
Endocrine (2023) 81:277–289
https://doi.org/10.1007/s12020-023-03349-z

ORIGINAL ARTICLE

Machine learning-based prediction of diagnostic markers for Graves’
orbitopathy

Yunying Cai 1
● Heng Su1

● Yongting Si1 ● Ninghua Ni2

Received: 3 November 2022 / Accepted: 26 February 2023 / Published online: 15 April 2023
© The Author(s) 2023

Abstract
Purpose The pathogenesis of Graves’ orbitopathy/thyroid-associated orbitopathy (TAO) is still unclear, and abnormal DNA
methylation in TAO has been reported. Thus, selecting and exploring TAO biomarkers associated with DNA methylation
may provide a reference for new therapeutic targets.
Methods The TAO-associated expression data and methylation data were downloaded from The Gene Expression Omnibus
database. Firstly, weighted gene co-expression network analysis was used to obtain the TAO-related genes, which were
intersected with differentially methylated genes (DMGs), and differentially expressed genes between TAO samples and
normal samples to obtain TAO-associated DMGs (TA-DMGs). Thereafter, the functions of the TA-DMGs were analyzed,
and diagnostic markers were screened by least absolute shrinkage and selection operator (Lasso) regression analysis and
support vector machine (SVM) analysis. The expression levels and diagnostic values of the diagnostic markers were also
analyzed. Furthermore, single gene pathway enrichment analysis was performed for each diagnostic marker separately using
gene set enrichment analysis (GSEA) software. Next, we also performed immune infiltration analysis for each sample in the
GSE58331 dataset using the single-sample GSEA algorithm, and the correlation between diagnostic markers and differential
immune cells was explored. Lastly, the expressions of diagnostic markers were explored by quantitative real-time poly-
merase chain reaction (qRT-PCR).
Results A total of 125 TA-DMGs were obtained. The enrichment analysis results indicated that these TA-DMGs were
mainly involved in immune-related pathways, such as Th1 and Th2 cell differentiation and the regulation of innate immune
response. Moreover, two diagnostic markers, including S100A11 and NKD2, were obtained by Lasso regression analysis and
SVM analysis. Single gene pathway enrichment analysis showed that S100A11 was involved in protein polyufmylation,
pancreatic-mediated proteolysis, and NKD2 was involved in innate immune response in mucosa, Wnt signaling pathway, etc.
Meanwhile, immune cell infiltration analysis screened 12 immune cells, including CD56 dim natural killer cells and
Neutrophil cells that significantly differed between TAO and normal samples, with the strongest positive correlation between
NKD2 and CD56 dim natural killer cells. Finally, the qRT-PCR illustrated the expressions of NKD2 and S100A11 between
normal and TAO.
Conclusion NKD2 and S100A11 were screened as biomarkers of TAO and might be regulated by DNA methylation in TAO,
providing a new reference for the diagnosis and treatment of TAO patients.

Keywords Graves’ orbitopathy ● Methylation ● Immune cell infiltration ● Machine learning ● Bioinformatics

* Heng Su
su_hen@hotmail.com

1 Department of Endocrinology, The First People’s Hospital of
Yunnan Province. The Affiliated Hospital of Kunming University
of Science and Technology, Kunming City, Yunnan Provence,
China

2 Department of Ophthalmology, The First People’s Hospital of
Yunnan Province. The Affiliated Hospital of Kunming University
of Science and Technology, Kunming City, Yunnan Provence,
China

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1007/s12020-
023-03349-z.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-023-03349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-023-03349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-023-03349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-023-03349-z&domain=pdf
http://orcid.org/0000-0003-2355-1502
http://orcid.org/0000-0003-2355-1502
http://orcid.org/0000-0003-2355-1502
http://orcid.org/0000-0003-2355-1502
http://orcid.org/0000-0003-2355-1502
mailto:su_hen@hotmail.com
https://doi.org/10.1007/s12020-023-03349-z
https://doi.org/10.1007/s12020-023-03349-z


Introduction

Graves’ orbitopathy, also called thyroid eye disease or
thyroid-associated orbitopathy (TAO), is a disfiguring
inflammatory disease affecting the orbit and ocular
adnexa. The disease has a variety of clinical presenta-
tions, including upper eyelid retraction, restrictive stra-
bismus, proptosis, exposure keratopathy, and optic
neuropathy [1]. Previous studies have found that TAO
existed in about 50% of Graves’ disease (GD) patients,
with female predominance [2, 3]. According to the 2021
European Group on Graves Orbitopathy (EUGOGO), the
annual incidence of TAO was 0.54–0.9 cases/100,000 in
men and 2.67–3.3 cases/100,000 in women [4, 5]. The
current guidelines of the EUGOGO recommend local
treatment and selenium for mild TAO and high-dose
intravenous glucocorticoid pulses as standard treatment
for active and moderate-to-severe disease [4, 6]. How-
ever, a substantial number (20–30%) of active moderate-
to-severe TAO patients may not respond to current
guideline-recommended approaches. It may still require
additional surgical corrections to improve vision and
appearance [7]. Therefore, more extensive studies are
needed to explore the pathogenesis of TAO and novel
therapeutic strategies for TAO.

DNA methylation is a process that regulates gene
expression without changing the DNA sequence. Studies
have shown that alteration in DNA methylation was
involved in autoimmune diseases, cancers, fragile X
syndrome, and other disorders [8], and the abnormal
DNA methylation played a vital role in the occurrence
and development of TAO by being involved in regulat-
ing oxidative stress, inflammation, adipogenesis, and
glycosaminoglycan production [9, 10]. In addition, DNA
methylation of T lymphocytes was developed as a future
therapeutic and diagnostic target in rheumatoid arthritis
(RA) [11]. Thus, understanding the DNA methylation
regulation of immune cell infiltration can provide a fra-
mework for developing novel, individualized TAO
therapeutics.

This study obtained two diagnostic markers, S100A11
and NKD2, by least absolute shrinkage and selection
operator (Lasso) regression analysis and support vector
machine (SVM) analysis for TAO-related DMGs.
Enrichment analysis showed that these diagnostic mar-
kers were mainly concentrated in pathways such as innate
immune response and Wnt signaling pathway calcium
modulating pathway. At the same time, CD56 dim natural
killer cells and Neutrophil cells were also screened as
differential immune cells. These findings provided targets
for the diagnosis and treatment of TAO and had great
significance for the further study of TAO.

Material and methods

Data source

The gene ontology (GO) expression profiles of the orbit
tissue from the GSE58331 and GSE105149 datasets,
besides the methylation data of orbit adipose/connective
tissue from the GSE175399 dataset, were downloaded from
the Gene Expression Omnibus database (https://www.ncbi.
nlm.nih.gov/). The GSE58331 dataset contained 35 TAO
samples and 29 normal samples, and in the GSE105149
dataset, there were 7 normal and 4 TAO samples. Mean-
while, the GSE175399 dataset included methylation data of
4 normal and 4 TAO samples.

Determination of differentially expressed genes
between TAO and normal samples

The differentially expressed genes (DEGs) between TAO
and normal samples in the GSE58331 dataset were selected
with p < 0.05 and |log2fold change (FC)| > 0.5 using the
“limma” R package [12]. The distribution of DEGs was
shown in the volcano map plotted by “ggplot” R package.

Determination of TAO-associated genes by
weighted gene co-expression network analysis

The “weighted gene co-expression network analysis”
(WGCNA) R package was adopted to detect modules of
TAO-associated genes (TAGs) in the GSE58331 dataset
[13]. Firstly, all genes’ expression data in the GSE58331
dataset were ranked in descending order of variance, and
genes with variance greater than 25% were selected for
WGCNA analysis. In this study, the disease statuses were
grouped into TAO and normal. Next, all samples in the
GSE58331 dataset were clustered to see the overall corre-
lation of all samples, and outliers were excluded to ensure
the accuracy of the analysis. In addition, the disease statuses
of the samples were collated and added to the clustering plot
to construct a sample clustering and clinical trait heatmap.
Next, the soft threshold was determined to ensure that inter-
gene interactions maximally conformed to the scale-free
distribution. Naturally, the neighborliness between genes
was calculated, and the similarity between genes was cal-
culated based on the neighborliness, and the coefficient of
dissimilarity between genes was introduced, on which the
systematic clustering tree between genes was obtained.
After that, we set the minimum number of genes per gene
module to 30 and set MEDissThres = 0.2 to merge the
similar modules analyzed by dynamic tree cutting algo-
rithm. The modules were then correlated with the traits, and
the key modules associated with the disease were screened
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according to the threshold values p < 0.05 and |r| > 0.3, in
which genes were TAGs.

Determination of TAO-associated differentially
methylated genes

The methylation data in the GSE175399 dataset was qual-
ity-controlled, filtered, and normalized using the champ.-
filter function and champ.norm function in the “ChAMP” R
package [14]. Moreover, the differentially methylated CpG
sites (DMCs) between TAO and normal samples were
screened using the champ.DMP function and corrected for
multiple testing using the Benjamini and Hochberg method.
Methylation sites with the threshold of adj.p < 0.05 were
regarded as DMCs, and the DMCs were annotated to the
corresponding genes DMG based on the annotation infor-
mation. Furthermore, TAO-associated differentially
methylated genes (TA-DMGs) were obtained by over-
lapping the TAGs obtained above, DEGs between TAO and
normal samples, and DMGs.

Functional enrichment analysis of TA-DMGs and
construction of protein–protein interaction network

GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses of TA-DMGs were performed
using the “cluster profile” R package [15] with a sig-
nificance threshold of p < 0.05. Following this, the top 10
GO and KEGG terms were selected for presentation using
the “ggplot2” R package, ranked according to their p value.
To further examine the interactions between the above TA-
DMGs, the proteins encoded by TA-DMGs were predicted
and analyzed for interactions using the STRING (https://
version-11-0.string-db.org/) database, and a protein–protein
interaction (PPI) network was constructed using Cytoscape
software.

Diagnostic marker detection by machine learning

Based on the above-obtained expression values of TA-
DMGs for each sample in the GSE58331 dataset, we
combined the grouping information of the samples to con-
struct lasso regressions to predict sample classification. To
reduce the feature dimension, we used the “glmnet” (ver-
sion 4.0-2) R package [16] to perform 10-fold cross-vali-
dation, calculate the error rate for different features, select
strongly correlated features, and filter out the signature
genes. Meanwhile, we used the “e1071” (version1.7-9) R
package to rank the TA-DMGs by SVM algorithm,
obtained the importance of each gene using the recursive
feature elimination (RFE) method and ranked them, and
obtained the error rate and accuracy rate of each combina-
tion iteration. The lowest error rate was selected as the best

combination, and the corresponding gene was taken out as
the signature gene. The intersecting genes of the signature
genes screened by Lasso analysis and SVM analysis,
respectively, were the diagnostic marker.

Diagnostic value analysis

To evaluate the diagnostic value of each diagnostic marker,
we performed receiver operating characteristic (ROC) curve
analysis for each biomarker in the GSE58331 dataset and
GSE105149 dataset using the “pROC” R package, respec-
tively. The expression of each diagnostic marker was
extracted separately, and the expression of each diagnostic
marker was plotted in the above two datasets using the
“ggplot2” R package together with the sample grouping
information of the respective datasets. In addition, the
methylation levels of each diagnostic marker in TAO and
normal samples were compared by t-test in the GSE175399
dataset.

Gene set enrichment analysis enrichment analysis

The above gene set was used as background genes for
enrichment analysis using gene set enrichment analysis
(GSEA) software (V4.0.3). The significant enrichment
threshold was set at NOM p < 0.05, and we selected TOP 5
enrichment results for each GO and KEGG pathway for
each diagnostic marker separately for presentation.

Immune infiltration analysis

Immune cell infiltrating tumors are most likely to be used as
drug targets to improve patient survival [17]. In this study,
the single-sample GSEA algorithm was used to calculate the
infiltration abundance of 28 immune cells in all samples in
the GSE58331 dataset, and immune cells in disease and
normal samples were compared by the Wilcox test method.
To further understand the relationships between diagnostic
markers and differential immune cells, the correlations
between diagnostic markers and differential immune cells
were calculated using Spearman correlation analysis. The
correlation heatmap between each diagnostic marker and
differential immune cells was plotted using the “ggplot2” R
package.

Quantitative real-time polymerase chain reaction
(qRT-PCR)

Blood samples of five TAO patients and five normal sam-
ples were recruited from the First People’s Hospital of
Yunnan Province. All samples endorsed informed consent
forms and the study passed the ethical review of First
People’s Hospital of Yunnan Province (No. KHLL2016-
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KY038). First, total RNA was extracted by TRIzol Reagent
from Ambion Inc. Then, reverse transcription reaction was
performed by SureScript First strand cDNA synthesis kit
provided by Servicebio. PCR was conducted using the
2xUniversal Blue SYBR Green qPCR Master Mix kit
provided by Servicebio. The PCR conditions were 95 °C
pre-denaturation for 1 min, then 40 cycles. Each cycle
included 95 °C denaturation for 20 s, 55 °C annealing for
20 s, and 72 °C extension for 30 s. GAPDH was used as an
internal reference for gene detection. Primer sequences were
shown in Supplementary Table S1. The expressions of
NKD2 and S100A11 in TAO and normal samples were
compared by t-test.

Results

Determination of DEGs between TAO and normal
samples

The volcano plot of DEGs was shown in Fig. 1. There were
994 significant DEGs between TAO and normal samples,
containing 218 upregulated DEGs and 776 downregulated
DEGs (Supplementary Table S2).

Determination of TAGs by WGCNA

A total of 16,230 genes with variance greater than 25%
were obtained in the GSE58331 database for WGCA
analysis. The sample clustering plot showed that the
samples clustered well, so no sample rejection was

required (Supplementary Fig. 1A). Supplementary Fig.
1B showed the sample clustering and clinical trait heat-
map. The power threshold was chosen to be 30 when the
interaction between genes maximally conformed to the
scale-free distribution (Fig. 2A). The hybrid dynamic
shear tree algorithm obtained 28 modules, and a total of 8
modules were obtained after merging similar modules
(Fig. 2B). The genes contained in each module were as
Supplementary Table S3. Three key modules associated
with GO were obtained by module-trait association ana-
lysis (Fig. 2C), namely cyan module (2643 genes), dark
red module (81 genes), and blue module (4603 genes),
and a total of 7327 TAGs were obtained by combining
genes in the three modules.

Determination of TA-DMGs

In total, 12,404 DMCs were obtained by differential ana-
lysis, and 4507 DMGs were obtained after annotation (Fig.
3A). A sum of 125 TA-DMGs (Supplementary Table S3)
was obtained after taking the intersection of 7327 TAGs,
994 DEGs between TAO and normal samples, and 4507
DMGs (Fig. 3B).

Functional enrichment analysis of TA-DMGs and
construction of PPI network

Functional enrichment analysis of 125 TA-DMGs
revealed about 80 GO biological processes (BP), 9 GO
cellular components, 21 GO molecular functions, and 7
KEGG pathways (Supplementary Tables S4–S7), which
were enriched for Th1 and Th2 cell differentiation, reg-
ulation of innate immune response, neutrophil degranu-
lation, neutrophil activation involved in immune
response, neutrophil-mediated immunity, negative reg-
ulation of immune response, neutrophil activation, and
other immune-related pathways. The GO and KEGG top
10 terms were presented in Fig. 4A. The PPI network
constructed by TA-DMGs predicted proteins was shown
in Fig. 4B, and the results obtained 64 protein-interaction
pairs containing 64 protein nodes, including four upre-
gulated differential proteins and 60 downregulated dif-
ferential proteins (see Supplementary Table S8).

Diagnostic marker detection by machine learning

The gene coefficient plot and cross-validation error plot
obtained from the lasso regression were shown in Fig.
5A, B. The lowest error rate was reached at a lambda. min
of 0.0197 and eight signature genes were screened out,
namely ADAD2, ADAMTSL2, EHBP1, GPR144, MRPS6,
NKD2, NRIP2, and S100A11. Figure 5C, D showed the
accuracy of the model under different features. In the

Fig. 1 Determination of DEGs between TAO and normal samples. The
volcano plot showed all differentially expressed genes (DEGs)
between TAO and normal samples. Red indicates that the expression
of genes is relatively upregulated, and blue means that the expression
of genes is relatively downregulated. The number of genes in each
module is listed in Supplementary Table S1
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Fig. 2 Determination of TAO-associated genes (TAGs) by weighted
gene co-expression network analysis (WGCNA). A Analysis of net-
work topology for various soft-thresholding powers. B Clustering
dendrogram of genes, with dissimilarity based on the topological
overlap and assigned module colors. CModule-trait associations. Each

row corresponds to a module, and each column corresponds to a trait.
Each cell contains the corresponding correlation and p value. The table
is color-coded by correlation according to the color legend. Heatmap
of the correlation between module eigengenes and the clinical modules

Fig. 3 Determination of TA-DMGs between TAO and normal samples. A Volcano plot of DMGs. B Venn plot of TAGs, DEGs, and DMGs
between TAO and normal samples
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Fig. 4 Functional enrichment analysis of TA-DMGs and PPI network.
A Gene Ontology (GO) functional and KEGG pathway enrichment
analysis for TA-DMGs. B Protein–protein interaction network of the

common differentially methylated genes (DMGs) set. Blue indicates
downregulation while red represents upregulation
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SVM analysis, we calculated the accuracy under different
features using a 5-fold cross-validation, and the model
reached the highest accuracy after selecting the first eight
features, at which point 8 signature genes were selected,
namely GDE1, NKD2, PTTG1IP, ATP5J2, SGCE,
S100A11, SKP1, and BNIP3L. The SVM-RFE model
feature rankings were shown in Table 1. The signature
genes screened by Lasso analysis and SVM analysis were
intersected to obtain an overall total of S100A11 and

NKD2 diagnostic markers for subsequent analysis (Fig.
5E).

Diagnostic value analysis

The ROC results showed that the area under curve (AUC)
value of each diagnostic marker in the GSE58331 dataset
reached above 0.75, and the AUC value of each diagnostic
marker in the GSE105149 dataset reached above 0.8,
indicating that each diagnostic marker had the diagnostic
ability to distinguish between disease and normal samples
(Fig. 6A, B). The expression trends of the diagnostic
markers in the GSE58331 and GSE105149 datasets were
consistent, with NKD2 belonging to differentially upre-
gulated genes and S100A11 belonging to differentially
downregulated genes in the TAO samples (Fig. 6C, D). It
can be seen from the boxplot of differential methylation
levels of diagnostic markers that the cg26564714 methy-
lation level and the cg22158992 methylation level of
NKD2 gene were upregulated in TAO samples, and the
cg12447069 methylation level of S100A11 gene was
downregulated in TAO samples (Fig. 6E).

Fig. 5 Diagnostic marker detection by machine learning. A, B The
gene coefficient plot and cross-validation error plot were obtained
from the lasso regression. Eight signature genes (ADAD2,
ADAMTSL2, EHBP1, GPR144, MRPS6, NKD2, NRIP2, and S100A11)

were screened. C, D The results of the SVM analysis. Eight signature
genes were selected (GDE1, NKD2, PTTG1IP, ATP5J2, SGCE,
S100A11, SKP1, and BNIP3L). E Venn plot of signature genes by
lasso regression and SVM analysis

Table 1 The SVM-RFE model feature rankings

No. FeatureName FeatureID AvgRank

1 GDE1 41 16

2 NKD2 72 16.6

3 PTTG1IP 89 17.6

4 ATP5J2 15 18

5 SGCE 101 18.2

6 S100A11 79 18.4

7 SKP1 106 21.4

8 BNIP3L 18 24.2
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GSEA enrichment analysis

Gene enrichment analysis showed that NKD2 was enri-
ched with 176 GO BPs and 2 KEGG pathways, and
S100A11 was enriched with 451 GO BPs and 18 KEGG
pathways. The top 10 GO and KEGG enrichment results
of NKD2 diagnostic markers were shown in Fig. 7A, B.
The figure showed that NKD2 regulated endoplasmic
reticulum stress-induced EIF2 alpha phosphorylation,
ribosome biogenesis regulation, translational initiation
by EIF2 alpha phosphorylation, and WNT signaling
pathway calcium modulating pathway, and other GO
functions. It is involved in Neuroactive Ligand receptor
interaction and Oocyte meiosis KEGG pathways.
S100A11 participated in protein polyufmylation, reg-
ulation of translational initiation by EIF2 alpha phos-
phorylation, development of secondary female sexual
characteristics, regulation of mitochondrial electron
transport NADH to ubiquinone, development of sec-
ondary sexual characteristics, and other GO functions
and KEGG pathways such as epithelial cell signaling in
Helicobacter pylori infection, ubiquitin-mediated pro-
teolysis, pancreatic cancer, thyroid cancer, non-small
cell lung cancer (Fig. 7C, D).

Immune infiltration analysis

There were 12 differential immune cells between TAO
and normal samples, with CD56 dim natural killer cells
and Neutrophil cells being upregulated in TAO samples,
CD56 bright natural killer cells, central memory CD4
T cells, central memory CD8 T cells, effector memory
CD4 T cells, gamma delta T cells, immature dendritic
cells, plasmacytoid dendritic cells, regulatory T cells, T
follicular helper cell, and Type 2 T helper cell ten cells
were downregulated in the TAO samples (Fig. 8A and
Supplementary Table S9). A heatmap of the correlation
between each diagnostic marker and the differential
immune cells was shown in Fig. 8B. Among them,
S100A11 was significantly positively correlated with
CD56 bright natural killer cell, central memory CD4 T
cell, central memory CD8 T cell, effector memory CD4 T
cell, gamma delta T cell, immature dendritic cell, plas-
macytoid dendritic cell, and type 2 T helper cell, and
negatively correlated with CD56 dim natural killer cell
and neutrophils cell. NKD2 was significantly positively
associated with CD56 dim natural killer cell and neu-
trophil and significantly negatively correlated with CD56
bright natural killer cell, central memory CD4 T cell,
effector memory CD4 T cell, immature dendritic cell,
plasmacytoid dendritic cell, T follicular helper cell, and
Type 2 T helper cell (Supplementary Table S10).

Fig. 6 The diagnostic performance of machine learning for the pre-
diction of biomarkers. A The receiver operating characteristic curve
(ROC) of NKD2 and S100A11 in the training group. B The ROC curve
of NKD2 and S100A11 in the validation set. C, D The boxplots of
NKD2 and S100A11 in the GSE58331 and GSE105149 datasets.
E Boxplot of the methylation levels of NKD2 and S100A11 in TAO
samples and normal samples
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The results of qRT-PCR

Compared with normal samples, the expression of S100A11 in
TAO was significantly downregulated, and the expressions of
NKD2 and in TAO were significantly upregulated (Fig. 9),
which was consistent with our analysis.

Discussion

TAO is a vexing autoimmune condition that causes early
orbital inflammation and late tissue remodeling, with cel-
lular and humoral immunity forming a complex regulatory
network. Previous studies have revealed the relationship

Fig. 7 GSEA for NKD2 and S100A11. A The GO result of NKD2.
B The KEGG result of NKD2. C The GO result of S100A11. D The
KEGG result of S100A11. Each line represents one particular gene set
with unique color. Upregulated genes are located on the left,

approaching the origin of the coordinates; by contrast, the down-
regulated lay on the right of the x-axis. Only gene sets with NOM
p < 0.05 were considered significant, and only several leading gene
sets were displayed in the plot
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between DNA methylation and TAO, and several genomic
loci were identified [9, 10, 18–20], such as interleukin 17
receptor E and cyclin-dependent kinase 5. However, the
methylation-related pathogenesis of TAO has not been fully
elucidated.

In this study, we identified 125 DEGs associated with the
development of TAO, which was mainly involved in
immunity-related pathways, including Th1 and Th2 cell

differentiation, regulation of innate immune response,
neutrophil activation involved in immune response, and
other immune-related pathways.

Th1 and Th2 cells of the adaptive immune system play a
vital role in the pathogenesis of immune-mediated inflam-
matory diseases [21]. According to previous studies, Type
1, Type 2, and Type 17 helper T cells and regulatory T cells
may participate in the pathogenesis of TAO through

Fig. 8 Immune cell infiltration analysis in TAO. A Twelve differential immune cells were found between TAO and normal samples. B Heatmap of
the correlation between NKD2 and s100A11 with immune cells in TAO. *p < 0.05, **p < 0.01

286 Endocrine (2023) 81:277–289



multiple mechanisms, including activating B cells, pro-
moting adhesion molecule expression, and producing
inflammatory cytokines [22, 23]. In the orbital immune
microenvironment, T cells are the primary immune cells
that activate orbital fibroblasts (OFs). They activate OFs via
CD40-CD40L costimulatory molecules, upregulating the
phosphorylation of p38, ERK 1/2, JNK, and NF-kB p65 and
inducing the high production of IL-6, IL-8, and hyaluronan
[24]. In different TAO stages, there are different T cell
subset biases, and the skewed pattern of cytokine produc-
tion in orbit, such as Th1 immune response predominated
early active TAO, and Th2 immune response prevailed in
late stable TAO [25]. Our study also found that T cell
infiltration in TAO orbital tissues, Th1 and Th2 cell dif-
ferentiation pathways, are involved in TAO pathogenesis.
This aligns with the widely accepted concept that T-cell-
mediated immunity contributes to TAO development. In
addition, our study also found that innate immune system
members, especially neutrophil cells and natural killer cells,
are differentially expressed in the TAO orbital immune
microenvironment. Due to many studies on T cells and
adaptive immunity in TAO, this paper focuses on the
relationship between TAO and innate immunity. We believe
that both adaptive and innate immunity is involved in the
pathophysiology of TAO, although the study of innate
immunity is still in the exploratory stage.

Neutrophils are primary effector cells of innate immunity
and fight infection by phagocytosis and degranulation.
Therefore, in autoimmune diseases, activation and release
of neutrophil extracellular traps (NETs) can be considered a
source of autoantigens and may induce the formation of
autoantibodies [26]. Recently, NETs have been proposed to
play an essential role in several autoimmune diseases, such
as RA and SLE, by externalizing intracellular neoepitopes,
e.g., dsDNA and nuclear proteins in SLE and citrullinated
peptides in RA [27]. In addition, DNA demethylation was
validated to enhance spontaneous NETosis through
increasing PAD4 expression and histone citrullination [28].

Previous studies reported that the active inflammatory
phase of TAO was mediated by the innate immune system
[29]. For example, the polymorphism of interleukin-17A, an

important cytokine involved in innate immune responses,
was strongly associated with GD susceptibility [30]. Simi-
larly, increased PTX3, a component of the innate immune
system, in orbital tissue and serum has been found in TAO
[31]. Furthermore, it has been revealed that differential
methylation status HLA -DPB1 and PDCD1LG2 genes
played a role in developing autoimmune thyroiditis [32].
Thus, neutrophils and innate immune responses may parti-
cipate in TAO development by converting methylation
status in genes related to those processes.

We obtained two diagnostic markers by the machine
learning algorithm, including S100A11 and NKD2. qRT-
PCR illustrated that compared with normal samples, the
expression of S100A11 in TAO was significantly down-
regulated, and the expressions of NKD2 in TAO were
significantly upregulated. GSEA analysis showed that
NKD2 participated in innate immune response in the
mucosa and Wnt signaling pathways. Previous studies
reported NKD2 negatively regulated canonical Wnt signal-
ing by binding Dishevelled [33, 34]. In addition, the Wnt
signaling pathway was validated to control adipogenesis
and myofibroblast formation in TAO [35]. Besides, NKD2
has multiple biological functions: modulating cell home-
ostasis, preventing tumorigenesis, and promoting kidney
fibrosis by inducing col1a1 expression [36]. Furthermore,
recent studies have found a strong correlation between
NKD2 expression and proinflammatory cytokine production
in effector T cells, which mediated stimulation-dependent
ORAI1 trafficking to augment Ca2+ entry in T cells, has
been found in recent studies [37, 38]. Therefore, methyla-
tion alteration of NKD2 may influence adipogenesis and
pathogenic effector T cell responses, modulating TAO
development.

Enrichment analysis found that S100A11 involved pro-
tein polyufmylation and pancreatic-mediated proteolysis.
Previous studies demonstrated that S100A11 played a cru-
cial role in tumor and low-grade inflammation [39].
Increased S100A11 expression was recently shown in RA
and associated with disease activity, inflammation, and
autoantibodies against citrullinated proteins [40]. Moreover,
extracellular S100A11 was shown to act via RAGE-

Fig. 9 qRT-PCR for NKD2 and
S100A11. A S100A11 was
significantly downregulated in
TAO. B NKD2 in TAO was
significantly upregulated.
*p < 0.05, **p < 0.01
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dependent signaling to activate the p38 mitogen-activated
protein kinase pathway and accelerate chondrocyte hyper-
trophy and matrix catabolism [41]. In addition, in vitro
study revealed that extracellular S100A11 augmented the
inflammatory response by inducing proinflammatory cyto-
kines in neutrophils [40]. The function of S100A11 in TAO
has yet to be thoroughly evaluated. Combining the present
and previous results, we speculated that S100A11 deme-
thylation was a crucial immune regulator in TAO.

Meanwhile, our study has proven that innate immune
system members, such as natural killer cells, dendritic cells,
and macrophages, were essential constituents of the TAO
orbital microenvironment [42]. Besides, both NKD2 and
S100A11 expression strongly positively correlated with
natural killer cell infiltration in TAO. Studies indicated NK-
derived cytokines and their cytotoxic functions through
induction of apoptosis took part in regulating the immune
responses. They could contribute to the pathogenesis of
many immune-mediated diseases, including Behcet’s dis-
ease and multiple sclerosis, RA, SLE, and type 1 diabetes
[43]. But the precise mechanisms of NK cells in TAO
progression are still largely unknown. Our study showed
that the expression of NKD2 and S100A11 was closely
related to immune infiltration, especially by innate immune
cell infiltration in TAO.

However, several limitations to our study should be
noted: firstly, our results were mainly based on the predic-
tion of bioinformatics data and a small number of clinical
samples; only seldom clinical stages, such as clinical
activity score and thyroid antibody status of the patients
whose samples were contained in the gene dataset, can be
retrieved (Supplementary Table S11). In addition, TAO is a
very heterogeneous disease; therefore, the expression of
related genes might differ in patients based on disease
severity, activity, and duration. So more detailed biologic
mechanisms of the final selected markers remain to be
investigated in laboratory and future clinical experiments.
Second, this study was mainly based on DNA and mRNA
expression on orbital tissues, and integrated characterization
and analysis using transcriptomic, proteomic, and metabo-
lomic molecular profiles could be more accurate.

Conclusion

In short, this study identified NKD2 and S100A11 as two
potential biomarkers for TAO. This study was the first
clinical investigation of the association of NKD2, S100A11,
and immune cell infiltration with TAO. Further studies are
needed to elucidate their precise roles in this disease.
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