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Abstract
Objective To establish a prediction model for preoperatively predicting grade 1 and grade 2/3 tumors in patients with
pancreatic neuroendocrine tumors (PNETs) based on 68Ga-DOTATATE PET/CT.
Methods Clinical data of 41 patients with PNETs were included in this study. According to the pathological results, they
were divided into grade 1 and grade 2/3. 68Ga-DOTATATE PET/CT images were collected within one month before
surgery. The clinical risk factors and significant radiological features were filtered, and a clinical predictive model based on
these clinical and radiological features was established. 3D slicer was used to extracted 107 radiomic features from the
region of interest (ROI) of 68Ga-dotata PET/CT images. The Pearson correlation coefficient (PCC), recursive feature
elimination (REF) based five-fold cross validation were adopted for the radiomic feature selection, and a radiomic score was
computed subsequently. The comprehensive model combining the clinical risk factors and the rad-score was established as
well as the nomogram. The performance of above clinical model and comprehensive model were evaluated and compared.
Results Adjacent organ invasion, N staging, and M staging were the risk factors for PNET grading (p < 0.05). 12 optimal
radiomic features (3 PET radiomic features, 9 CT radiomic features) were screen out. The clinical predictive model achieved
an area under the curve (AUC) of 0.785. The comprehensive model has better predictive performance (AUC= 0.953).
Conclusion We proposed a comprehensive nomogram model based on 68Ga-DOTATATE PET/CT to predict grade 1 and
grade 2/3 of PNETs and assist personalized clinical diagnosis and treatment plans for patients with PNETs.
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Introduction

Pancreatic neuroendocrine tumors (PNETs) originate from
peptide-secreting neurons and neuroendocrine cells,
accounting for 2~5% of all pancreatic tumors [1]. But in
recent years, the incidence rate and prevalence of PNETs

have shown a significant upward trend [2, 3]. The 2019
WHO classification divided neuroendocrine tumors (NETs)
into three grades (grade1, grade2, and grade3) based on the
Ki-67 proliferation index and mitotic rate [4]. PNETs of
varying histological grades typically indicate different bio-
logical invasiveness, which strongly correlates with prog-
nosis [5, 6]. Accurate histological diagnosis and grading are
considered to have a great impact on the prognostic
assessment and treatment selection of PNETs [7].

However, the histological grades are usually obtained
through histopathological exams after surgery. Surgery plays
a crucial role in the treatment of PNETs. But when designing
a surgical plan, several factors need to be taken into account,
including tumor grade and stage, general condition of the
patient, clinical symptoms, functional characteristics, and
genetic correlations [8, 9]. Some biochemical indicators such
as chromogranin A, neuron-specificenolase, and progastrin-
releasing peptide can assist in the diagnosis of NETs and
evaluate the curative effect and prognosis of some patients,
but their diagnostic effects are affected by many factors, and
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the overall accuracy and sensitivity are not high [7, 10, 11].
Endoscopic ultrasonography-guided fine-needle aspiration
(EUS-FNA) is a more accurate method for obtaining PNET
pathological grading prior to surgery, but it is a invasive
examination and greatly affected by the location and depth of
tumors [12, 13]. Imaging examination plays a crucial role in
diagnosing, localizing, staging, and evaluating the effec-
tiveness of PNETs, and it aids in qualitatively and differen-
tially diagnosing tumors [14]. Traditional imaging
examinations, such as CT and MRI, can be utilized for the
diagnosis of PNETs, but they offer limited information in
reflecting the heterogeneity and predicting the pathological
grading of tumors [15].

Radiomics, as an emerging technique, can non-invasively
and quantitatively examine the imaging features contained in
images, comprehensively reflect tumor heterogeneity and
predict clinical or biological outcomes, and it has been widely
used in the diagnosis, prognosis evaluation and curative
effect monitoring of accessory diseases [16]. It sheds light on
the utilization of a novel quantitative imaging approach to
address the grading of PNETs.

Molecular imaging with PET/CT has become indis-
pensable for the management of PNETs [17, 18]. It enables
non-invasive tumor localization, accurate staging, tumor
burden, and characterization of disease heterogeneity, while
providing important prognostic information and guidance
for the formulation of treatment strategies [19–21]. Soma-
tostatin receptor 2 (SSTR 2) is highly expressed in NETs
[22]. DOTATATE (DOTA,Tyr(3)-octreotate) is a soma-
tostatin analog (SSA), which shows the highest affiffiffinity
for SSTR 2 [23]. 68Ga-DOTATATE has the superior sen-
sitivity and specifificity of for localizing PNETs than CT or
MRI. Compared with traditional imaging modalities,, 68Ga-
DOTATATE PET/CT can provide functional and metabolic
information of lesions, better reflect the progression of
diseases, have advantages in tumor heterogeneity, and
provide more valuable clinical information.

Thus, we aim to build a predictive model to noninvasively
achieve PNET grading. Together, we will investigated the
potential clinical value of radiological variables and the rad-
score based on 68Ga-DOTATATE PET/CT.

Materials and methods

Patients

The study was approved by the ethics committee of our
hospital. The patients with PNETs confirmed by post-
operative pathology in our hospital from January 2019 to
January 2023 were included retrospective analysis. Inclusion
criteria: (a) Patients with PNETs proven by postoperative
pathology; (b) Clear histopathological grading; (c) 68Ga-

DOTATATE PET/CT examination performed within
1 month before surgery; (d) Without other malignant tumors.
Exclusion criteria: (a) History of receiving systemic or local
anti-tumor treatment before surgery, such as radiation ther-
apy, chemotherapy, nuclear therapy, etc; (b) Biopsy; (c)
Incomplete clinical data; (d) Obvious artifacts or poor PET/
CT image quality; (e) Patients with recurrent lesions.

According to the inclusion and exclusion criteria, a total
of 41 individuals were included, including 21 males and 20
females, aged from 33 to 82 years, with an average age of
51.37 ± 11.09 years.

Histopathological grading

According to the 2019 WHO guidelines for pathological
classification [4], the histological grade of PNETs was con-
firmed. According to the number of mitoses (per 10 high-
power fields, HPF) and Ki-67 index, PNETs are classified
into grades 1–3, with grade 1: <2/10HPF and Ki-67 index
ranging from 0 to 2%; grade 2: 3-20/10HPF, with Ki-67
index ranging from 3 to 20%; grade 3: >20/10HPF, Ki-67
index >20%. There is a typical case report shown in Fig. 1.

Acquisition of PET/CT

All PET imaging was performed using the PET/CT scanner
(uMI780, United Imaging Healthcare). Detailed configuration
of this scanner can be found in previous study [24]. The
resulting data were provided to a post-processing workstation
(Version R002, uWS-MI, United Imaging Healthcare). The
doses of 68Ga-DOTATATE via intravenous injection were 3.7
and 2.0MBq/kg, respectively. The patients were instructed to
drink adequate water, rest at a quiet and suitable temperature for
45–60min after intravenous injection of imaging agent, empty
the bladder, and perform CT scans from the top of the head to
the upper middle of the thighs. Scanning parameters were as
follows: tube voltage= 120 kV, tube current= 100mAs, and
layer thickness= 6mm. After the completion of CT scanning,
PET 3D acquisition was performed with 3min/bed, 9–11 total
beds subsequently. After the acquisition, attenuation correction
was performed with CT data. PET images were reconstructed
iteratively to generate cross-sectional, coronal plane, sagittal
plane sectional images and 3D projected images.

Image analysis

The PET, CT, and fused PET/CT images were analyzed by
two experienced nuclear medicine physicians. When there
was a difference in opinion, they concluded after discussing
it in detail. The image features analysis involves qualitative
and quantitative assessments [25].

Qualitative assessments: ① tumor location: pancreatic
head and neck (non uncinate process area), pancreatic
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uncinate process, pancreatic body/tail, or multiple parts in
the pancreas; ② calcification; ③ texture of pancreatic
tumors: according to the proportion of cystic and solid
components, they are divided into solid type, cystic solid
type, and cystic type [15]; ④ pancreatic duct dilation:the
widest part of the pancreatic duct with a diameter exceeding
0.35 cm is defined as pancreatic duct dilation; ⑤ bile duct
dilation: Measure the widest part of the common bile duct at
the upper edge of the pancreas, with a diameter greater than
0.9 cm is defined as expansion; ⑥ peripheral organ invasion:
whether it affects the spleen, duodenum, and stomach; ⑦
lymph node metastasis: regional lymph node metastasis
occurs; ⑧ distant metastasis: presence of liver, bone, lung,
or distant metastasis. Quantitative assessments: ① size:
represented by the maximum diameter line of the tumor
measured in cross-section, in cm; ② metabolic parameters:
the volume of interest (VOI) was selected by experienced
nuclear medicine physicians, and subsequently, standar-
dized uptake value (SUVmax), mean standardized uptake
value (SUVmean), peak standardized uptake value (SUV-
peak), metabolic tumor volume (MTV), and total lesion
glycolysis (TLG) of primary tumor were calculated [26].

Image segmentation and radiomic feature
extraction

Each patient’s PET/CT images were imported into 3D slicer
(version 5.0.2) software in DICOM format for segmentation
of regions of interest (ROIs) in the lesion. After semi-
automatically delineating the lesions on the axial 68Ga-
DOTATATE PET/CT images, the ROIs were manually
adjusted along the lesion margin layer by layer to 1-2 mm
outside of the lesion edge to avoid partial volume effect.
107 radiomic features, including 14 shape features, 18 first-
order features, 24 gray-level co-occurrence matrix features,

16 gray-level run-length matrix features, 14 gray-level
dependence matrix features, 16 gray-level size zone matrix
features, and 5 neighboring gray-level difference matrix
features, were extracted from the two ROIs using the
PyRadiomics software package in 3D slicer. These features
characterize the heterogeneity of lesions and potentially
reflect changes in image structure [27]. The two nuclear
medicine physicians manually edited and selected enhanced
features manually, aiming to guarantee the reproducibility
and repeatability of radiomic features [28]. The intra- and
inter-class correlation coefficients (ICCs) calculated from
15 segmented lesions in the CT images were used to
determine the intra- and inter-observer reproducibility of the
radiomic features. Features with the ICCs higher than 0.80
were obtained in the following analysis.

Selection of radiomic features

We selected 28 cases as the training data set (19/9= posi-
tive/negative). We also selected another 13 cases as the
independent testing data set (9/4= positive/negative). The
training set was used to examine the robustness of radiomic
features and to construct prediction models, whereas the
testing set was used to validate the reliability of the pre-
diction models. To remove the unbalance of the training
data set, Synthetic Minority Oversampling TEchnique
(SMOTE) was used to balance positive/negative samples.
To normalize the feature matrix, we calculated the L2 norm
for each feature vector and divided by it, resulting in unit
vectors. Since the feature space was high-dimensional, we
compared the similarity of each feature pair using Pearson
correlation coefficient (PCC) and removed one feature from
pairs with PCC values larger than 0.99. This reduced the
dimension of the feature space and ensured that each feature
was independent. Before building the model, we used

Fig. 1 a Case report of
pancreatic neuroendocrine tumor
68Ga-DOTATATE PET/CT
revealed an isodense nodule
with a high level of metabolic
expression (SUVmax 56.6) in
the pancreatic body. b Syn(+);
Ki-67 (+, 10%)
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recursive feature elimination (RFE) to select the most
important features based on a classifier by considering
smaller subsets of the features recursively. For classifica-
tion, we utilized logistic regression which is a linear clas-
sifier and combines multiple features. In a high-dimensional
space, a hyper-plane is used to separate the samples. To
determine the hyper-parameter (e.g. the number of features)
of model, we applied 5-fold cross-validation on the training
data set. The performance of the model on the validation set
was used to determine the optimal hyper-parameters. The
performance of the radiomic feature model was evaluated
using receiver operating characteristic (ROC) curve analysis
and the area under the curve (AUC) was calculated for
quantification. The accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value
(NPV) were also calculated at a cutoff value that maximized
the value of the Yorden index. We also estimated the 95%
confidence interval by bootstrape with 1000 samples. All
above processes were implemented with FeAture Explorer
Pro (FAEPro, V 0.4.2) on Python (3.7.6).

Development, evaluation and comparison of model

Univariable analysis was utilized to assess the association
between PNET grading and clinicopathological/radi-
ological factors. The variance inflation factor (VIF) was
used to assess the collinearity of each variable, and vari-
ables with a VIF less than 10 were obtained in the fol-
lowing analyses. Potential clinical risk factors (P < 0.05)
related to the histologic grade were included for clinical
model building with logistic regression. The radiomic
score(rad-score) was calculated for each patient to show
the prediction risk of grade 2/3 via the radiomic signature.
The relationship between rad-score and histologic grade
was explored by using a t-test. Subsequently, a compre-
hensive model combining rad-score and clinical features
was established. The ROC curve were plotted and AUCs
were utilized to quantify the discriminative ability of each
model. The delong test was used to compare the perfor-
mance of two prediction models.

Development and validation of the nomogram

A nomogram was developed based on the proposed
comprehensive model as a graphical presentation. The
nomogram is a simple and user-friendly clinical tool,
which can visually display the predicted outcome for each
patient. The Hosmer–Lemeshow test was used to evaluate
the goodness-of-fit of the model. In addition, the decision
curve analysis (DCA) was conducted to validate the
clinical utility of the nomogram by estimating the net
benefit at various threshold probabilities, synthesizing
true-positive and false-positive rates.

Statistical analysis

SPSS Statistics (version 21.0) was used for statistical ana-
lysis. Quantitative variables were assessed for differences
between the grade 1 and grade 2/3 groups using the t-test or
Mann–Whitney U test, while qualitative variables were
analyzed using the chi-square test or Fisher’s exact test.
P < 0.05 was deemed statistically significant.

Result

Clinical characteristics

A total of 41 patients with PNETs in this study were diag-
nosed through surgical resection and pathological biopsy.
Among them, 4 patients underwent pancreaticoduode-
nectomy, 18 patients underwent distal pancreatectomy, and
19 patients underwent total pancreatectomy. 14 patients
(34.1%) were categorized as grade1, 18 patients (44.0%)
were grade 2 and 9 patients (21.9%) were grade 3. 9 patients
had invasion of surrounding organs, including 4 cases of
spleen invasion, 4 cases of descending duodenum invasion,
and 1 case of adrenal gland invasion; 8 patients had local
lymph node metastasis. A total of 26 patients had distant
metastasis, of whom 6 had only intrahepatic metastasis, 5 had
metastasis to other organs excluding the liver, and 15 had
metastases in the bone, lungs, and other organs including the
liver. There were no differences between the two groups in
terms of age, gender, and BMI. (p > 0.05).

Radiological characteristics

Qualitative assessments: There were significant statistical
differences were observed in adjacent organ invasion, N
staging, and M staging between grade 1 and grade 2/3
(p < 0.05). There were no statistically significant differences
found in tumor location, the presence or absence of pan-
creatic duct dilation, calcification, and tumor texture
(p > 0.05). Quantitative assessments: There were no statis-
tically significant differences observed in terms of max-
imum tumor diameter, SUVmax, SUVmean, SUVpeak,
MTV, and TLG of the primary tumor (p > 0.05). They were
shown in Table 1.

Selection of radiomic features

Through dimensionality reduction, 12 optimal features were
selected, including 3 PET radiomic features and 9 CT
radiomic features. These features and corresponding coeffi-
cients are shown in Table 2. We found that the model based
on 12 features can get the highest AUC on the validation data
set. The AUC and the accuracy could achieve 0.409 and
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0.429, respectively. In this point, The AUC and the accuracy
of the model achieve 0.906 and 0.833 on testing data set. The
ROC curve was shown in Fig. 2.

Development, evaluation and comparison of model

Three clinical variables (adjuvant organic invasion, N sta-
ging, and M staging) were used to construct a clinical model
with AUC of 0.785. There were significant differences in
rad-score between grade 1 and grade 2/3 (p < 0.05). When
combining clinical variables and rad-score, the compre-
hensive model displayed the best predictive performance
with AUC of 0.957. The ROC curve analysis of the two
models was shown in Fig. 3. The effectiveness of the
comprehensive model in predicting PNET grading has been
further improved, significantly higher than clinical models
(delong test, P= 0.0142).

Development and validation of the nomogram

Considering that the comprehensive model has good pre-
dictive ability, a nomogram based on the comprehensive
model which can provide the probability of grade 2/3 for
PNETs is established. The nomogram in Fig. 4 displayed the
advantages of personalized prediction. By considering indi-
viduals’ clinical information and rad-score value, one can
determine the margin and draw a vertical line towards the
points axis to find the corresponding score. After summing up
the scores for each point, one can locate the total on the total
points axis to estimate the probability of grade 2/3.

The nomogram model was shown to have excellent
goodness-of-fit through the Hosmer–Lemeshow test. Figure 5
presented the DCA for the comprehensive model, where the
red line indicated the benefit of the comprehensive model,
the gray line reflected the assumption of treating all patients
as grade 2/3 (“treat all”), and the black line represented the
assumption of not treating any patients as grade 2/3 (“treat
none”). The comprehensive model displayed the optimal net
benefit.

Discussion

In this study, we proposed an optimal model integrating
clinical risk factors and rad-score from 68Ga-DOTATATE
PET/CT images for individually predicting histologic grade
of PNETs. Firstly, the radiomic analysis showed the rad-
score was significantly associated with PNET grading,
which was in line with previous studies [29, 30]. Previous
study also highlighted the limited accuracy of conventional
image anlaysis for PET and radiological imaging and
therefore the need for more sophisticated anlaysis such as
radiomics [31]. These indicated that the mathematical
objectivity of radiomics allows for accurate evaluation of
histologic grade of PNETs using 68Ga-DOTATATE PET/
CT, instead of other invasive methods. Secondly, the sta-
tistical analysis indicated that the adjacent organ invasion,

Table 1 clinical and radiological characteristics

Total (n= 41) grade 1 (n= 14) Grade 2/3 (n= 27) P

Age, mean ± SD 49.2 ± 13.6 52.5 ± 9.6 0.317

Sex(%) 0.91

Male 7(50%) 14(52%)

Female 7(50%) 13(48%)

BMI 0.532

thin 0(0%) 3(11%)

Standard 9(64%) 15(56%)

Overweight 3(22%) 7(26%)

Obesity 2(14%) 2(7%)

Maximum diameter
(x ±s,cm)

3.9 ± 1.8 4.2 ± 3.0 0.111

Location 0.686

Pancreatic head and
neck

5(36%) 7(26%)

Pancreatic body and
tail

8(57%) 16(59%)

Uncinate process
area

1(7%) 4(15%)

pancreatic duct 0.733

Dilation 12(86%) 7(26%)

No dilation 2(14%) 20(74%)

Calcification 0.75

Yes 3(22%) 7(26%)

No 11(78%) 20(74%)

Composition 0.574

Solidity 11(78%) 19(70%)

Cystic solidity 3(22%) 8(30%)

Peripheral organ
invasion

0.0142

Yes 0(0%) 9(33%)

No 14(100%) 18(67%)

Local lymph node
metastasis

0.035

Yes 0(0%) 8(30%)

No 14(100%) 19(70%)

Distant metastasis 0.041

No 9(65%) 6(22%)

Only liver 1(7%) 5(19%)

Other organs 2(14%) 3(11%)

Both liver and other
organs

2(14%) 13(48%)

SUVmax 30.80 ± 19.77 23.34 ± 20.46 0.249

SUVmean 19.15 ± 13.6 14.27 ± 13.10 0.330

SUVpeak 23.28 ± 15.37 17.72 ± 14.00 0.382

MTV 21.32 ± 42.73 29.54 ± 50.49 0.204

TLG 173.75 ± 235.19 237.61 ± 414.12 0.726
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N staging, and M staging were the clinical factors mostly
related to the grade. However, the clinical model building
with it had limited performance. Therefore, we developed
the comprehensive model to test whether the rad-score and
clinical factor were complementary. Atkinson, Charlotte
et al’s study also suggested that radiomics analysis of NETs
based on 68Ga-DOTATATE PET/CT might have prognostic
significance and represent a useful complement to the
evaluation of patients [32]. The comprehensive model
combining clinical variables and rad-score obtained the
most ideal performance; thereby, we considered it as a
powerful tool for the prediction of PNET grading and
clinical decisionmaking.

Previous studies have investigated the relationship
between PNET grading and the radiomics analysis based on
enhanced CT images [29, 30, 33, 34]. But the acquisition of

Table 2 The coefficients of
features in the model

Features Coef in model

original_shape_Maximum2DDiameterColumn 7.505

original_firstorder_Entropy 3.036

original_firstorder_InterquartileRange −2.295

origina _firstorder_MeanAbsoluteDeviation 0.329

original_glcm_Contrast 1.168

original_glcm_MCC −2.273

original_glrlm_RunLengthNonUniformity −6.354

original_glrlm_RunVariance 5.207

original_glszm_SmallAreaLowGrayLevelEmphasis 2.751

pet_original_firstorder_Kurtosis −2.225

pet_original_firstorder_Skewness −4.229

pet_original_gldm_LargeDependenceHighGrayLevelEmphasis 5.428

Fig. 2 ROC curves of radiomic feature model in the train and test
cohorts Fig. 3 Comparison of ROC curves of the clinical model and the

comprehensive model merging clinical risk factors and rad-score

Fig. 4 The nomogram based on the comprehensive model incorpor-
ating the clinical risk factors and the rad-score
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the radiomic signature was based on arterial and/or portal
venous phase CT images, which may be affected by the
scan time, scan parameters, and the use of contrast agents
[35]. These factors can potentially impact the general-
izability of predictive model and may be limited for indi-
viduals who are contraindicated for contrast agents. In
addition, traditional CT images may provide limited infor-
mation in fully characterizing lesions, whereas PET imaging
parameters can provide complementary functional and
metabolic information at the molecular level [36]. Some
recent previous studies have indicated that the potential role
of radiomics analysis derived from preoperative PET/CT or
PET/MRI in the noninvasively predicting specific tumor
characteristics and outcome of patients with PNENs
[37–39]. So the combination of CT images and PET ima-
ging can provide more comprehensive understanding of the
pathology.

The adjacent organ invasion, N staging, and M staging
were indicated as the clinical factors mostly related to the
grade. These clinical factors were mostly existed in grade
2/3 of PNETs. Namely, the tumors in PNET patients with
higher grade tend to show more infiltration into the sur-
rounding tissue, higer N stage, and higher M stage than
lower-grade tumors, which was consistently demonstrated
in previous studies [40, 41]. This might be the reason why
advanced histologic grade commonly indicate a poor
prognosis of PNETs [42, 43].

For the radiomic features selection, we have identified 12
radiomic features that can be used to characterize PNETs.
Various pathological tumor types have different values of
radiomic features, which could elucidate the underlying
mechanism for utilizing radiomics in tumor classification
[44]. So the selected radiomic features to some extent reflect
the morphological, texture, and other characteristics

exhibited by tumors, and can be used to assist physicians in
disease diagnosis and pathological grading.

To explore clinical applications, we proposed and vali-
dated a nomogram model integrating clinical risk factors
and rad-score as a potent tool to predict PNET grading and
help clinical decisions. We found that in the nomogram, the
rad-score had significantly higher weight for grade of
PNETs compared to other clinical variables. This finding
can be explained by the fact that radiomics analysis extracts
3D imaging information of the tumor, providing a com-
prehensive and objective characterization of the tumors
compared to traditional lesion assessment methods [16, 45].
In addition, the comprehensive model has significantly
higher predictive performance than the clinical model. This
suggests that the combination of radiomic features and
clinical factors can be fully exploited and more effective in
predicting disease. Moreover, there was a correlation
between radiological features and clinical features such as
tumor prognosis and staging [46]. Therefore, combining
radiomic and clinical features can increase the information
crossover between data sets, which can improve the accu-
racy and robustness of the predictive model [30, 47].

This study has several limitations. Firstly, it was a small
retrospective, single-center investigation, and the model
should be externally validated with a larger patient sample
size. Secondly, only a few clinical features were included,
and there were confounding variables such as the M sta-
ging, which might be correlated with radiomic features
extracted from the primary tumor lesion. Thirdly, while the
radiomic model based on logistic regression demonstrated
good predictive performance, future research is needed to
apply various machine learning algorithms to establish
prediction models and find the optimal modeling approach.

Conclusion

The radiomic features of 68Ga-DOTATATE PET/CT allow
for accurate and noninvasive evaluation of histologic grade
of PNETs. And we successfully proposed a a comprehen-
sive nomogram model with powerful predictive capability
for grade 1 and grade 2/3 of PNETs, which could assist in
the clinical diagnosis and decision-making of patients
with PNETs.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Abbreviations:
PNET Pancreatic neuroendocrine tumor
NET Neuroendocrine tumor
EUS-FNA Endoscopic ultrasonography-guided fine-needle

aspiration

Fig. 5 Decision curves for the comprehensive model
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DOTA,Ty-
r(3)-
octreotate

DOTATATE

SSTR 2 Somatostatin receptor 2
VOI Volume of interest
SUVmax Maximum standardized uptake value
SUVmean Mean standardized uptake value
SUVpeak Peak standardized uptake value
MTV Metabolic tumor volume
TLG Total lesion glycolysis
ICC Inter-class correlation coefficient
PCC Pearson correlation coefficient
RFE Recursive feature elimination
ROC Receiver operating characteristic
AUC Area under the curve
DCA Decision curve analysis
PPV Positive predictive value
NPV Negative predictive value
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