of postmenopausal women. J. Cachexia Sarcopenia Muscle 10, 131–139 (2019). https://doi.org/10.1002/jcsm.12359

    Article  PubMed  Google Scholar 

  13. S.Y. Jang, J. Park, S.Y. Ryu, S.W. Choi, Low muscle mass is associated with osteoporosis: A nationwide population-based study. Maturitas 133, 54–59 (2020). https://doi.org/10.1016/j.maturitas.2020.01.003

    Article  PubMed  Google Scholar 

  14. Y. Pan, J. Xu, Association between muscle mass, bone mineral density and osteoporosis in type 2 diabetes. J. Diabetes Investig. 13, 351–358 (2022). https://doi.org/10.1111/jdi.13642

    Article  CAS  PubMed  Google Scholar 

  15. D. Scott, A. Hayes, K.M. Sanders, D. Aitken, P.R. Ebeling, G. Jones, Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos. Int. 25, 187–193 (2014). https://doi.org/10.1007/s00198-013-2431-5

    Article  CAS  PubMed  Google Scholar 

  16. E. Sornay-Rendu, F. Duboeuf, S. Boutroy, R.D. Chapurlat, Muscle mass is associated with incident fracture in postmenopausal women: The OFELY study. Bone 94, 108–113 (2017). https://doi.org/10.1016/j.bone.2016.10.024

    Article  CAS  PubMed  Google Scholar 

  17. F. Vigevano, G. Gregori, G. Colleluori, R. Chen, V. Autemrongsawat, N. Napoli, C. Qualls, D.T. Villareal, R. Armamento-Villareal, In Men With Obesity, T2DM Is Associated With Poor Trabecular Microarchitecture and Bone Strength and Low Bone Turnover. J. Clin. Endocrinol. Metab. 106, 1362–1376 (2021). https://doi.org/10.1210/clinem/dgab061

    Article  PubMed  PubMed Central  Google Scholar 

  18. K. Fulzele, D.J. DiGirolamo, Z. Liu, J. Xu, J.L. Messina, T.L. Clemens, Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem. 282, 25649–25658 (2007). https://doi.org/10.1074/jbc.M700651200

    Article  CAS  PubMed  Google Scholar 

  19. P. Mera, K. Laue, M. Ferron, C. Confavreux, J. Wei, M. Galán-Díez, A. Lacampagne, S.J. Mitchell, J.A. Mattison, Y. Chen, J. Bacchetta, P. Szulc, R.N. Kitsis, R. de Cabo, R.A. Friedman, C. Torsitano, T.E. McGraw, M. Puchowicz, I. Kurland, G. Karsenty, Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 23, 1078–1092 (2016). https://doi.org/10.1016/j.cmet.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W. Xia, Q. Liu, J. Lv, Z. Zhang, W. Wu, Z. Xie, J. Chen, L. He, J. Dong, Z. Hu, Q. Lin, W. Yu, F. Wei, J. Wang, Prevalent vertebral fractures among urban-dwelling Chinese postmenopausal women: a population-based, randomized-sampling, cross-sectional study. Arch. Osteoporos. 17, 120 (2022). https://doi.org/10.1007/s11657-022-01158-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.A. Kanis, L.J. Melton 3rd, C. Christiansen, C.C. Johnston, N. Khaltaev, The diagnosis of osteoporosis. J. Bone Min. Res. 9, 1137–1141 (1994). https://doi.org/10.1002/jbmr.5650090802

    Article  CAS  Google Scholar 

  22. S. Boutroy, M.L. Bouxsein, F. Munoz, P.D. Delmas, In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90, 6508–6515 (2005). https://doi.org/10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  23. S. Perera, S.H. Mody, R.C. Woodman, S.A. Studenski, Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54, 743–749 (2006). https://doi.org/10.1111/j.1532-5415.2006.00701.x

    Article  PubMed  Google Scholar 

  24. M. Iki, T. Akiba, T. Matsumoto, H. Nishino, S. Kagamimori, Y. Kagawa, H. Yoneshima; JPOS Study Group, Reference database of biochemical markers of bone turnover for the Japanese female population. Japanese Population-based Osteoporosis (JPOS) Study. Osteoporos. Int. 15, 981–991 (2004). https://doi.org/10.1007/s00198-004-1634-1

    Article  CAS  PubMed  Google Scholar 

  25. S.S. Diemar, L.T. Møllehave, N. Quardon, L. Lylloff, B.H. Thuesen, A. Linneberg, N.R. Jørgensen, Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase-reference intervals and confounders for two bone formation markers. Arch. Osteoporos. 15, 26 (2020). https://doi.org/10.1007/s11657-020-00715-6

    Article  PubMed  Google Scholar 

  26. Y. Xu, L. Shen, L. Liu, Z. Zhang, W. Hu, Undercarboxylated osteocalcin and its associations with bone mineral density, bone turnover markers, and prevalence of osteopenia and osteoporosis in chinese population: a cross-sectional study. Front Endocrinol. (Lausanne) 13, 843912 (2022). https://doi.org/10.3389/fendo.2022.843912

    Article  PubMed  Google Scholar 

  27. S.M. Kim, K.M. Kim, B.T. Kim, N.S. Joo, K.N. Kim, D.J. Lee, Correlation of undercarboxylated osteocalcin (ucOC) concentration and bone density with age in healthy Korean women. J. Korean Med Sci. 25, 1171–1175 (2010). https://doi.org/10.3346/jkms.2010.25.8.1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Gutierrez-Buey, P. Restituto, S. Botella, I. Monreal, I. Colina, M. Rodríguez-Fraile, A. Calleja, N. Varo, Trabecular bone score and bone remodelling markers identify perimenopausal women at high risk of bone loss. Clin. Endocrinol. (Oxf.) 91, 391–399 (2019). https://doi.org/10.1111/cen.14042

    Article  PubMed  Google Scholar 

  29. K. Kerschan-Schindl, E. Boschitsch, R. Marculescu, R. Gruber, P. Pietschmann, Bone turnover markers in serum but not in saliva correlate with bone mineral density. Sci. Rep. 10, 11550 (2020). https://doi.org/10.1038/s41598-020-68442-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Szulc, M. Arlot, M.C. Chapuy, F. Duboeuf, P.J. Meunier, P.D. Delmas, Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J. Bone Min. Res. 9, 1591–1595 (1994). https://doi.org/10.1002/jbmr.5650091012

    Article  CAS  Google Scholar 

  31. N. Emaus, N.D. Nguyen, B. Almaas, G.K. Berntsen, J.R. Center, M. Christensen, C.G. Gjesdal, A.S. Grimsgaard, T.V. Nguyen, L. Salomonsen, J.A. Eisman, V.M. Fønnebø, Serum level of under-carboxylated osteocalcin and bone mineral density in early menopausal Norwegian women. Eur. J. Nutr. 52, 49–55 (2013). https://doi.org/10.1007/s00394-011-0285-1

    Article  CAS  PubMed  Google Scholar 

  32. Å. Bjørnerem, A. Ghasem-Zadeh, M. Bui, X. Wang, C. Rantzau, T.V. Nguyen, J.L. Hopper, R. Zebaze, E. Seeman, Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: A twin study. Bone 49, 1125–1130 (2011). https://doi.org/10.1016/j.bone.2011.08.009

    Article  PubMed  Google Scholar 

  33. S. Atalay, A. Elci, H. Kayadibi, C.B. Onder, N. Aka, Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann. Lab. Med. 32, 23–30 (2012). https://doi.org/10.3343/alm.2012.32.1.23

    Article  CAS  PubMed  Google Scholar 

  34. S.H. Rønn, T. Harsløf, S.B. Pedersen, B.L. Langdahl, Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur. J. Endocrinol. 175, 541–549 (2016). https://doi.org/10.1530/EJE-16-0498

    Article  CAS  PubMed  Google Scholar 

  35. I. Zofková, M. Hill, V. Palicka, Association between serum undercarboxylated osteocalcin and bone density and/or quality in early postmenopausal women. Nutrition 19, 1001–1003 (2003). https://doi.org/10.1016/s0899-9007(03)00179-5

    Article  PubMed  Google Scholar 

  36. C.M. Gundberg, S.D. Nieman, S. Abrams, H. Rosen, Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J. Clin. Endocrinol. Metab. 83, 3258–3266 (1998). https://doi.org/10.1210/jcem.83.9.5126

    Article  CAS  PubMed  Google Scholar 

  37. P. Vergnaud, P. Garnero, P.J. Meunier, G. Bréart, K. Kamihagi, P.D. Delmas, Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J. Clin. Endocrinol. Metab. 82, 719–724 (1997). https://doi.org/10.1210/jcem.82.3.3805

    Article  CAS  PubMed  Google Scholar 

  38. P. Szulc, M.C. Chapuy, P.J. Meunier, P.D. Delmas, Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J. Clin. Invest 91, 1769–1774 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J.A. Vitale, V. Sansoni, M. Faraldi, C. Messina, C. Verdelli, G. Lombardi, S. Corbetta, Circulating carboxylated osteocalcin correlates with skeletal muscle mass and risk of fall in postmenopausal osteoporotic women. Front Endocrinol. (Lausanne) 12, 669704 (2021). https://doi.org/10.3389/fendo.2021.669704

    Article  PubMed  Google Scholar 

  40. X. Lin, C. Smith, A. Moreno-Asso, N. Zarekookandeh, T.C. Brennan-Speranza, G. Duque, A. Hayes, I. Levinger, Undercarboxylated osteocalcin and ibandronate combination ameliorates hindlimb immobilization-induced muscle wasting. J. Physiol. 601, 1851–1867 (2023). https://doi.org/10.1113/JP283990

    Article  CAS  PubMed  Google Scholar 

  41. P. Mera, K. Laue, J. Wei, J.M. Berger, G. Karsenty, Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol. Metab. 5, 1042–1047 (2016). https://doi.org/10.1016/j.molmet.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Ferron, J. Wei, T. Yoshizawa, A. Fattore, R. DePinho, A. Teti, P. Ducy, G. Karsenty, Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010). https://doi.org/10.1016/j.cell.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. X. Lin, L. Parker, E. McLennan, A. Hayes, G. McConell, T.C. Brennan-Speranza, I. Levinger, Undercarboxylated osteocalcin improves insulin-stimulated glucose uptake in muscles of corticosterone-treated mice. J. Bone Min. Res. 34, 1517–1530 (2019). https://doi.org/10.1002/jbmr.3731

    Article  CAS  Google Scholar 

  44. D. Hiam, S. Landen, M. Jacques, S. Voisin, J. Alvarez-Romero, E. Byrnes, P. Chubb, I. Levinger, N. Eynon, Osteocalcin and its forms respond similarly to exercise in males and females. Bone 144, 115818 (2021). https://doi.org/10.1016/j.bone.2020.115818

    Article  CAS  PubMed  Google Scholar 

  45. J. Fan, N. Li, X. Gong, L. He, Serum 25-hydroxyvitamin D, bone turnover markers and bone mineral density in postmenopausal women with hip fractures. Clin. Chim. Acta 477, 135–140 (2018). https://doi.org/10.1016/j.cca.2017.12.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all of the participants in this study. Special thanks to the generous support from Merck Sharp & Dohme China, Shanghai, China.

Funding

This study was supported by the National High Level Hospital Clinical Research Funding (2022-PUMCH-B-014, 2022-PUMCH-D-004), CAMS Innovation Fund for Medical Sciences (CIFMS)2021-I2M-1-002, National Key R&D Program of China (2021YFC2501700), Bethune Charitable Foundation Funding (G-X-2019-1107-1), Beijing Natural Science Foundation (7232120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Jiang or Weibo Xia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Pang, Q., Guan, W. et al. Association of serum osteocalcin with bone microarchitecture and muscle mass in Beijing community-dwelling postmenopausal women. Endocrine 84, 236–244 (2024). https://doi.org/10.1007/s12020-023-03668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03668-1

Keywords

Navigation