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Abstract
Purpose Assessment of pituitary adenoma (PA) volume and extent of resection (EOR) through manual segmentation is
time-consuming and likely suffers from poor interrater agreement, especially postoperatively. Automated tumor segmen-
tation and volumetry by use of deep learning techniques may provide more objective and quick volumetry.
Methods We developed an automated volumetry pipeline for pituitary adenoma. Preoperative and three-month postoperative
T1-weighted, contrast-enhanced magnetic resonance imaging (MRI) with manual segmentations were used for model training.
After adequate preprocessing, an ensemble of convolutional neural networks (CNNs) was trained and validated for pre-
operative and postoperative automated segmentation of tumor tissue. Generalization was evaluated on a separate holdout set.
Results In total, 193 image sets were used for training and 20 were held out for validation. At validation using the holdout
set, our models (preoperative / postoperative) demonstrated a median Dice score of 0.71 (0.27) / 0 (0), a mean Jaccard score
of 0.53 ± 0.21/0.030 ± 0.085 and a mean 95th percentile Hausdorff distance of 3.89 ± 1.96./12.199 ± 6.684. Pearson’s cor-
relation coefficient for volume correlation was 0.85 / 0.22 and −0.14 for extent of resection. Gross total resection was
detected with a sensitivity of 66.67% and specificity of 36.36%.
Conclusions Our volumetry pipeline demonstrated its ability to accurately segment pituitary adenomas. This is highly
valuable for lesion detection and evaluation of progression of pituitary incidentalomas. Postoperatively, however, objective
and precise detection of residual tumor remains less successful. Larger datasets, more diverse data, and more elaborate
modeling could potentially improve performance.
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Introduction

Pituitary adenomas (PA) are a frequent type of intracranial
tumor [1]. Endonasal transsphenoidal surgery has established
itself as the best option for its treatment in most cases [2]. Its
outcome varies greatly with different factors like tumor
morphology and the surgeon caseload [3–5]. Treatment is

indicated in case of functioning PA other than prolactinomas,
in case of symptomatic PA or in case of relevant volumetric
progression [6]. If surgery is performed, assessment of resi-
dual tumor is relevant in order to determine the extent of
resection (EOR) [7], though manual segmentation of tumor
volumes is likely highly dependent on the rater, especially
postoperatively [8–10]. Automated analysis of pre- and
postoperative imaging could consequently have the potential
to provide more objective and precise volumetry.

Semantic image segmentation is a classic machine learn-
ing application [11, 12], not only due to the fact that manual
segmentation requires considerable amounts of expert time
[13, 14]. Convolutional neural networks (CNNs)—and spe-
cifically U-Nets—have recently been applied successfully for
biomedical image segmentation due to their throughput
speed and overall good performance in this task [15].

To the best of the authors’ knowledge, no automated
approaches to segment PA pre- and postoperatively for
volumetry and resection assessment exist. We hypothesize
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that a CNN can generate segmentations of PA faster and
more objective while maintaining quality of segmentation.

Methods

Data and preprocessing

Patients undergoing transsphenoidal surgery for PA at
University Hospital Zurich in the period of October 2012
to May 2021 with available preoperative and 3-month
postoperative 3-Tesla magnetic resonance imaging (MRI)
were included. After identifying the closest T1-weighted
contrast-enhanced MRI scan prior to surgery and a three
month follow up those were assigned a Study ID and
exported. In order to account for different manufacturers
and acquisition protocols at referring hospitals, the images
were converted to NIfTI format [16], reshaped to
256 × 256 × 256 voxels, voxel size normalized to
1.0 × 1.0 × 1.0, and images were reoriented using a right-
anterior-superior affine matrix. Tumor tissue was subse-
quently manually labeled for training and residual volume
assessment. After creating a holdout set of 20 patients for
assessment of model generalization, the remaining
386 studies (two per patient) had its pixel intensities nor-
malized for each study individually, and were then sliced
in the coronal plane [17].

Model Development

We used a 2D-U-Net as model architecture, with a binary
cross entropy loss function, Adam optimizer, and a sigmoid
activation function [15]. It was built using the following
platforms: Python 3.9.0 [18], Keras 2.5.0 [19], SimpleITK
[20–22] and nibabel [23]. Training was carried out on a
Nvidia RTX 3090 graphical processing unit. Separate pre-
operative and postoperative models were trained in five-fold
cross validation.

The five resulting models were subsequently used to
create ensemble segmentations by averaging their respec-
tive predictions. To binarize the predicted probabilities
ranging from zero to one, a threshold of 0.6 for preoperative
and 0.44 for postoperative scans was used as illustrated in
Fig. 1. For the postoperative predictions, the following
automated postprocessing steps were implemented: Coher-
ent volumes smaller than fifty pixels were removed, holes
within the segmentation were filled and a dilate function
was used to smoothen the corners which is closer to natural
tumor growth.

For the postoperative models, we additionally imple-
mented transfer learning by initializing the postoperative
models with the parameters of the fully trained preoperative
models, and image augmentation was performed with a
sampling ratio of 1/255 and rotation of between 0 and 90
degrees as well as zoom of 0% to 30%.

Evaluation

Manual and automated segmentations were compared
using the Dice score, Jaccard score and the 95th per-
centile of the Hausdorff distance [24–27]. Dice and Jac-
card evaluate similarity and overlap and range from zero
—indicating no overlap—to one for perfect congruence.
The Hausdorff distance analyzes the distances between
two sets of points made up from the edges of two seg-
mentations. Smaller values thus represent better perfor-
mance. We opted for the 95th percentile instead of
maximal Hausdorff distance to decrease the importance
of outliers. Volumes were calculated in mm3 from the
segmented masks, and their correlation with the manually
segmented volumes was assessed using Pearson’s
product-moment correlation. Automated and manual
EOR were similarly correlated. Finally, we assessed the
model’s performance in detecting gross total resection
(GTR, defined as an EOR of 100%) using a confusion
matrix.

Fig. 1 Examples of images and
predictions. A/E preoperative
input image in coronal
orientation, B/F ground truth,
C/G unthresholded predictions,
D/H thresholded predictions
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Results

Cohort

In total, 213 patients were included retrospectively, of which
193 were applied for development of the model. Validation
was performed in 20 held-out patients. Summary demo-
graphics and radiological information are displayed in Table 1.

Preoperative segmentation performance

Segmentation performance is summarized in Table 2. In
terms or preoperative tumor segmentation, our ensemble
model achieved a mean Dice score of 0.62 ± 0.22, with
automatically rated volumes correlating well with manually
segmented volumes (r= 0.85). Figure 2 shows metric per-
formance and tumor volume with a linear regression. Exact
Jonckheere-Terpstra-Test for a trend did not reach sig-
nificance (JT, p value for Dice score: 110, 0.1757; JT,
p value for Jaccard score: 114, 0.1166) [28].

Postoperative segmentation performance

For postoperative segmentations, a mean Dice score of
0.046 ± 0.125 was observed. The correlation of manually
segmented tumors and predicted tumor masks correlated
less satisfactory than in preoperative scans (r= 0.22).
Introduction of transfer learning techniques and image
augmentation did not improve performance (Table 3).

Resection assessment performance

Table 4 summarizes performance in terms of resection
assessment. Our model’s predictions generated EOR values
that only poorly correlated with manual segmentations
(r=−0.14). Automatically detected EOR differed from the
ground truth manual segmentation by 18.65% ± 31.10% on
average. GTR was detected with an accuracy of 50.00%,
sensitivity of 66.67% and specificity of 36.36%.

Discussion

We have developed and validated an automated PA seg-
mentation pipeline based on deep learning. We demonstrate
that our approach performs favorably when it comes to
segmentation and volumetric assessment of preoperative
images. Generating objective and precise postoperative
segmentations of residual tumor remains a challenge, even
with the application of advanced machine learning
techniques.

Table 1 Summary of the patient,tumor and radiological characteristics

Variable Cohort

Test / Train Set Holdout Set

Baseline

Number of Patients 193 20

Age years, mean ± SD 55 ± 19 52 ± 20

Male gender, n (%) 107 (55) 13 (65)

Biochemical activity

NFPA, n (%) 113 (58.55) 15 (0.75)

GH, n (%) 45 (23.32) 4 (20)

PRL, n (%) 19 (9.84) 0 (0)

ACTH, n (%) 8 (4.14) 0 (0)

Others, n (%) 8 (4.14) 1 (5)

ZPS score

ZPS I, n (%) 61 (31.61) 0 (0)

ZPS II, n (%) 82 (42.49) 9 (45)

ZPS III, n (%) 31 (16.06) 8 (40)

ZPS IV, n (%) 11 (5.70) 1 (5)

Score missing, n (%) 8 (4.14) 2 (10)

Knosp score

Knosp 0, n (%) 44 (22.80) 1 (5)

Knosp 1, n (%) 43 (22.28) 7 (0.35)

Knosp 2, n (%) 47 (24.35) 6 (0.3)

Knosp 3, n (%) 35 (18.13) 4 (20)

Knosp 4, n (%) 16 (8.29) 1 (5)

Score missing, n (%) 8 (4.14) 1 (5)

EOR

EOR mean ± SD 92.84 ± 29.21 97.77 ± 3.60

EOR median (IQR) 100.00 (4.18) 99.57 (3.04)

Tumor volume

Preoperative, mean ± SD (ml) 7.42 ± 9.93 9.12 ± 8.86

Preoperative, median (IQR) (ml) 4.79 (7.1) 6.37 (7.75)

Postoperative, mean ± SD (ml) 0.35 ± 1.61 0.67 ± 0.84

Postoperative, median (IQR) (ml) 0 (0.05) 0.06 (1.36)

MRI data

Number of scans 386 40

Vendor

Siemens 171 0

Philips Healthcare 144 36

GE Medical Systems 71 4

Acquisition orientation

2D 317 31

3D 69 9

Field strength

1 T 1 1

1.5 T 45 6

3 T 340 33

Voxel dimensions

Pixel Spacing, mean ± SD (mm) 0.47 ± 0.14 0.51 ± 0.14

Pixel Spacing, median (IQR) (mm) 0.45 (0.19) 0.47 (0.09)

Slice Thickness, mean ± SD (mm) 1.98 ± 0.53 2.02 ± 0.67

Slice Thickness, median (IQR) (mm) 2 (0) 2 (0)

SD standard deviation, IQR interquartile range, NFPA non
functioning pituitary adenoma, GH growth hormone, ACTH
adrenocorticotropic hormone, PRL prolactin, GTR gross total
resection, T Tesla
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As neuroimaging has become much more frequent, also
detection of incidentalomas is prone to increase since
especially nonfunctioning incidentaloma of the pituitary are

highly prevalent (1.4–27% in autopsy and 3.7–37% in
imaging) [29]. Hence automated segmentation of incidental
PA would tackle a frequent issue. Incorporating this into a

Table 2 Segmentation
performance of the fully trained
preoperative and postoperative
models

Metric Preoperative U-Net Postoperative U-Net

Performance type Resampled training Holdout set Resampled training Holdout set

Dice

Mean ± SD 0.50 ± 0.05 0.62 ± 0.22 0 ± 0 0.046 ± 0.125

Median (IQR) 0.49 (0.05) 0.71 (0.27) 0 (0) 0 (0)

Jaccard

Mean ± SD 0.43 ± 0.05 0.53 ± 0.21 0 ± 0 0.030 ± 0.085

Median (IQR) 0.43 (0.05) 0.61 (0.30) 0 (0) 0 (0)

95th percentile Hausdorff distance

Mean ± SD 6.55 ± 0.70. 3.89 ± 1.96 20.810 ± 14.604 12.199 ± 6.684

Median (IQR) 4.50 (1.13) 3.39 (1.66) 15.769 (12.152) 0 (6.655)

Resampled training performance as well as generalization towards the held-out data is reported

SD standard deviation, IQR interquartile range

Fig. 2 Metric performance and
manually segmented tumor
volume of the holdout set with a
linear regression

Table 3 Image augmentation
and transfer learning based on
the preoperative models were
applied as an attempt to improve
postoperative segmentation
performance

Metric Postoperative U-Net +
Augmentation

Postoperative U-Net +
Transfer Learning

Postoperative U-Net +
Augmentation + Transfer
Learning

Performance Type Holdout Set Holdout Set Holdout Set

Dice

Mean ± SD 0 ± 0 0.040 ± 0.087 0.013 ± 0.035

Median (IQR) 0 (0) 0 (0.007) 0 (0.007)

Jaccard

Mean ± SD 0 ± 0 0.026 ± 0.062 0.008 ± 0.022

Median (IQR) 0 (0) 0 (0.004) 0 (0.004)

95th percentile Hausdorff distance

Mean ± SD NaN 15.051 ± 8.131 14.876 ± 5.021

Median (IQR) NaN 13.045 (7.836) 15.953 (8.050)

Generalization towards the held-out data is reported

SD standard deviation, IQR interquartile range
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diagnostic software to detect suspicious lesions of the
pituitary gland would be valuable for clinical routine. To
address this, we developed a fully automated graphical user
interface that tackles this issue (https://micnlab.com/dow
nload-the-zurich-neurosurgical-toolkit/).

Furthermore, automated, objective volumetric measure-
ment for assessing progression of incidentalomas, especially
microadenomas, yields a clinical benefit since volumetric
progression is crucial for surgical indication [30]. Last,
prognostic scores like the Zurich pituitary or Knosp score
could be automatically implemented, ultimately giving the
clinician further information and saving his time. These
three options combined have the potential to standardize
and speed up the clinical workflow of PA.

When indicated, the transsphenoidal approach is very
effective in most cases of PA with comparatively low sur-
gical morbidity and mortality [3]. When evaluating surgical
oncology results—not only in individual patients, but also
when comparing cohorts, surgeons, and departments and for
research purposes—volumetric assessment of residual ade-
noma volume is of paramount importance. However, seg-
menting tumors on each slice accurately is time-consuming
and often not possible in daily clinical practice. Further-
more, as in other tumor segmentation tasks such as gliomas,
the interrater agreement likely is low, especially for post-
operative residual tumor tissue [10, 31]. In this light, it must
be considered that even morphological grading at the pre-
operative stage using the Hardy and Knosp classification

already suffers from relatively low interrater agreement
[8, 9].

Volumetric rating of post-resection sellar scans thus
presents a particular challenge when it comes to objectivity.
Automated semantic segmentation – the machine learning
task that deals with detecting and outlining structures on
images—could prove a viable option to improve the speed
and objectivity with which volumes are assessed pre- and
postoperatively.

To some extent, the poor performance on postoperative
images is to be expected: In the end, supervised learning
techniques can only ever be as good as the “ground truth”
data they are trained on, and with disagreements in labeling
of small or debatable residual tumor, this has certainly been
the case in this study. Even in the much more intensely
studied task of glioma and glioblastoma segmentation,
which has been fueled by the yearly international BraTS
challenges [32], performance overall appears mediocre and
demonstrates that – especially for low grade glioma—it
appears to be difficult to generate any improvements in
segmentation compared to human raters, apart from the
increased speed and objective nature with which automated
segmentations can be produced. Even in BraTS 2014/2015,
where postoperative images were also segmented, the
ground truth labels for postoperative images eventually had
to be generated by learning algorithms.

Our ensemble method is—to the best of the authors’
knowledge—the only attempt at automatically segmenting
post-transsphenoidal surgery scans. The deep learning
approach was able to accurately outline the tumors pre-
operatively, but struggled with small residual tumors. Cer-
tainly, this can be explained at least partially by the
computationally necessary downsampling of the images,
resulting at times in voxels that appear almost equally as
large as the residual tumor itself. Also, pituitary adenomas
do not appear constantly with the same relative intensity
making them hard to identify at times [33].

Limitations

Although we included scans from many institutions and all
major scanner manufacturers, our study remains single-
center and external validation would be necessary before
any kind of clinical application. Furthermore, we applied
2D segmentation—which has demonstrated reliable results
previously for other similar applications—although 3D
segmentation potentially could further increase perfor-
mance. A larger dataset of subtotally resected pituitary
adenomas would most likely also allow improvements,
since most postoperative images showed no tumor for the
model to learn to recognize. A more heterogeneous dataset
as we did allows for better generalization and reduces the
risk of overfitting to a particular manufacturer or hospital

Table 4 Volumetric performance of the automated resection
assessment pipeline

Measurement U-Net Performance vs. Manual
Segmentation

Preoperative Volume [mm3]

Correlation (Pearson) 0.85

Postoperative Volume [mm3]

Correlation (Pearson) 0.22

EOR [%]

Correlation (Pearson) −0.14

Difference in EOR
[Median (IQR)]

3.31% (17.75%)

Difference in EOR
[Mean ± SD]

18.65% ± 31.10%

GTR

Accuracy 50.00%

Sensitivity 66.67%

Specificity 36.36%

PPV 46.15%

NPV 57.14%

EOR extent of resection, GTR gross total resection, PPV positive
predictive value, NPV negative predictive value

SD standard deviation, IQR interquartile range
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protocol. On the other hand, a reduction in performance is
to be expected with this approach.

Conclusion

Our volumetry pipeline demonstrated its ability to accu-
rately and automatically segment pituitary adenoma. This is
highly valuable for lesion detection and evaluation pro-
gression of pituitary incidentalomas. Postoperatively, how-
ever, objective and precise detection of residual tumor
remains less successful. Larger datasets, more diverse data,
and more elaborate modeling could potentially improve
performance. Yet, focusing on use cases for preoperative
segmentations seems more promising.

Data availability

The data in support of our findings can be obtained upon
reasonable request from the corresponding author. The
models can be downloaded and applied using our graphical
user interface, available at “https://micnlab.com/download-
the-zurich-neurosurgical-toolkit/”.
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