Skip to main content
Log in

Bcl-2 and Noxa are potential prognostic indicators for patients with gastroenteropancreatic neuroendocrine neoplasms

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Bcl-2 family proteins are of great significance in the pathogenesis and development of tumors. In this study, the correlations between the expression of Bcl-2 family proteins and clinicopathological features and prognosis of neuroendocrine neoplasms (NENs) were further investigated.

Methods

105 Patients diagnosed with gastroenteropancreatic NENs (GEP-NENs) with the paraffin specimen of the tumor available were retrospectively included. Immunohistochemistry (IHC) was performed to detect the expression of Bcl-2 family proteins in paraffin-embedded samples. Student’s t-test and Chi-square test were applied to compare the difference of quantitative and categorical variables, respectively. Survival analysis was conducted according to Kaplan–Meier method. Univariate and multivariate cox regression analysis were used to identify the independent prognostic factors.

Results

The IHC score of Bcl-2 was significantly higher in neuroendocrine carcinoma (NEC) patients (65.6%), while a higher IHC score of Noxa was more common in neuroendocrine tumor (NET) patients (49.3%). Survival analysis indicated that patients with higher Bcl-2 expression and lower Noxa expression had worse 5-year survival (39.3% vs. 75.6%, p < 0.001; 40.6% vs. 84.9%, p < 0.001). Multivariate cox analysis indicated that high Bcl-2 expression was an independent factor associated with inferior DFS (hazard ratio [HR]: 2.092; 95% confidence interval [CI]: 1.106–3.955; p = 0.023) and OS (HR: 2.784; 95% CI: 1.326–5.846; p = 0.007), while higher Noxa expression was associated with superior DFS (HR:0.398; 95% CI: 0.175–0.907; p = 0.028) and OS (HR: 0.274; 95% CI: 0.110–0.686; p = 0.006).

Conclusions

Higher expression of Bcl-2 and lower expression of Noxa were associated with unfavorable prognosis of GEP-NENs patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Dasari, C. Shen, D. Halperin, B. Zhao, S. Zhou, Y. Xu et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3(10), 1335–1342 (2017)

    Article  Google Scholar 

  2. J.C. Yao, M.H. Shah, T. Ito, C.L. Bohas, E.M. Wolin, E. Van Cutsem et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364(6), 514–523 (2011)

    Article  CAS  Google Scholar 

  3. E. Raymond, L. Dahan, J.L. Raoul, Y.J. Bang, I. Borbath, C. Lombard-Bohas et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364(6), 501–513 (2011)

    Article  CAS  Google Scholar 

  4. J.C. Yao, N. Fazio, S. Singh, R. Buzzoni, C. Carnaghi, E. Wolin et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387(10022), 968–977 (2016)

    Article  CAS  Google Scholar 

  5. J. Xu, L. Shen, Z. Zhou, J. Li, C. Bai, Y. Chi et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21(11), 1500–1512 (2020)

    Article  CAS  Google Scholar 

  6. J.E. Guikema, M. Amiot, E. Eldering, Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin. Ther. Targets 21(8), 767–779 (2017)

    Article  CAS  Google Scholar 

  7. E.M. Bruckheimer, S.H. Cho, M. Sarkiss, J. Herrmann, T.J. McDonnell, The Bcl-2 gene family and apoptosis. Adv. Biochem. Eng. Biotechnol. 62, 75–105 (1998)

    CAS  PubMed  Google Scholar 

  8. J.B. Dietrich, Apoptosis and anti-apoptosis genes in the Bcl-2 family. Arch. Physiol. Biochem. 105(2), 125–135 (1997)

    Article  CAS  Google Scholar 

  9. I. Kapoor, J. Bodo, B. Hill, E. Hsi, A. Almasan, Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 11(11), 941 (2020)

    Article  CAS  Google Scholar 

  10. J.W. Moul, Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur. Urol. 35(5-6), 399–407 (1999)

    Article  CAS  Google Scholar 

  11. Y. Wei, Y. Cao, R. Sun, L. Cheng, X. Xiong, X. Jin et al. Targeting Bcl-2 proteins in acute myeloid leukemia. Front. Oncol. 10, 584974 (2020)

    Article  Google Scholar 

  12. N. Gangat, A. Tefferi, Venetoclax-based chemotherapy in acute and chronic myeloid neoplasms: literature survey and practice points. Blood Cancer J. 10(11), 122 (2020)

    Article  Google Scholar 

  13. S. Yachida, E. Vakiani, C.M. White, Y. Zhong, T. Saunders, R. Morgan et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am. J. Surg. Pathol. 36(2), 173–184 (2012)

    Article  Google Scholar 

  14. I.D. Nagtegaal OR, D. Klimstra, WHO classification of tumours. digestive system tumours. Fifth Edition: World Health Organization Press. 2019

  15. S.B. Edge, AJCC cancer staging manual 8th ed: Springer; 2017.

  16. D. Creytens, NKX2.2 immunohistochemistry in the distinction of Ewing sarcoma from cytomorphologic mimics: Diagnostic utility and pitfalls-Comment on Russell-Goldman et al. Cancer Cytopathol. 127(3), 202 (2019)

    Article  Google Scholar 

  17. Z. Guo, X. Zhang, H. Zhu, N. Zhong, X. Luo, Y. Zhang et al. TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2. Oncol. Rep. 45(2), 523–534 (2021)

    Article  CAS  Google Scholar 

  18. W. Chen, J. Peng, Q. Ou, Y. Wen, W. Jiang, Y. Deng et al. Expression of NDRG2 in human colorectal cancer and its association with prognosis. J. Cancer 10(15), 3373–3380 (2019)

    Article  CAS  Google Scholar 

  19. J. Peng, Y. Zhao, Q. Luo, H. Chen, W. Fan, Z. Pan et al. High WNT6 expression indicates unfavorable survival outcome for patients with colorectal liver metastasis after liver resection. J. Cancer 10(12), 2619–2627 (2019)

    Article  CAS  Google Scholar 

  20. A.S. Ebrahim, H. Sabbagh, A. Liddane, A. Raufi, M. Kandouz, A. Al-Katib, Hematologic malignancies: newer strategies to counter the BCL-2 protein. J. Cancer Res. Clin. Oncol. 142(9), 2013–2022 (2016)

    Article  CAS  Google Scholar 

  21. D.G. Wang, C.F. Johnston, J.M. Sloan, K.D. Buchanan, Expression of Bcl-2 in lung neuroendocrine tumours: comparison with p53. J. Pathol. 184(3), 247–251 (1998)

    Article  CAS  Google Scholar 

  22. M. Rahmani, J. Nkwocha, E. Hawkins, X. Pei, R.E. Parker, M. Kmieciak et al. Cotargeting BCL-2 and PI3K induces BAX-dependent mitochondrial apoptosis in AML cells. Cancer Res. 78(11), 3075–3086 (2018)

    Article  CAS  Google Scholar 

  23. D. Trisciuoglio, M. Desideri, L. Ciuffreda, M. Mottolese, D. Ribatti, A. Vacca et al. Bcl-2 overexpression in melanoma cells increases tumor progression-associated properties and in vivo tumor growth. J. Cell Physiol. 205(3), 414–421 (2005)

    Article  CAS  Google Scholar 

  24. A.A. Gal, M.N. Sheppard, J.D. Nolen, C. Cohen, p53, cellular proliferation, and apoptosis-related factors in thymic neuroendocrine tumors. Mod. Pathol. 17(1), 33–39 (2004)

    Article  CAS  Google Scholar 

  25. T.C. Fisher, A.E. Milner, C.D. Gregory, A.L. Jackman, G.W. Aherne, J.A. Hartley et al. bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res. 53(14), 3321–3326 (1993)

    CAS  PubMed  Google Scholar 

  26. U.A. Sartorius, P.H. Krammer, Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J. Cancer 97(5), 584–592 (2002)

    Article  CAS  Google Scholar 

  27. S. Hafezi, M. Rahmani, Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers. 2021;13

  28. T.L. Lochmann, K.V. Floros, M. Naseri, K.M. Powell, W. Cook, R.J. March et al. Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clin. Cancer Res. 24(2), 360–369 (2018)

    Article  CAS  Google Scholar 

  29. D.A. Pollyea, Venetoclax in AML: where we are and where we are headed. Clin. Lymphoma Myeloma Leuk. 20(Suppl 1), S25–S26 (2020)

    Article  Google Scholar 

  30. P. Gomez-Bougie, S. Wuilleme-Toumi, E. Menoret, V. Trichet, N. Robillard, M. Philippe et al. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 67(11), 5418–5424 (2007)

    Article  CAS  Google Scholar 

  31. K.G. Ponder, S.M. Matulis, S. Hitosugi, V.A. Gupta, C. Sharp, F. Burrows et al. Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma. Cancer Biol. Ther. 17(7), 769–777 (2016)

    Article  CAS  Google Scholar 

  32. M.C. Albert, K. Brinkmann, H. Kashkar, Noxa and cancer therapy: Tuning up the mitochondrial death machinery in response to chemotherapy. Mol. Cell Oncol. 1(1), e29906 (2014)

    Article  Google Scholar 

  33. W.J. Mackus, A.P. Kater, A. Grummels, L.M. Evers, B. Hooijbrink, M.H. Kramer et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 19(3), 427–434 (2005)

    Article  CAS  Google Scholar 

  34. K.M. Lucas, N. Mohana-Kumaran, D. Lau, X.D. Zhang, P. Hersey, D.C. Huang et al. Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clin. Cancer Res. 18(3), 783–795 (2012)

    Article  CAS  Google Scholar 

  35. C. Seveno, D. Loussouarn, S. Brechet, M. Campone, P. Juin, S. Barille-Nion, gamma-Secretase inhibition promotes cell death, Noxa upregulation, and sensitization to BH3 mimetic ABT-737 in human breast cancer cells. Breast Cancer Res. 14(3), R96 (2012)

    Article  CAS  Google Scholar 

Download references

Author contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Y.G., L.Z., and N.Z. Experiments design: D.J.Y. and J.C. Immunohistochemical staining and analysis: M.L., Q.Y.L. Manuscript writing: Y.G., L.Z., N.Z., and L.C. All authors read and approved the final manuscript.

Funding

This work was supported by National Natural Science Foundation of China (No. 82141104); Guangzhou Science and Technology Plan (201804010078); Province Natural Science Fund of Guangdong (2019A1515011373); National Natural Science Foundation of China (82003268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dajun Yang or Jie Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These author contributed equally: Yu Guo, Lin Zhang and Ning Zhang.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, L., Zhang, N. et al. Bcl-2 and Noxa are potential prognostic indicators for patients with gastroenteropancreatic neuroendocrine neoplasms. Endocrine 78, 159–168 (2022). https://doi.org/10.1007/s12020-022-03114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03114-8

Keywords

Navigation