Skip to main content

Advertisement

Log in

Cardiac disease in Cushing’s syndrome. Emphasis on the role of cardiovascular magnetic resonance imaging

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Cushing’s Syndrome (CS) is associated with increased cardiovascular morbidity and mortality. In endogenous CS, cardiovascular mortality remains increased for up to 15 years post remission of hypercortisolism. Similarly, patients with exogenous CS have 4-fold increased incidence of cardiovascular events, regardless of pre-existing cardiovascular disease (CVD).

Objective

To present the pathophysiology, prognosis, clinical and imaging phenotype of cardiac disease in CS.

Methods

A Pubmed search for cardiac disease in CS over the last 20 years was conducted using combinations of relevant terms. Preclinical and clinical studies, as well as review papers reporting on subclinical heart failure (HF), cardiomyopathy, coronary heart disease (CHD), and cardiovascular imaging were selected.

Results

Cardiac disease in CS is associated with direct mineralocorticoid and glucocorticoid receptor activation, increased responsiveness to angiotensin II, ectopic epicardial adiposity, arterial stiffness and endothelial dysfunction, as well as with diabetes mellitus, hypertension, hyperlipidemia, obesity and prothrombotic diathesis. Subclinical HF and cardiomyopathy are principally related to direct glucocorticoid (GC) effects and markedly improve or regress post hypercortisolism remission. In contrast, CHD is related to both direct GC effects and CS comorbidities and persists post cure. In patients without clinical evidence of CVD, echocardiography and cardiac magnetic resonance (CMR) imaging reveal left ventricular hypertrophy, fibrosis, diastolic and systolic dysfunction, with the latter being underestimated by echocardiography. Finally, coronary microvascular disease is encountered in one third of cases.

Conclusion

Cardiovascular imaging is crucial in evaluation of cardiac involvement in CS. CMR superiority in terms of reproducibility, operator independency, unrestricted field of view and capability of tissue characterisation makes this modality ideal for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.K. Nieman, B.M.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart, V.M. Montori, H. Edwards, The diagnosis of Cushing’s syndrome: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. Fardet, B. Fève, Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events. Drugs 74, 1731–1745 (2014). https://doi.org/10.1007/s40265-014-0282-9

    Article  CAS  PubMed  Google Scholar 

  3. O.A. Hakami, S. Ahmed, N. Karavitaki, Epidemiology and mortality of Cushing’s syndrome. Best Pract.Res. Clin. Endocrinol. Metabol. 35, (2021). https://doi.org/10.1016/j.beem.2021.101521

  4. R. Pivonello, A.M. Isidori, M.C. De Martino, J. Newell-Price, B.M.K. Biller, A. Colao, Complications of Cushing’s syndrome: State of the art. Lancet Diabetes Endocrinol. 4, 611–629 (2016). https://doi.org/10.1016/S2213-8587(16)00086-3

    Article  CAS  PubMed  Google Scholar 

  5. A.M. Isidori, C. Graziadio, R.M. Paragliola, A. Cozzolino, A.G. Ambrogio, A. Colao, S.M. Corsello, R. Pivonello, The hypertension of Cushing’s syndrome: Controversies in the pathophysiology and focus on cardiovascular complications. J. Hypertens. 33, 44–60 (2015). https://doi.org/10.1097/HJH.0000000000000415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Kadmiel, J.A. Cidlowski, Glucocorticoid receptor signaling in health and disease. Trends Pharm. Sci. 34, 518–530 (2013). https://doi.org/10.1016/j.tips.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  7. E.B. Geer, W. Shen, D. Gallagher, M. Punyanitya, H.C. Looker, K.D. Post, P.U. Freda, MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin. Endocrinol. (Oxf.) 73, 469–475 (2010). https://doi.org/10.1111/j.1365-2265.2010.03829.x

    Article  PubMed  Google Scholar 

  8. A.G. Rockall, S.A. Sohaib, D. Evans, G. Kaltsas, A.M. Isidori, J.P. Monson, G.M. Besser, A.B. Grossman, R.H. Reznek, Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur. J. Endocrinol. 149, 561–567 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. C. Scaroni, M. Zilio, M. Foti, M. Boscaro, Glucose metabolism abnormalities in cushing syndrome: from molecular basis to clinical management. Endocr. Rev. 38, 189–219 (2017). https://doi.org/10.1210/er.2016-1105

    Article  PubMed  Google Scholar 

  10. M. Fleseriu, R. Auchus, I. Bancos, A. Ben-Shlomo, J. Bertherat, N.R. Biermasz, C.L. Boguszewski, M.D. Bronstein, M. Buchfelder, J.D. Carmichael, F.F. Casanueva, F. Castinetti, P. Chanson, J. Findling, M. Gadelha, E.B. Geer, A. Giustina, A. Grossman, M. Gurnell, K. Ho, A.G. Ioachimescu, U.B. Kaiser, N. Karavitaki, L. Katznelson, D.F. Kelly, A. Lacroix, A. McCormack, S. Melmed, M. Molitch, P. Mortini, J. Newell-Price, L. Nieman, A.M. Pereira, S. Petersenn, R. Pivonello, H. Raff, M. Reincke, R. Salvatori, C. Scaroni, I. Shimon, C.A. Stratakis, B. Swearingen, A. Tabarin, Y. Takahashi, M. Theodoropoulou, S. Tsagarakis, E. Valassi, E.V. Varlamov, G. Vila, J. Wass, S.M. Webb, M.C. Zatelli, B.M.K. Biller, Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9, 847–875 (2021). https://doi.org/10.1016/S2213-8587(21)00235-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. E. Gomez-Sanchez, C.E. Gomez-Sanchez, The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994 (2014). https://doi.org/10.1002/cphy.c130044

    Article  PubMed  PubMed Central  Google Scholar 

  12. A. Coulden, R. Hamblin, J. Wass, N. Karavitaki, Cardiovascular health and mortality in Cushing’s disease. Pituitary 25, 750–753 (2022). https://doi.org/10.1007/s11102-022-01258-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. E.V. Varlamov, F. Langlois, G. Vila, M. Fleseriu, Cardiovascular risk assessment, thromboembolism, and infection prevention in Cushing’s syndrome: A practical approach. Eur. J. Endocrinol. 184, R207–R224 (2021). https://doi.org/10.1530/EJE-20-1309

    Article  CAS  PubMed  Google Scholar 

  14. L.K. Nieman, Hypertension and cardiovascular mortality in patients with cushing syndrome. Endocrinol. Metab. Clin. North Am. 48, 717–725 (2019). https://doi.org/10.1016/j.ecl.2019.08.005

    Article  PubMed  Google Scholar 

  15. R.N. Clayton, P.W. Jones, R.C. Reulen, P.M. Stewart, Z.K. Hassan-Smith, G. Ntali, N. Karavitaki, O.M. Dekkers, A.M. Pereira, M. Bolland, I. Holdaway, J. Lindholm, Mortality in patients with Cushing’s disease more than 10 years after remission: A multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol. 4, 569–576 (2016). https://doi.org/10.1016/S2213-8587(16)30005-5

    Article  PubMed  Google Scholar 

  16. G. Ntali, A. Asimakopoulou, T. Siamatras, J. Komninos, D. Vassiliadi, M. Tzanela, S. Tsagarakis, A.B. Grossman, J.A.H. Wass, N. Karavitaki, Mortality in Cushing’s syndrome: Systematic analysis of a large series with prolonged follow-up. Eur. J. Endocrinol. 169, 715–723 (2013). https://doi.org/10.1530/EJE-13-0569

    Article  CAS  PubMed  Google Scholar 

  17. O. Ragnarsson, D.S. Olsson, E. Papakokkinou, D. Chantzichristos, P. Dahlqvist, E. Segerstedt, T. Olsson, M. Petersson, K. Berinder, S. Bensing, C. Hoybye, B. Eden-Engstrom, P. Burman, L. Bonelli, C. Follin, D. Petranek, E.M. Erfurth, J. Wahlberg, B. Ekman, A.K. Akerman, E. Schwarcz, I.L. Bryngelsson, G. Johannsson, Overall and disease-specific mortality in patients with cushing disease: A Swedish nationwide study. J. Clin. Endocrinol. Metab. 104, 2375–2384 (2019). https://doi.org/10.1210/jc.2018-02524

    Article  PubMed  Google Scholar 

  18. R.N. Clayton, D. Raskauskiene, R.C. Reulen, P.W. Jones, Mortality and morbidity in Cushing’s disease over 50 Years in Stoke-on-Trent, UK: Audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 96, 632–642 (2011). https://doi.org/10.1210/jc.2010-1942

    Article  CAS  PubMed  Google Scholar 

  19. D. Bengtsson, O. Ragnarsson, K. Berinder, P. Dahlqvist, B.E. Engström, B. Ekman, C. Höybye, J. Järås, S. Valdemarsson, P. Burman, J. Wahlberg, Increased Mortality Persists after Treatment of Cushing’s Disease: A Matched Nationwide Cohort Study. J. Endocr. Soc. 6, 1–10 (2022). https://doi.org/10.1210/jendso/bvac045

    Article  Google Scholar 

  20. L. Fardet, I. Petersen, I. Nazareth, Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: Cohort study. BMJ (Online). 345, (2012). https://doi.org/10.1136/bmj.e4928

  21. R.N. Clayton, Cardiovascular complications of Cushing’s syndrome: Impact on morbidity and mortality. J Neuroendocrinol. 34, (2022). https://doi.org/10.1111/jne.13175

  22. P.M. Toja, G. Branzi, F. Ciambellotti, P. Radaelli, M. De Martin, L.M. Lonati, M. Scacchi, G. Parati, F. Cavagnini, F.P. Giraldi, Clinical relevance of cardiac structure and function abnormalities in patients with Cushing’s syndrome before and after cure. Clin. Endocrinol. 76, 332–338 (2012). https://doi.org/10.1111/j.1365-2265.2011.04206.x

    Article  CAS  Google Scholar 

  23. A.M. Pereira, V. Delgado, J.A. Romijn, J.W.A. Smit, J.J. Bax, R.A. Feelders, Cardiac dysfunction is reversed upon successful treatment of Cushing’s syndrome. Eur. J. Endocrinol. 162, 331–340 (2010). https://doi.org/10.1530/EJE-09-0621

    Article  CAS  PubMed  Google Scholar 

  24. M.L. Muiesan, M. Lupia, M. Salvetti, C. Grigoletto, N. Sonino, M. Boscaro, E. Agabiti Rosei, F. Mantero, F. Fallo, Left ventricular structural and functional characteristics in Cushing’s syndrome. J. Am. Coll. Cardiol. 41, 2275–2279 (2003). https://doi.org/10.1016/S0735-1097(03)00493-5

    Article  PubMed  Google Scholar 

  25. E. Avenatti, A. Rebellato, A. Iannaccone, M. Battocchio, F. Dassie, F. Veglio, A. Milan, F. Fallo, Left ventricular geometry and 24-h blood pressure profile in Cushing’s syndrome. Endocrine 55, 547–554 (2017). https://doi.org/10.1007/s12020-016-0986-6

    Article  CAS  PubMed  Google Scholar 

  26. K.H. Yiu, N.A. Marsan, V. Delgado, N.R. Biermasz, E.R. Holman, J.W.A. Smit, R.A. Feelders, J.J. Bax, A.M. Pereira, Increased myocardial fibrosis and left ventricular dysfunction in Cushing’s syndrome. Eur. J. Endocrinol. 166, 27–34 (2012). https://doi.org/10.1530/EJE-11-0601

    Article  CAS  PubMed  Google Scholar 

  27. C. Roux, N. Kachenoura, Z. Raissuni, E. Mousseaux, J. Young, M.J. Graves, C. Jublanc, P. Cluzel, P. Chanson, P. Kamenický, A. Redheuil, Effects of cortisol on the heart: characterization of myocardial involvement in Cushing’s disease by longitudinal cardiac MRI T1 mapping. J. Magn. Reson. Imaging 45, 147–156 (2017). https://doi.org/10.1002/jmri.25374

    Article  PubMed  Google Scholar 

  28. P. Kamenický, A. Redheuil, C. Roux, S. Salenave, N. Kachenoura, Z. Raissouni, L. Macron, L. Guignat, C. Jublanc, A. Azarine, S. Brailly, J. Young, E. Mousseaux, P. Chanson, Cardiac structure and function in cushing’s syndrome: A cardiac magnetic resonance imaging study. J. Clin. Endocrinol. Metab. 99, E2144–E2153 (2014). https://doi.org/10.1210/jc.2014-1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K.E. Sheppard, D.J. Autelitano, 1-Hydroxysteroid Dehydrogenase 1 Transforms 11-Dehydrocorticosterone into Transcriptionally Active Glucocorticoid in Neonatal Rat Heart. Endocrinology 143, 198–204 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. G.A. Gray, C.I. White, R.F.P. Castellan, S.J. McSweeney, K.E. Chapman, Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. J. Mol. Endocrinol. 58, R1–R13 (2017). https://doi.org/10.1530/JME-16-0128

    Article  CAS  PubMed  Google Scholar 

  31. K. Nagata, K. Obata, J. Xu, S. Ichihara, A. Noda, H. Kimata, T. Kato, H. Izawa, T. Murohara, M. Yokota, Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 47, 656–664 (2006). https://doi.org/10.1161/01.HYP.0000203772.78696.67

    Article  CAS  PubMed  Google Scholar 

  32. A. Frustaci, C. Letizia, R. Verardo, C. Grande, L. Petramala, M.A. Russo, C. Chimenti, Cushing syndrome cardiomyopathy.clinicopathologic impact of cortisol normalization. Circ. Cardiovasc. Imaging. 9, (2016)

  33. A. Frustaci, C. Letizia, R. Verardo, C. Grande, C. Calvieri, M.A. Russo, C. Chimenti, Atrogin-1 pathway activation in cushing syndrome cardiomyopathy. J. Am. Coll. Cardiol. 67, 116–117 (2016). https://doi.org/10.1016/j.jacc.2015.10.040

    Article  PubMed  Google Scholar 

  34. F. Maurice, B. Gaborit, C. Vincentelli, I. Abdesselam, M. Bernard, T. Graillon, F. Kober, T. Brue, F. Castinetti, A. Dutour, Cushing syndrome is associated with subclinical LV dysfunction and increased epicardial adipose tissue. J. Am. Coll. Cardiol. 72, 2276–2277 (2018). https://doi.org/10.1016/j.jacc.2018.07.096

    Article  PubMed  Google Scholar 

  35. P. Wolf, B. Marty, K. Bouazizi, N. Kachenoura, C. Piedvache, A. Blanchard, S. Salenave, M. Prigent, C. Jublanc, C. Ajzenberg, C. Droumaguet, J. Young, A.L. Lecoq, E. Kuhn, H. Agostini, S. Trabado, P.G. Carlier, B. Fève, A. Redheuil, P. Chanson, P. Kamenický, Epicardial and pericardial adiposity without myocardial steatosis in cushing syndrome. J. Clin. Endocrinol. Metab. 106, 3505–3514 (2021). https://doi.org/10.1210/clinem/dgab556

    Article  PubMed  Google Scholar 

  36. F. Tona, M. Boscaro, M. Barbot, L. Maritan, G. Famoso, L.C. Dal, R. Montisci, F. Fallo, S. Iliceto, C. Scaroni, New insights to the potential mechanisms driving coronary flow reserve impairment in Cushing’s syndrome: A pilot noninvasive study by transthoracic Doppler echocardiography. Microvasc. Res. 128, (2020). https://doi.org/10.1016/j.mvr.2019.103940

  37. R. Sagara, T. Inoue, N. Sonoda, C. Yano, M. Motoya, H. Umakoshi, R. Sakamoto, Y. Ogawa, Association between cortisol and left ventricular diastolic dysfunction in patients with diabetes mellitus. J. Diabetes Investig. 13, 344–350 (2022). https://doi.org/10.1111/jdi.13653

    Article  CAS  PubMed  Google Scholar 

  38. O.M. Dekkers, E. Horváth-Puh́o, J.O.L. Jørgensen, S.C. Cannegieter, V. Ehrenstein, J.P. Vandenbroucke, A.M. Pereira, H.T. Srøensen, Multisystem morbidity and mortality in Cushing’s syndrome: A cohort study. J. Clin. Endocrinol. Metab. 98, 2277–2284 (2013). https://doi.org/10.1210/jc.2012-3582

    Article  CAS  PubMed  Google Scholar 

  39. S. Miao, L. Lu, L. Li, Y. Wang, Z. Lu, H. Zhu, L. Wang, L. Duan, X. Xing, Y. Yao, M. Feng, R. Wang, Clinical characteristics for the improvement of cushing’s syndrome complicated with cardiomyopathy after treatment with a literature review. Front. Cardiovasc. Med. 8, (2021). https://doi.org/10.3389/fcvm.2021.777964

  40. M. Sakota, S. Tatebe, K. Sugimura, T. Aoki, S. Yamamoto, H. Sato, N. Kikuchi, R. Konno, Y. Terui, K. Satoh, Y. Tezuka, R. Morimoto, M. Saito, S. Kuniyoshi, H. Shimokawa, Successful management of acute congestive heart failure by emergent caesarean section followed by adrenalectomy in a pregnant woman with cushing’s syndrome-induced cardiomyopathy. Intern. Med. 58, 2819–2824 (2019). https://doi.org/10.2169/internalmedicine.2427-18

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Peppa, I. Ikonomidis, D. Hadjidakis, V. Pikounis, I. Paraskevaidis, T. Economopoulos, S.A. Raptis, D.T. Kremastinos, Dilated cardiomyopathy as the predominant feature of Cushing’s syndrome. Am. J. Med. Sci. 338, 252–253 (2009). https://doi.org/10.1097/MAJ.0b013e3181a927e0

    Article  PubMed  Google Scholar 

  42. T. Sheikh, H. Shuja, S.R. Zaidi, A. Haque, Glucocorticoid-induced cardiomyopathy: Unexpected conclusion. BMJ Case Rep. 13, (2020). https://doi.org/10.1136/bcr-2020-237173

  43. L. Marchand, B. Segrestin, M. Lapoirie, V. Favrel, J. Dementhon, E. Jouanneau, G. Raverot, Dilated Cardiomyopathy Revealing Cushing Disease. A Case Report and Literature Review. Med. (U. S.) 94, e2011 (2015). https://doi.org/10.1097/MD.0000000000002011

    Article  Google Scholar 

  44. T.M. Hey, J.S. Dahl, T.H. Brix, E.V. Søndergaard, D. Thomas, M. Hey, Biventricular hypertrophy and heart failure as initial presentation of Cushing’s disease. BMJ Case Rep. (2013). https://doi.org/10.1136/bcr-2013

  45. L. Wei, T.M. Macdonald, B.R. Walker, Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease background: glucocorticoids have adverse systemic effects, in. Ann. Intern. Med. 141, 764–770 (2004)

    Article  PubMed  Google Scholar 

  46. M.J. Bolland, I.M. Holdaway, J.E. Berkeley, S. Lim, W.J. Dransfield, J.V. Conaglen, M.S. Croxson, G.D. Gamble, P.J. Hunt, R.J. Toomath, Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin. Endocrinol. 75, 436–442 (2011). https://doi.org/10.1111/j.1365-2265.2011.04124.x

    Article  Google Scholar 

  47. P.C. Souverein, A. Berard, T.P. Van Staa, C. Cooper, A.C.G. Egberts, H.G.M. Leufkens, B.R. Walker, Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 90, 859–865 (2004). https://doi.org/10.1136/hrt.2003.020180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N.M. Neary, O.J. Booker, B.S. Abel, J.R. Matta, N. Muldoon, N. Sinaii, R.I. Pettigrew, L.K. Nieman, A.M. Gharib, Hypercortisolism is associated with increased coronary arterial atherosclerosis: Analysis of noninvasive coronary angiography using multidetector computerized tomography. J. Clin. Endocrinol. Metab. 98, 2045–2052 (2013). https://doi.org/10.1210/jc.2012-3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M.J. Barahona, E. Resmini, D. Viladés, G. Pons-Lladó, R. Leta, T. Puig, S.M. Webb, Coronary artery disease detected by multislice computed tomography in patients after long-term cure of cushing’s syndrome. J. Clin. Endocrinol. Metab. 98, 1093–1099 (2013). https://doi.org/10.1210/jc.2012-3547

    Article  CAS  PubMed  Google Scholar 

  50. M. De Leo, R. Pivonello, R.S. Auriemma, A. Cozzolino, P. Vitale, C. Simeoli, M.C. De Martino, G. Lombardi, A. Colao, Cardiovascular disease in Cushing’s syndrome: Heart versus vasculature. Neuroendocrinology 92, 50–54 (2010). https://doi.org/10.1159/000318566

    Article  CAS  PubMed  Google Scholar 

  51. C. Yano, M. Yokomoto-Umakoshi, M. Fujita, H. Umakoshi, S. Yano, N. Iwahashi, S. Katsuhara, H. Kaneko, M. Ogata, T. Fukumoto, E. Terada, Y. Matsuda, R. Sakamoto, Y. Ogawa, Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep. 17, (2022). https://doi.org/10.1016/j.bonr.2022.101610

  52. M. Battocchio, A. Rebellato, A. Grillo, F. Dassie, P. Maffei, S. Bernardi, B. Fabris, R. Carretta, F. Fallo, Ambulatory arterial stiffness indexes in cushing’s syndrome. Horm. Metab. Res. 49, 214–220 (2017). https://doi.org/10.1055/s-0043-100385

    Article  CAS  PubMed  Google Scholar 

  53. I. Akaza, T. Yoshimoto, K. Tsuchiya, Y. Hirata, Endothelial dysfunction associated with hypercortisolism is reversible in cushing’s syndrome. Endocr. J. 57, 245–252 (2010)

    Article  PubMed  Google Scholar 

  54. G. Kirilov, A. Tomova, L. Dakovska, P. Kumanov, A. Shinkov, A.S. Alexandrov, Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing’s syndrome. Eur. J. Endocrinol. 149, 549–553 (2003)

    Article  CAS  PubMed  Google Scholar 

  55. A. Faggiano, D. Melis, R. Alfieri, M.C. De Martino, M. Filippella, F. Milone, G. Lombardi, A. Colao, R. Pivonello, Sulfur amino acids in Cushing’s disease: Insight in homocysteine and taurine levels in patients with active and cured disease. J. Clin. Endocrinol. Metabol. 90, 6616–6622 (2005). https://doi.org/10.1210/jc.2005-0656

    Article  CAS  Google Scholar 

  56. G. Markousis‐Mavrogenis, F. Bacopoulou, C. Mavragani, P. Voulgari, G. Kolovou, G.D. Kitas, G.P. Chrousos, S.I. Mavrogeni, Coronary microvascular disease: The “Meeting Point” of Cardiology, Rheumatology and Endocrinology. Eur J Clin Invest. 52, (2022). https://doi.org/10.1111/eci.13737

  57. R.B. Devereux, B. Dahlöf, E. Gerdts, K. Boman, M.S. Nieminen, V. Papademetriou, J. Rokkedal, K.E. Harris, J.M. Edelman, K. Wachtell, Regression of hypertensive left ventricular hypertrophy by Losartan compared with atenolol: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 110, 1456–1462 (2004). https://doi.org/10.1161/01.CIR.0000141573.44737.5A

    Article  CAS  PubMed  Google Scholar 

  58. F. Grothues, G.C. Smith, J.C. Moon, M. BCh, N.G. Bellenger, P. Collins, H.U. Klein, D.J. Pennell, Comparison of Interstudy Reproducibility of Cardiovascular Magnetic Resonance With Two-Dimensional Echocardiography in Normal Subjects and in Patients With Heart Failure or Left Ventricular Hypertrophy. Am. J. Cardiol. 90, 29–34 (2002)

    Article  PubMed  Google Scholar 

  59. J.H. Park, K. Negishi, D.H. Kwon, Z.B. Popovic, R.A. Grimm, T.H. Marwick, Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: Comparison with cardiac magnetic resonance and outcome. J. Cardiovasc Ultrasound 22, 113–120 (2014). https://doi.org/10.4250/jcu.2014.22.3.113

    Article  PubMed  PubMed Central  Google Scholar 

  60. M. Aurich, F. André, M. Keller, S. Greiner, A. Hess, S.J. Buss, H.A. Katus, D. Mereles, Assessment of left ventricular volumes with echocardiography and cardiac magnetic resonance imaging: Real-life evaluation of standard versus new semiautomatic methods. J. Am. Soc. Echocardiogr. 27, 1017–1024 (2014). https://doi.org/10.1016/j.echo.2014.07.006

    Article  PubMed  Google Scholar 

  61. L. Perdrix, N. Mansencal, B. Cocheteux, G. Chatellier, A. Bissery, B. Diebold, E. Mousseaux, E. Abergel, How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch. Cardiovasc Dis. 104, 343–351 (2011). https://doi.org/10.1016/j.acvd.2011.04.003

    Article  PubMed  Google Scholar 

  62. H. Oe, T. Hozumi, K. Arai, Y. Matsumura, K. Negishi, K. Sugioka, K. Ujino, Y. Takemoto, Y. Inoue, J. Yoshikawa, Comparison of accurate measurement of left ventricular mass in patients with hypertrophied hearts by real-time three-dimensional echocardiography versus magnetic resonance imaging. Am. J. Cardiol. 95, 1263–1267 (2005). https://doi.org/10.1016/j.amjcard.2005.01.065

    Article  PubMed  Google Scholar 

  63. K. Kusunose, D.H. Kwon, H. Motoki, S.D. Flamm, T.H. Marwick, Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am. J. Cardiol. 112, 604–611 (2013). https://doi.org/10.1016/j.amjcard.2013.04.028

    Article  PubMed  Google Scholar 

  64. K. Alfakih, K. Walters, T. Jones, J. Ridgway, A.S. Hall, M. Sivananthan, New gender-specific partition values for ECG criteria of left ventricular hypertrophy: Recalibration against cardiac MRI. Hypertension 44, 175–179 (2004). https://doi.org/10.1161/01.HYP.0000135249.66192.30

    Article  CAS  PubMed  Google Scholar 

  65. K. Moschetti, R.Y. Kwong, S.E. Petersen, M. Lombardi, J. Garot, D. Atar, F.E. Rademakers, L.M. Sierra-Galan, S. Mavrogeni, K. Li, J.L. Fernandes, S. Schneider, C. Pinget, Y. Ge, P. Antiochos, C. Deluigi, O. Bruder, H. Mahrholdt, J. Schwitter, Cost-Minimization Analysis for Cardiac Revascularization in 12 Health Care Systems Based on the EuroCMR/SPINS Registries. JACC Cardiovasc Imaging 15, 607–625 (2022). https://doi.org/10.1016/j.jcmg.2021.11.008

    Article  PubMed  Google Scholar 

  66. S.I. Mavrogeni, A. Kallifatidis, T. Kourtidou, N. Lama, A. Christidi, E. Detorakis, G. Chatzantonis, T. Vrachliotis, T. Karamitsos, K. Kouskouras, N. Kelekis. Cardiovascular Magnetic Resonance for evaluation of patients with cardiovascular disease. An overview of current indications, limitations and procedures. Hell. J. Cardiol. (2023). https://doi.org/10.1016/j.hjc.2023.01.003

  67. S. Mavrogeni, A. Pepe, R. Nijveldt, N. Ntusi, L.M. Sierra-Galan, K. Bratis, J. Wei, M. Mukherjee, G. Markousis-Mavrogenis, L. Gargani, L.E. Sade, N. Ajmone-Marsan, P. Seferovic, E. Donal, M. Nurmohamed, M.M. Cerinic, P. Sfikakis, G. Kitas, J. Schwitter, J.A.C. Lima, D. Dawson, M. Dweck, K.H. Haugaa, N. Keenan, J. Moon, I. Stankovic, E. Donal, B. Cosyns, Cardiovascular magnetic resonance in autoimmune rheumatic diseases: a clinical consensus document by the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc Imaging 23, e308–e322 (2022). https://doi.org/10.1093/ehjci/jeac134

    Article  CAS  PubMed  Google Scholar 

  68. K. Ehrlich, C. Morbach, T. Reiter, P.U. Heuschmann, A. Hannemann, M. Fassnacht, S. Störk, S. Hahner, T. Deutschbein, Rationale and design of the cardiovascular status in patients with endogenous cortisol excess study (CV-CORT-EX): a prospective non-interventional follow-up study. BMC Endocr Disord. 21, (2021). https://doi.org/10.1186/s12902-020-00665-7

Download references

Author contributions

S.M. and A.V. conceived the idea of the manuscript. Literature search was performed by M.M., G.M.-M. and S.M. The first draft of the manuscript was written by M.M. and G.M.-M. The manuscript was revised for intellectual content by S.M., S.A.P. and A.V. All authors revised and approved the final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melpomeni Moustaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustaki, M., Markousis-Mavrogenis, G., Vryonidou, A. et al. Cardiac disease in Cushing’s syndrome. Emphasis on the role of cardiovascular magnetic resonance imaging. Endocrine 83, 548–558 (2024). https://doi.org/10.1007/s12020-023-03623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03623-0

Keywords

Navigation