
Endocrine (2024) 84:16–28
https://doi.org/10.1007/s12020-023-03642-x

REVIEW

Mechanisms and risk factors of metabolic syndrome in children and
adolescents

Valentina Codazzi1 ● Giulio Frontino1
● Luca Galimberti1 ● Andrea Giustina1 ● Alessandra Petrelli 1

Received: 18 October 2023 / Accepted: 30 November 2023 / Published online: 22 December 2023
© The Author(s) 2023

Abstract
Metabolic syndrome (MetS) is a complex disorder characterized by abdominal obesity, elevated blood pressure,
hyperlipidemia, and elevated fasting blood glucose levels. The diagnostic criteria for MetS in adults are well-established, but
there is currently no consensus on the definition in children and adolescents. The etiology of MetS is believed to involve a
complex interplay between genetic predisposition and environmental factors. While genetic predisposition explains only a
small part of MetS pathogenesis, modifiable environmental risk factors play a significant role. Factors such as maternal
weight during pregnancy, children’s lifestyle, sedentariness, high-fat diet, fructose and branched-chain amino acid
consumption, vitamin D deficiency, and sleep disturbances contribute to the development of MetS. Early identification and
treatment of MetS in children and adolescents is crucial to prevent the development of chronic diseases later in life. In this
review we discuss the latest research on factors contributing to the pathogenesis of MetS in children, focusing on non-
modifiable and modifiable risk factors, including genetics, dysbiosis and chronic low-grade inflammation.
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Introduction

Metabolic syndrome (MetS) is a complex disorder char-
acterized by abdominal obesity, elevated blood pressure,
hyperlipidemia and elevated fasting blood glucose levels
[1]. Definitions of MetS in adults have been proposed by
several organizations, leading to a consensus on the pre-
sence of 3 of the following 5 criteria for its diagnosis: (i)
elevated waist circumference with cut-off based on the
reference organization; (ii) blood pressure ≥130/85 mmHg
or ongoing treatment for hypertension; (iii) fasting blood
glucose ≥100 mg/dL or ongoing treatment for diabetes; (iv)
triglycerides (TGs) ≥150 mg/dL; (v) high-density lipopro-
tein (HDL) cholesterol <40 mg/dL in males and <50 mg/dL
in females or ongoing treatment for dyslipidemia. Currently,
there is no consensus on the definition of MetS in children
and adolescents and the diagnosis is based on a combination
of clinical findings and laboratory tests.

Several definitions have been proposed for children, with
most of them being adult definitions modified for pediatric
patients (Table 1) [2–6]. Despite these efforts, a compre-
hensive definition that considers variations in fat distribu-
tion and insulin sensitivity related to age, gender, and
ethnicity remains elusive. Tropeano et al. have compre-
hensively reviewed proposed definitions for MetS in
pediatrics and asserted that the definition put forth by the
International Diabetes Federation (IDF) is preferable,
emphasizing its practical applicability in clinical settings
[7]. The IDF has defined MetS for children aged 10 to 16 in
a manner similar to its adult definition. The only differences
are that for adolescents, ethnic-specific waist circumference
percentiles are used, and there is a single cut-off level for
high-density lipoproteins, instead of a gender-specific cut-
off [8, 9]. For those aged 16 and above, the adult guidelines
are applicable. However, based on these criteria, metabolic
syndrome cannot be diagnosed in children under 10.
Nonetheless, it is advisable to monitor their waist cir-
cumference if it exceeds the 90th percentile. Moreover, in a
large cohort of patients and using different MetS definitions,
Koskinen et al. showed that childhood MetS and over-
weight are associated with an over 2.4-fold risk for adult
MetS from the age of 5 onward [10]. They also found that a
higher body mass index (BMI) during adolescence
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increases the risk of death from cardiovascular causes in
adulthood [11]. Furthermore, an increased risk of silent
coronary artery disease in adult patients with type 2 diabetes
(T2D) has been linked to MetS, and the association with
MetS was greater than that with its individual components.
[12]. Due to the strong impact on life quality and the
growing number of young individuals with MetS, estimated
at around 25.8 million children and 35.5 million adolescents
in 2020 [13], the purpose of this article is to review different
factors involved in the pathogenesis of MetS with a focus
on mechanisms described in children and adolescents.

Epidemiology of MetS in childhood

MetS is becoming increasingly common in children and
adolescents and the disparity in consensus makes it chal-
lenging for clinicians to compare studies that employ dif-
ferent diagnostic standards. Data obtained by de Ferranti et
al., using an adapted children definition of Adult Treatment
Panel from the Third National Health and Nutrition
Examination Survey (NHANES III), identify a prevalence
of 9.2% of children with MetS while nearly 64% of children
present at least one metabolic alteration [3]. The ambiguity
in using different definitions became evident in a recent
comparative study of Reisinger C et al. where prevalence of
pediatric MetS ranges between 2.1% using the IDF defini-
tion and 11.2% using Ferranti’s definition [14]. There is
however a consensus on the most frequent metabolic
alterations, where central obesity and dyslipidemia are the
major determinants.

Pathophysiology of MetS

Hypertrophic adipocytes, as consequence of visceral fat
expansion during obesity, secrete inflammatory molecules
which, coupled with the reduced insulin-mediated lipolysis
suppression, results in increased release of circulating free
fatty acids (FFAs). FFAs accumulate in ectopic sites leading
to lipotoxicity in pancreatic β cells and inhibition of insulin
signaling in liver and muscles [6, 15–36].

The mechanism undergoing IR in muscle is based on the
competition of FFAs with glucose as energy substrate and
the reduced expression of the glucose transporter 4
(GLUT4) [37]. IR in the liver is limited to glucose pro-
duction, while insulin-induced lipolysis is preserved. This
leads to an increased synthesis of triglycerides, which are
secreted into the circulation as atherogenic VLDLs causing
dyslipidemia and increased risk of cardiovascular compli-
cations [6, 16, 17, 35, 38, 39]. Increased glucose production
from hepatocytes and concomitant decreased glucose
uptake in skeletal muscle cells lead to hyperglycemiaTa

bl
e
1
C
om

pa
ri
so
n
be
tw
ee
n
de
fi
ni
tio

ns
of

M
et
ab
ol
ic

S
yn

dr
om

e
in

ch
ild

re
n

Z
im

m
et

et
al
.
(I
D
F

D
efi
ni
tio

n
10
–
16

)
[2
]

de
F
er
ra
nt
i
et

al
.
[3
]

C
oo

k
et

al
.
[4
]

V
in
er

et
al
.
[5
]

D
efi
ni
ng

cr
ite
ri
on

≥3
cr
ite
ri
a

≥3
cr
ite
ri
a

O
be
si
ty

an
d
at

le
as
t
2
of

re
m
ai
ni
ng

4
cr
ite
ri
a

≥3
cr
ite
ri
a

O
be
si
ty

W
C

≥9
0t
h
pe
rc
en
til
e

(a
ge

an
d
se
x
sp
ec
ifi
c,

N
H
A
N
E
S
II
I)

W
C

>
75

th
pe
rc
en
til
e

W
C

≥9
0t
h
pe
rc
en
til
e
or

ad
ul
t
cu
to
ff
if
lo
w
er

B
M
I
≥
95

th
pe
rc
en
til
e

(a
ge

an
d
se
x
sp
ec
ifi
c)

G
lu
co
se

in
to
le
ra
nc
e

F
as
tin

g
gl
uc
os
e
≥1
10

m
g/
dL

(≥
6.
1
m
m
ol
/L
)

B
P
≥9
0t
h
pe
rc
en
til
e

(a
ge
,
se
x,

an
d
he
ig
ht

sp
ec
ifi
c)

F
as
tin

g
gl
uc
os
e
≥1
00

m
g/
dL

(>
5.
6
m
m
ol
/L
)
or

K
no

w
n
ty
pe

2
di
ab
et
es

m
el
lit
us

F
as
tin

g
hy

pe
ri
ns
ul
in
ae
m
ia

or
Im

pa
ir
ed

fa
st
in
g

gl
uc
os
e
(≥

6.
1
m
M
/L
)
or

im
pa
ir
ed

gl
uc
os
e
to
le
ra
nc
e:

gl
uc
os
e
at

12
0
m
in

≥7
.8
m
M
/L

D
ys
lip

id
em

ia
(t
ri
gl
yc
er
id
es
)

T
ri
gl
yc
er
id
es

≥1
10

m
g/
dL

T
ri
gl
yc
er
id
es

≥1
00

m
g/
dL

T
ri
gl
yc
er
id
es

≥1
50

m
g/
dL

T
ri
gl
yc
er
id
es

≥1
.7
5
m
M
/L

or
H
D
L
-C

<
0.
9
m
M
/

L
or

to
ta
l
ch
ol
es
te
ro
l
≥
95

th
ce
nt
ile

D
ys
lip

id
em

ia
(H

D
L
-C
)
H
D
L
-C

≤
40

m
g/
dL

(1
.0
3
m
m
ol
/L
;
al
l
ag
es

an
d

se
xe
s,
N
C
E
P
)

H
D
L
-C

≤
50

m
g/
dL

(1
.3
m
m
ol
/L
)

H
D
L
-C

<
40

m
g/
dL

(1
.0
3
m
m
ol
/L
)

H
ig
h
bl
oo

d
pr
es
su
re

B
P
≥9
0t
h
pe
rc
en
til
e

(a
ge
,
se
x,

an
d
he
ig
ht

sp
ec
ifi
c)

B
P
>
90

th
pe
rc
en
til
e

S
ys
to
lic

B
P
≥
13

0
m
m

H
g
or

di
as
to
lic

B
P
≥
85

m
m

H
g
or

tr
ea
tm

en
t
of

pr
ev
io
us
ly

di
ag
no

se
d
hy

pe
rt
en
si
on

S
ys
to
lic

B
P
≥
95

th
pe
rc
en
til
e
(a
ge

an
d
se
x

sp
ec
ifi
c)

B
M
I
bo

dy
m
as
s
in
de
x,

B
P
bl
oo

d
pr
es
su
re
,
H
D
L
-C

hi
gh

-d
en
si
ty

lip
op

ro
te
in

ch
ol
es
te
ro
l,
N
H
A
N
E
S
II
I
th
ir
d
N
at
io
na
l
H
ea
lth

an
d
N
ut
ri
tio

n
E
xa
m
in
at
io
n
S
ur
ve
y,

W
C

w
ai
st
ci
rc
um

fe
re
nc
e

Endocrine (2024) 84:16–28 17



[15, 17, 33]. Moreover, the concomitant presence of
proinflammatory signals activated in obesity, vasoconstric-
tion induced by FFAs and decreased insulin-mediated
vasodilation may also explain hypertension [17, 35]. The
underlying mechanism has been proposed to be mediated by
urotensin-II (U-II), a potent vasoconstrictor, whose serum
levels are positively associated with hypertension, IR,
inflammation and with the clinical outcome of T2D and
cardiovascular disease [40–42].

Non-modifiable risk factor of MetS: genetic
predisposition

MetS is the result of a complex interplay between genetic
predisposition and environmental factors. Figure 1 depicts
risk factors and mechanisms underlying the pathophysiol-
ogy of MetS in pediatric individuals. In Europe, the herit-
ability estimates for MetS range from 10% to 30%
depending on the diagnostic criteria used [43–45], meaning
that genetic predisposition can explain only a small part of
the pathogenesis of MetS. A large number of single-
nucleotide polymorphisms (SNPs) have been described in

relation to a single component of MetS; however, only few
genes have been associated with MetS as a whole. In this
direction, Povel et al. conducted a meta-analysis revealing
the presence of the following SNPs in adult individuals with
MetS: rs9939609 (FTO), rs7903146 (TCF7L2), C56G
(APOA5), T1131C (APOA5), C482T (APOC3), C455T
(APOC3) [46]. Similar data are lacking in children, where
the most used approach is the investigation of a single SNP
in one or more MetS traits.

The fat mass and obesity-associated gene (FTO) is
located on chromosome 16 and plays a key role in weight
control and energy balance [47]. Although the A/A phe-
notype in the risk allele rs9939609 (T/A) has been strongly
associated with the occurrence of obesity [48], even in
children [48–50], several lines of evidence suggest it plays a
central role in the development of MetS [46, 51–54].
However, it’s not entirely clear whether the association with
dyslipidemia is mediated by obesity [55].

The cholesteryl ester transfer protein (CETP) gene, also
located on chromosome 16, may be equally involved in the
pathogenesis of MetS [46]. CETP encodes for a protein
involved in reverse cholesterol transfer; in fact, high levels
of CETP result in lower circulation of HDL and consequent

Fig. 1 Pathogenesis of MetS in children and adolescents. Risk factors
and mechanisms underlying the pathophysiology of MetS in pediatric
individuals are depicted. Genetic predisposition and unhealthy lifestyle
increase the risk for obesity and associated dysbiosis and inflammation
which, in turn, lead to (1) increased production of proinflammatory
cytokines by immune cells in the adipose tissue, (2) altered secretion
of adipokines, (3) increased oxidative stress and vascular damage, (4)
increased lipolysis and FFAs released from adipocytes, which lead to
decreased responsiveness of insulin-sensitive tissues. As a result,
insulin resistance, dyslipidemia and hypertension occur, increasing the

risk of T2D and cardiovascular diseases. FTO fat mass and obesity-
associated gene, CETP cholesteryl ester transfer protein gene, APOA-
V apolipoprotein A-V gene, APOE Apolipoprotein E gene, TCF7L2
Transcription factor 7-like 2, MC4R melanocortin-4 receptor gene,
ADRB1 beta-1 adrenergic receptor, BCAAs branched-chain amino
acids, IRS-1 insulin receptor substrate 1, GLP-1 glucagon-like peptide-
1, LPS lipopolysaccharides, SCFAs short-chain fatty acids, FFAs free
fatty acids, VLDL very-low-density lipoprotein, HDL high-density
lipoprotein, TNF-α: tumor necrosis factor alpha, IL-6 interleukin 6, IL-
1β interleukin-1 beta
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increases of low-density lipoproteins (LDL) and very low-
density lipoproteins (VLDL). Adult MetS is inversely
associated with the presence of the Taq-1B (rs708272)
allele which, by reducing CETP expression, protects from
dyslipidemia [46, 54, 56]. Heidari-Beni et al. confirmed the
protective role of this polymorphism for MetS in children;
however, they also demonstrated that the copresence of
obesity restored, at least in part, CETP activity. Moreover,
they identified another CETP polymorphism, A373P
(rs5880), which increases the risk of dyslipidemia and
related cardiovascular complications [56].

Apolipoproteins are responsible for lipid transport and
some of them are encoded by genes whose polymorphisms
have been associated with MetS [46, 57]. The SNPs
T1131C (rs662799) on the APOA-V gene was correlated,
both in adults and children, with high levels of triglycerides
resulting from a lower ability to activate lipoprotein lipase
[46, 58, 59]. Also, minor allele ε4 of the APOE gene
induced the highest blood cholesterol and triglyceride levels
if compared with major allele ε3 or another minor allele
such as ε2 [46, 60–62].

The transcription factor 7-like 2 (TCF7L2) gene encodes
for a protein that affects incretin-induced insulin secretion
from pancreatic β cells [63] and confers the strongest
genetic predisposition to the development of T2D. A study
conducted on Caucasian and Asian adolescents associated
the C allele of rs10749127 SNP with different features of
MetS. A meta-analysis of five studies showed that the
rs7903146 T allele also increased the risk for MetS in an
adult population [46, 64, 65]. Although this allele is com-
mon among Europeans, studies in childhood and adoles-
cence are still lacking in European countries [66].

The melanocortin-4 receptor (MC4R) gene is critical for
energy balance; it regulates food intake as well as satiety in
the hypothalamus and exerts its function at the peripheral
level by preventing excessive fat deposition [47, 63]. The
presence of the most common mutation rs17782313 (T/C)
has been associated with several MetS traits (higher BMI
and weight, higher triglycerides and lower HDL) as well as
MetS itself in adults [46, 47, 67–70], but only with BMI in
children [50, 69–72].

The Arg389Gly (rs1801253) SNP of the ADRB1 gene,
which encodes for the β1 adrenergic receptor, was found to
be associated with childhood obesity and blood pressure
control [73–75]. A study in a French adult cohort showed
that the simultaneous presence of PPARγ mutations 12Ala
and 1431 C (rs385606) were associated with an increased
risk of MetS that was not substantiated when analysed
separately [76].

It has to be noted that studies aimed at investigating
associations of genes with single MetS disorders do not take
into account that most genetic loci have a pleiotropic effect
on more than one MetS component and thus explain more

than a single phenotypic trait; for example, a quantitative
genetic analysis conducted on Hispanic children with
metabolic disorders found a pleiotropic effect among genes
encoding for systolic blood pressure, waist circumference
and glucose, whereas a negative correlation was observed
between HDL and waist circumference genes [77]. More-
over, Kraja AT et al. identified 25 genes whose SNPs are
associated with at least two metabolic traits of MetS and at
least one marker of inflammation [78]. These findings
suggest the importance of considering the disease as a
whole; however, the lack of defined diagnostic criteria for
MetS is a severe limitation, as data are often not comparable
between studies. In this scenario, assessing each SNP’s
impact on MetS risk would help quantify the role of genetic
predisposition. Another limitation in estimating the herit-
ability of MetS is the difficulty in identifying rare or minor
SNPs (defined by a minor allele frequency lower than 5%
and 0.5%, respectively) that appear to be prevalent in
children with obesity [70].

Modifiable risk factors of MetS in childhood
and adolescence

Early in life

Environmental factors, including behaviour of the mother
during pregnancy and children lifestyle, can contribute to
the early development of MetS. Susceptibility for MetS
already begins before birth, as high maternal weight during
pregnancy and associated gestational diabetes mellitus
increase the risk to develop obesity and type 2 diabetes in
the offspring [79, 80].

Obesity, insulin resistance and sedentariness

A sedentary lifestyle, obesity and insulin resistance (IR)
trigger MetS. The World Health Organization indicates that
IR is the common antecedent to all manifestations of MetS
[15, 16, 32, 81, 82]; other studies suggest that obesity is the
trigger of MetS [10, 83]. Considering that obesity and IR
are closely related and most often occur together, it is
correct to assume that both play an essential role in the
pathogenesis of MetS and that neither factor is sufficient by
itself to determine all the metabolic complications. The
Bogalusa Heart Study revealed that both childhood obesity
and IR can predict adult MetS development, but after
adjustment for insulin and BMI respectively, only obesity
maintained a significant association [84]. Two different
obesity-associated metabolic conditions, namely metaboli-
cally healthy obese (MHO) and metabolic unhealthy obese
(MUO) have been described in children as well as in adults
[85]. An MHO phenotype during childhood is more likely
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to be retained during adulthood [86, 87]. Furthermore, the
conversion of MHO children to MUO is determined by the
loss of insulin sensitivity [88, 89], thus corroborating the
hypothesis that MetS begins with obesity but requires IR to
develop [90]. It is important to note that a physiological and
transient IR occurs during pubertal development, and it
could accelerate the onset of MetS in a pre-existing state of
obesity-dependent IR [16, 35]. The causal link between
obesity and IR lies in the elevated levels of proinflammatory
adipokines, such as IL-6 and TNF-α, released by adipose
tissue following fat accumulation, which worsens tissue
responses to insulin, thus resulting in T2D, dyslipidemia
and hypertension [29, 35, 91–94]. Sedentariness and high-
fat diet take part in the development of obesity while ele-
vated consumption of fructose and branched-chain amino
acids contributes to a state of IR through the serine phos-
phorylation of the insulin receptor substrate-1 (IRS-1) and
the resulting decrease in hepatic insulin sensitivity [95–97].
In children, the most common metabolic alterations are
obesity and dyslipidemia with low HDL levels, whereas
hypertension and glucose intolerance develop later in life
and are typical of adult MetS [98, 99]. Obesity and dysli-
pidemia are consequences of poor dietary habits, whereas
the age-specific decrease in HDL levels could be due to an
androgen-sensitive increase in hepatic lipase activity and
the consequent increase of HDL catabolism [100].

Vitamin D deficiency, sleep disturbances and
hypercortisolism

Vitamin D deficiency in youth has been associated with the
presence of MetS [101]; emerging evidence suggests that
adequate vitamin D levels may offer potential protection
against the onset of metabolic complications. This includes
fostering improved glycemic control, enhancing vascular
function and regeneration, and reducing reactive oxygen
species, thereby mitigating the risk of T2D and cardiovas-
cular events [102, 103]. Despite these promising indica-
tions, a recent meta-analysis examining the impact of
vitamin D supplementation in overweight and obese chil-
dren revealed that elevated 25(OH)D levels did not translate
into clinically significant outcomes [104]. As a result, the
controversy surrounding the effectiveness of supplementa-
tion treatment persists.

Moreover, sleep disturbances, namely insufficient sleep,
poor sleep quality and/or insomnia and obstructive sleep
apnea, induce cortisol production by the adrenal cortex,
which leads to a higher caloric intake and fat accumulation
in children [32, 35, 105–107]. A higher obstructive sleep
apnea severity [108], alongside hypercortisolism [109], is
also associated with a lower glucagon-like peptide 1 (GLP-
1) response to a glucose challenge. This is because GLP-1
production is under circadian rhythm control and can be

altered in the presence of sleep disturbances
[15, 17, 28, 110].

Hypercortisolism, a condition typically associated with
Cushing’s Syndrome (CS), can also arise in other disorders,
including those with suboptimal control of diabetes and
severe obesity [111]. These patients, when exhibiting
symptoms congruent with CS, may be alternatively diag-
nosed with physiological hypercortisolism or pseudo-CS. It
is important to note that the clinical presentations of these
cases of physiological hypercortisolism often lack the
cutaneous (predisposition to bruising, skin thinning, and
fragility) or muscular (proximal muscle atrophy and weak-
ness) hallmarks of CS. During the diagnostic process for
CS, it’s essential to methodically exclude these differential
diagnoses or disorders [112].

Systemic and tissue inflammation

MetS is accompanied by a chronic low-grade inflammation
that is ascribable to obesity and could increase the risk of
cardiovascular diseases later in life, as children appear to be
more sensitive to oxidative stress than adults [11, 83, 113].
This is supported by the evidence that diet-induced weight
loss exerts anti-inflammatory effects, resulting in improve-
ments in metabolic parameters, lipid levels, and cytokine
profiles [114]. A central role in the development of
inflammation is associated to the activation of Toll-like
receptors (TLRs), which triggers inflammatory signaling
pathways and leads to the release of cytokines
[15–17, 25, 28, 32]. Obesity in children exhibits similar
inflammatory-mediated mechanisms as in adults, with
similarly altered levels of cytokines and adipokines and
increased expression of TLR2 and TLR4 [15, 25, 32, 115].
Here, we will focus on the description of inflammatory
markers that have shown changes in children with single or
multiple MetS traits.

Leptin is an adipokine highly produced by adipose tissue
in obese children [116, 117] and, despite the ‘leptin resis-
tance’ occurring in obesity, some of its effects are retained:
specifically, leptin stimulates the production of IL-6 and
TNF-α, contributing to the low-grade-inflammation, as well
as activating the sympathetic nervous system leading to
hypertension [15, 17, 28, 35, 116–119]. In physiological
conditions, leptin stimulates the oxidation of FFAs and the
uptake of glucose, thus preventing the accumulation of
lipids in non-adipose tissues. When the abundance of FFAs
is no longer compensated by leptin activity, they are shifted
to the nonoxidative metabolic pathway and detrimental
metabolites able to induce β cells death are produced
[26, 33, 34]. Another adipokine strongly related to the
pathogenesis of MetS is adiponectin, which is known to
exert a variety of protective functions on metabolism and to
induce an anti-inflammatory effect via inhibition of TLRs
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and secretion of anti-inflammatory cytokines
[15–17, 28, 29, 32]. Therefore, it is not surprising that
adiponectin levels are low in obese children
[116, 117, 120]. Chemerin, a novel adipokine that regulates
adipocyte development and metabolic functions, is strongly
associated to BMI. Moreover, it has been proposed as an
early biomarker in children for the risk of developing MetS
complications [121–123]. The adipokine resistin enhances
macrophage secretion of TNF-α [124]. Moreover, the
development of peripheral IR has been proposed to be
caused by its excessive production [125]. Resistin, whose
name was chosen because of its relationship with IR, was
expected to be the link between obesity and T2D
[126, 127]. However, further investigations showed con-
tradictory results in adults [128, 129], whereas an increased
production of resistin was consistently described in obese
children [116, 130]. It would be interesting to elucidate if
resistin can be a distinctive tract of children with obesity
or MetS.

Another adipokine with glucogenic properties, asprosin,
is emerging as a potential mediator of obesity and MetS in
children. Asprosin is a hormone protein derived from pro-
fibrillin, secreted by white adipose tissue during fasting, and
plays a role in the hypothalamic control of food intake as
well as hepatic glucose release [131]. In adults, its serum
levels have been correlated with various MetS features,
including obesity, hypertriglyceridemia, elevated choles-
terol levels, T2D and IR. However, conflicting data still
exist regarding its association with these factors in children
[132–134].

Immune cells are known to exert metabolic functions.
M1-macrophages release high levels of TNF-α in obesity
which, in turn, provide an inflammatory stimulus that
increases the production of IL-6, leptin and plasminogen
activator inhibitor-1 (PAI-1) [28, 116, 135]. TNF-α induces
serine phosphorylation of IRS-1, decreases the expression
of GLUT4 in hepatocytes and adipocytes, and stimulates
FFAs synthesis, leading to the development of IR
[16, 28, 92, 136]. On the other hand, IL-6 in the liver sti-
mulates the production of C-reactive protein (CRP), the
main acute-phase inflammatory molecule associated with
childhood obesity, as well as atherosclerosis and cardiac
events [16, 17, 116, 117, 121, 137, 138]. Moreover, IL-1β,
which is another cytokine mainly secreted by macrophages,
acts by decreasing insulin action on adipocytes and pro-
moting ectopic fat accumulation [139, 140].

In a condition of hyperglycemia, glucose accumulates in
endothelial cells and, together with advanced glycation end-
products (AGEs) and FFAs, increases oxidative stress and
induces vascular damage [141]. Several studies have con-
sistently identified heightened levels of oxidative stress
markers in obese children, linking them to an elevated risk
of metabolic, cardiovascular, and renal complications

[142–144]. Among them, the ratio between AGEs and their
soluble receptor form (sRAGE) has been proposed as an
early indicator of oxidative homeostasis dysregulation
[145]. Notably, sRAGE functions as a decoy by impeding
the binding of AGEs to the Receptor for AGEs (RAGE) on
the cell surface, thereby averting inflammation. In children
with impaired metabolism, plasma sRAGE levels exhibit
variability based on BMI and on the number of MetS
components [146]. Correspondingly, the AGEs/sRAGEs
ratio increases in overweight and obese children [147].

Furthermore, the risk of thrombotic events in childhood
is enhanced by the TNF-α-mediated release of PAI-1
[16, 28, 116]. In this context, the role of vasodilatory nitric
oxide (NO) is less clear. Its production is stimulated by
insulin and when IR occurs nitric oxide synthase is less
activated [141]. However, increased levels of NO are
observed in obese children. This paradox can be explained
by the fact that excess NO reacts with the reactive oxygen
species (ROS) in radical reactions, thus providing more
oxidative stress [144, 148].

New markers for metabolic disfunction are microRNAs
(miRNAs). MiRNAs are short, noncoding single strain
RNA molecules that regulate post-transcriptional gene
expression by binding to complementary miRNA. A large
number of miRNAs are described to be associated with
single components of MetS [17, 149, 150], but only a few
of them appear to be linked to the syndrome as a whole.
Among them, miR-Let-7e, miR-93 and miR-24-3p circu-
lating levels have been found to be increased in children
with MetS [149–151].

Chronic inflammation ascribed to obesity plays an
important role in triggering the mechanisms that lead to
insulin resistance and cardiovascular events. This highlights
the importance of prevention at an early age, when an
appropriate lifestyle - with a balanced diet and adequate
physical activity - has the potential to probtect from long-
term complications.

Alteration of the gut microbiota

The human intestinal microbiota is composed by a large
number of microorganisms with the vast majority of bac-
teria belonging to the Firmicutes, Bacteroidetes, Actino-
bacteria, Proteobacteria, Fusobacteria and Verrucomicrobia
phyla [152, 153]. Table 2 shows bacteria that have been
described to be altered in the gut microbiota of pediatric
individuals with obesity or MetS-associated disorders.

Metabolic syndrome has been associated with a higher
Firmicutes/Bacteroidetes ratio (F/B) [154–156]. In studies
conducted by Gallardo‑Becerra et al. [154] and Haro et al.
[155], in children and adults respectively, a higher abun-
dance of Firmicutes and a lower abundance of Bacteroidetes
were found in patients with MetS. These differences were

Endocrine (2024) 84:16–28 21



Ta
bl
e
2
B
ac
te
ri
a
th
at

ha
ve

be
en

de
sc
ri
be
d
to

be
al
te
re
d
in

th
e
gu

t
m
ic
ro
bi
ot
a
of

pe
di
at
ri
c
in
di
vi
du

al
s
w
ith

ob
es
ity

or
M
et
S
-a
ss
oc
ia
te
d
di
so
rd
er
s

P
hy

lu
m

C
la
ss

O
rd
er

F
am

ily
G
en
us

H
ea
lth

co
nd

iti
on

R
ef
er
en
ce
s

F
ir
m
ic
ut
es

(o
r
B
ac
ill
ot
a)

B
ac
ill
i

L
ac
to
ba
ci
lla
le
s

L
ac
to
ba
ci
lla
ce
ae

L
ac
to
ba
ci
llu

s
↑

O
vs

N
W

[1
59
]

E
ry
si
pe
lo
tr
ic
hi
a

E
ry
si
pe
lo
tr
ic
ha
le
s

E
ry
si
pe
lo
tr
ic
ha
ce
ae

↑
O
M
S
vs

O
an
d
O
M
S
vs

N
W

[1
54
]

T
ur
ic
ib
ac
te
ra
ce
ae

↓
T
ur
ic
ib
ac
te
r
↓

O
+
IR

vs
O
+
IS

[1
58
]

C
op

ro
ba
ci
lla
ce
ae

C
at
en
ib
ac
te
ri
um

↑
O
M
S
vs

N
W

an
d
O

[1
54
]

C
lo
st
ri
di
a

C
lo
st
ri
di
al
es

(o
r
E
ub

ac
te
ri
al
es
)
↑

O
sc
ill
os
pi
ra
ce
ae

or
ru
m
in
oc
oc
ca
ce
ae

↓
O

vs
N
W

[1
62
,
16

3]

F
ae
ca
lib

ac
te
ri
um

↓
S
pe
ci
es
:
F
ae
ca
lib

ac
te
ri
um

P
ra
us
ni
tz
ii
↓

O
vs

N
W

[1
64
]

O
vs

N
W

[1
54
]

L
ac
hn

os
pi
ra
ce
ae

C
op

ro
co
cc
us

↑
O
M
S
vs

N
W

[1
54
]

A
na
er
os
tip

es
↓

O
+
IR

vs
O
+
IS

[1
42
]

L
ac
hn

os
pi
ra

↑
O

vs
N
W

[1
62
,
16

3]

C
hr
is
te
ns
en
el
la
ce
ae

↓
O

vs
N
W

[1
63
]

E
ub

ac
te
ri
al
es

fa
m
ily

X
II
I

E
ub

ac
te
ri
um

br
ac
hy

↓
O

vs
N
W

[1
58
]

P
ep
to
co
cc
ac
ea
e
↑

O
+
IR

vs
O
+
IS

[1
58
]

N
eg
at
iv
ic
ut
es

A
ci
da
m
in
oc
oc
ca
le
s

A
ci
da
m
in
oc
oc
ca
ce
ae

P
ha
sc
ol
ar
ct
ob

ac
te
ri
um

↓
O

vs
N
W

[1
54
]

V
ei
llo

ne
lla
le
s

V
ei
llo

ne
lla
ce
ae

D
ia
lis
te
r
↓

O
+
IR

vs
O
+
IS

[1
58
]

B
ac
te
ro
id
ot
a

B
ac
te
ro
id
ia

B
ac
te
ro
id
al
es

↑
P
re
vo

te
lla
ce
ae

↓
O

vs
N
W

[1
62
]

P
re
vo

te
lla

↓
O

vs
N
W

[1
64
]

B
ac
te
ro
id
ac
ea
e
↑

B
ac
te
ro
id
es

↓
O

vs
N
W

[1
64
]

T
an
ne
re
lla
ce
ae

P
ar
ab
ac
te
ro
id
es

↓
sp
ec
ie
s:
P
ar
ab
ac
te
ro
id
es

di
st
as
on

is
↓

O
M
S
vs

O
[1
54
]

P
or
ph

yr
om

on
ad
ac
ea
e

P
or
ph

yr
om

on
as
↑

O
vs

N
W

an
d
O
M
S

[1
54
]

R
ik
en
el
la
ce
ae

A
lis
tip

es
↓

O
vs

N
W

[1
63
]

V
er
ru
co
m
ic
ro
bi
a

V
er
ru
co
m
ic
ro
bi
ae

V
er
ru
co
m
ic
ro
bi
al
es

A
kk

er
m
an
si
ac
ea
e

A
kk

er
m
an
si
a

S
pe
ci
es
:
A
kk

er
m
an
si
a
m
uc
in
ip
hy

la
↓

O
vs

N
W

[1
61
,
16

4]

P
se
ud

om
on

ad
ot
a

G
am

m
ap
ro
te
ob

ac
te
ri
a

E
nt
er
ob

ac
te
ra
le
s

E
nt
er
ob

ac
te
ri
ac
ea
e
↑

O
vs

N
W

[1
61
]

P
as
te
ur
el
la
le
s

P
as
te
ur
el
la
ac
ea
e

H
ae
m
op

hi
lu
s
↓

O
+
IR

vs
O
+
IS

[1
58
]

D
el
ta
pr
ot
eo
ba
ct
er
ia

D
es
ul
fo
vi
br
io
na
le
s

D
es
ul
fo
vi
br
io
na
ce
ae

D
es
ul
fo
vi
br
io

↓
O

vs
N
W

[1
64
]

A
ct
in
ob

ac
te
ri
a

C
or
io
ba
ct
er
iia

C
or
io
ba
ct
er
ia
le
s
↓

O
+
IR

vs
O
+
IS

[1
58
]

C
or
io
ba
ct
er
ia
ce
ae

C
ol
lin

se
lla

S
pe
ci
es
:
C
ol
lin

se
lla

ae
ro
fa
ci
en
s
↑

O
M
S
vs

O
an
d
N
W

[1
54
]

E
gg

er
th
el
la
le
s

E
gg

er
th
el
la
ce
ae

A
dl
er
cr
eu
tz
ia

↓
O
+
IR

vs
O
+
IS

[1
58
]

N
W

no
rm

al
w
ei
gh

t,
O

ob
es
e,

O
M
S
ob

es
e
w
ith

m
et
ab
ol
ic

sy
nd

ro
m
e,

O
+
IR

ob
es
e
w
ith

in
su
lin

re
si
st
an
ce
,
O
+
IS

ob
es
e
w
ith

in
su
lin

se
ns
iti
vi
ty

22 Endocrine (2024) 84:16–28



statistically significant when obese patients with MetS were
compared with normal-weight subjects; however, obese
patients without MetS also showed an increase in the F/B
ratio [154, 156]. Given that obesity plays a central role in
the development of MetS, it’s not surprising that dysbiosis
goes in the same direction. However, as both obesity and IR
have been independently associated with an increased F/B
ratio in children [157–159], the timing of changes in gut
microbiota composition during the natural history of MetS
is unclear.

Within the Firmicutes phylum, an increase in the class
Bacilli is observed in MetS children [154]. In an adult
cohort of patients with MetS this was attributed to the
expansion of the Lactobacillus genus [160]. However,
conflicting data regarding the Lactobacillus genus are
reported in obese children [159, 161]. In addition, in the
order Erysipelotrichales, an increase in the genus Cateni-
bacterium was observed in children with MetS [154], while
a decrease in the Turicibacter genus was described in chil-
dren with IR [158].

The most significant difference within the Firmicutes
phylum is found in the class Clostridia, where the increase
of the overall abundance of the Clostridiales order con-
comitant with metabolic traits in children [154] is due to an
imbalance between several genera. Moreover, the obesity
phenotype is associated in children with a lower presence of
the Oscillospiraceae family [157, 162, 163] and specifically
with a decrease in the Faecalibacterium prausnitzii species
[154, 164]. These data are in line with those described in
adults with MetS, with obesity being the driving factor of
this alteration [155, 160]. Faecalibacterium prausnitzii has
an anti-inflammatory function, and its decrease may be the
result of a protracted inflammatory process, as occurs in
obesity [164].

Several studies have shown that the decline in the phy-
lum of Bacteroidota is due to significant changes in the
order of the Bacteroidales. However, while the reduction in
Prevotella appears to begin with the onset of childhood
obesity [162, 164] and then persists in adult MetS [155],
other bacterial genera have shown different characteristics
between these two groups. Specifically, obesity was asso-
ciated with a decrease in Alistipes and an increase in
Phorphyromonas [154, 163], while Parabacteroides dis-
tasonis represents a biomarker of MetS [154, 155, 160] as it
negatively correlates with more than a single metabolic
disorder, including waist circumference, glucose and tri-
glycerides serum levels [160].

Bacteria contribute to the development of MetS through
several mechanisms. First, the gut microbiota contributes to
low-grade inflammation through infiltration of lipopoly-
saccharides, causing endotoxemia and TLRs activation
[17, 25, 28, 107, 153, 161]. In addition, dysbiosis is char-
acterized by a reduction in short-chain fatty acids (SCFAs)-

producing bacteria [155, 165, 166]. SCFAs are metabolites
obtained from microbial fermentation of indigestible car-
bohydrates that protect against the development of meta-
bolic abnormalities; they stimulate the production of
molecules such as GLP-1 and GLP-2 which have an anti-
inflammatory activity and improve the function of the
intestinal barrier [153, 165, 167]. Although the gut micro-
biota may change with age and is sensitive to environmental
factors -such as social status and diet-, its composition
clearly changes between MHO and MUO children
[153, 157, 159, 168]. Moreover, bacteria associated with the
production of SCFAs, namely Parabacteroides distasonis,
Prevotella and Faecalibacterium prausnitzii, as well as the
F/B ratio, in adults with MetS follow the same trend as in
children [153, 157, 165]. Benefits resulting from the
restoration of gut microbiome composition through the
administration of probiotics or fecal microbiome trans-
plantation corroborate the crucial importance of having a
healthy gut [28, 165, 169].

Conclusions

MetS in childhood and adolescence is a risk factor for
cardiovascular diseases and death in adulthood. Currently,
there is no consensus on the definition of MetS in children
and adolescents, especially for children younger than 10
years. The rise of MetS in childhood is influenced by
various factors, including increased obesity, dietary chan-
ges, and a sedentary lifestyle. However, the lack of stan-
dardized diagnostic criteria for children leads to
underdiagnosis and undertreatment. While genetic predis-
position has limited influence on the development of MetS,
modifiable risk factors, such as maternal weight during
pregnancy, children’s lifestyle, obesity, IR, sedentary
behaviour, vitamin D deficiency, sleep disturbances,
hypercortisolism, chronic inflammation, and alterations in
gut microbiota play a crucial role in the development of
MetS. Current interventions emphasize increased physical
activity and a healthy diet, with positive effects on MetS
components, even in children [170]. Notably, regulatory
agencies like the U.S. Food and Drug Administration
(FDA) and the European Medicines Agency (EMA)
recently approved glucagon-like peptide-1 receptor ago-
nists for chronic weight management in pediatric patients
aged 12 years and older. Despite progress, the debate
continues on extending adult-tested pharmacological
advancements to children, raising questions about addres-
sing the therapeutic gap.

Achieving consensus on diagnostic criteria, implement-
ing early prevention strategies, and addressing environ-
mental factors are essential in influencing the natural history
of MetS in childhood and adolescence.
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