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Abstract
Purpose Endocrine disruptors (EDs) are exogenous substances able to impair endocrine system; consequently, they may
cause numerous adverse effects. Over the last years, particular focus has been given to their harmful effects on reproductive
system, but very little is known, especially in males. The aim of this review is to discuss the detrimental effects of EDs
exposure on fetal testis development, male puberty, and transition age.
Methods A search for the existing literature focusing on the impact of EDs on fetal testis development, male puberty,
andrological parameters (anogenital distance, penile length, and testicular volume), and testicular cancer with particular
regard to pubertal age provided the most current information available for this review. Human evidence-based reports were
given priority over animal and in vitro experimental results. Given the paucity of available articles on this subject, all
resources were given careful consideration.
Results Information about the consequences associated with EDs exposure in the current literature is limited and often
conflicting, due to the scarcity of human studies and their heterogeneity.
Conclusions We conclude that current evidence does not clarify the impact of EDs on human male reproductive health,
although severe harmful effects had been reported in animals. Despite controversial results, overall conclusion points toward
a positive association between exposure to EDs and reproductive system damage. Further long-term studies performed on
wide number of subjects are necessary in order to identify damaging compounds and remove them from the environment.
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Introduction

According to the WHO/IPCS 2002 definition, “an Endo-
crine Disruptor (ED) is an exogenous substance or mixture
that alters functions of the endocrine system and conse-
quently causes adverse effects in an intact organism, or its
progeny.” Over the past two decades, public health has

focused on the identification of environmental EDs that are
able to adversely affect hormonal function [1]. EDs mimic
naturally occurring hormones like estrogens and androgens
and exert their toxicity by interfering with the normal hor-
monal homeostatic mechanisms that promote growth and
development of tissues. EDs usually interfere with the
hormonal binding to the corresponding receptor, notably the
androgen receptor (AR) or the estrogen receptor. Subse-
quently, EDs can trigger two types of response: agonistic
and/or antagonistic effect. In addition, recent discoveries in
molecular biology confirmed a possible interference by
several compounds with the cell cycle, the apoptotic
mechanisms, and the epigenetic regulation [2]. Epigenetic
changes are able to modify activation and expression of
genes, though not altering the genetic code sequence.
Changes in DNA methylation, histone modifications, and
noncoding RNAs are involved. Recent studies reported a
transmission of epigenetic shifts from father to child, sug-
gesting a transgenerational inheritance [3, 4]. Therefore,
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EDs may have negative effects not only in exposed indi-
viduals, but also in their offspring and in future generations.
Main EDs characteristics are summarized in Table 1. In
addition to exposure by direct contact with these materials,

EDs are also released into the environment. Therefore,
exposure may occur through food and water consumption,
inhalation, or dermal contact. During fetal and neonatal life
it could also occur through placenta and breast feeding. As a

Table 1 Classification, properties, and effects on male reproductive system of most common EDs

EDs Group Chemical structure Main sources Half-life Main effect

Phthalates Plasticizers Polyvinyl
chloride (PVC)
products, toys,
medical devices,
cosmetics, and
personal care
products

About 12 h Antiandrogenic

Bisphenol A (BPA) Bisphenols Polycarbonate
plastics, epoxy
resins, plastic
toys, and bottles

4–5 h Estrogenic

Dichlorodiphenyldichloroethyl-
ene (DDE)

Organochlorides Pesticides (and
contaminated
water, soil
products, fish)

About
8 years

Antiandrogenic,
estrogenic

Polychlorinated
biphenyls (PCBs)

Organochlorides Pesticides, flame
retardants (and
contaminated
water, soil
products, fish)

Up to
16 years

Variable
(estrogenic,
antiestrogenic or
antiandrogenic)

Per- and poly-fluoroalkyl
substances (PFAS)

Fluorosurfactant Commercial
household
products (e.g.,
stain- and water-
repellent fabrics),
electronics
manufacturing
(and
contaminated
water, soil
products, fish)

Up to
10 years

Antiandrogenic,
antiestrogenic
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consequence, EDs may affect human pre and postnatal
development. In fact, infants can be affected already at
prenatal level due to maternal exposure to EDs [5]. The
effects of EDs on the male reproductive system are usually
attributed to the interactions of these chemicals with the
normal production and/or function of steroid hormones that
are responsible for the masculinization of the Wolffian ducts
[6]. In males, reproductive disorders associated with
impaired fetal testis development or function vary in both
phenotype and time of manifestation. Often gathered under
the “testicular dysgenesis syndrome” (TDS) hypothesis [7],
these male disorders range from hypospadias and cryp-
torchidism in infants [8–11] to low testosterone levels,
infertility, and testicular cancer (TC) in adult men [12–14].
TDS has been correlated with environmental factors during
fetal life [7].

The aim of this review is to discuss the detrimental effects
of EDs exposure on fetal testis development, male puberty,
and transition age, the latter defined as age 18–25 years. This
definition is consistent with the recent discoveries in the field
of neurophysiology, in fact a maturation of prefrontal cortex
until 25 years old has been pointed out [15, 16]. This review
aims to provide an overview of animal, in vitro, and human
studies, though human evidence-based reports were given
priority. In particular, andrological parameters of male health
such as anogenital distance (AGD), penile length, and tes-
ticular volume (TV) were investigated.

Effects of EDs on testis development

Testis development during fetal life is crucial for male
reproductive function in adulthood [17]. Indeed, fetal period
is critical for the regular development of the testis and is
known as a period of high sensitivity to many EDs [18].
Both functions of testis (spermatogenesis and steroidogen-
esis) are set up early during fetal life [19]. Primordial
gonads appear between the 4th and the 6th week post fer-
tilization. They are rapidly colonized by primordial germ
cells that migrate from extra-embryonic areas [20]. Six
weeks post fertilization, the differentiation of the testis is
due to Sertoli cells surrounding testicular cords [21]. Sertoli
cells are central for germ cell development [22] and Leydig
cells differentiation [23]. Indeed, at 6th week post fertili-
zation, fetal Leydig cells start producing testosterone and
insulin-like factor 3 (INSL3). Both hormones are involved
in testicular descent [24]. Furthermore, testosterone is cru-
cial for fetal masculinization. Therefore, perturbations to the
function of fetal Leydig cells can predispose to the devel-
opment of male reproductive disorders including TDS and
other disorders of sex development [25].

In the last years, literature focused on possible associa-
tion between EDs and testis development. Several

experimental animal studies were conducted to investigate a
possible correlation, especially in mouse models. Di-2-
ethylhexyl phthalate (DEHP) and di-n-butyl phthalate
(DBP) are the most abundant phthalates which, after
ingestion, are hydrolyzed into the active monoesters
monoethylhexyl phthalate (MEHP) and mono-n-butyl
phthalate (MBP), respectively. In rodents, the effects of
DEHP and DBP exposure in utero have been largely
described. Numerous studies reported a disruption of nor-
mal fetal testis development and the subsequent develop-
ment of male reproductive disorders [17, 26]. It is
interesting to note that in mice phthalates can induce a
positive effect on testosterone secretion by the cultured fetal
testis [27, 28]. Surprisingly, such effect was not observed in
the human testis. In this regard, both organ cultures and
xenograft experiments revealed no marked change in tes-
tosterone production [29–31], suggesting that exposure to
environmental levels of DBP and DEHP is unlikely to result
in effects on fetal testosterone production in humans.
Notably, although no effects of phthalate exposure have
been demonstrated in human fetal testes, antiandrogenic
effects occur in adult human testis following in vitro cul-
ture. The different effect of exposure could depend on the
developmental stage of the testis [32]. However, experi-
mental studies in rodents and human fetal tissues are con-
sistent regarding germ cells, showing a reduction in the
gonocyte number following phthalate exposure [30, 33].
Concerning other EDs, inconsistent results on testosterone
production and germ cell development have been identified
in animal studies investigating the effects of BPA exposure
on fetal testis development [34, 35]. In the same way,
inconsistent results on association between BPA and clin-
ical indicators of reduced fetal testosterone (cryptorchidism
and hypospadias) have been reported in epidemiological
studies [36, 37]. For human testicular tissue experiments,
in vitro studies indicate the potential for BPA to reduce
testosterone production in the fetal testicle, whereas xeno-
transplantation studies failed to demonstrate similar effects
[34, 35]. In addition, in vivo human BPA exposure might be
below the concentrations used for experimental studies
involving animal or human tissues [38]. Regarding other
EDs, PCBs have been associated with abnormal urogenital
development in animal models [39, 40]. In particular, lac-
tational exposure seems to affect histology of rat testis in
both prepuberal and puberal F1 progeny [41]. In rats, per-
fluorooctanoic acid (PFOA) does not seem to affect fetal
Sertoli cells but may increase tendency of apoptosis in fetal
Leydig cells [42]. This damage seems to affect both pro-
liferation and differentiation of stem Leydig cells or their
progeny [43]. Regarding perfluorooctanesulfonic acid
(PFOS), it seems to damage Sertoli cells by perturbing actin
cytoskeleton in primary cultures of rodent and human
[44, 45] and may directly inhibit pubertal development of

360 Endocrine (2021) 72:358–374



rat Leydig cells [46]. In humans, prenatal PFOS exposure
may increase fetal steroid hormone production, although no
association with cryptorchidism or hypospadias has been
observed [47]. Anti-Müllerian hormone and INSL3 have
been recently recognized as optimal markers of Sertoli and
Leydig cells function, respectively, in particular during the
first years of life [48]. However, modifications of their
levels after EDs exposure have not been widely investigated
in human studies. These reports may eventually provide
additional insight on the pathophysiology of endocrine
disruption on testis development.

Effects of EDs on timing of puberty

The term puberty means a complex of psycho-neuro-
endocrine changes that occur between the end of the child-
hood and the achievement of the complete sexual maturity.
Usually, the normal length of puberty is about 5–6 years.
Puberty usually begins later in males than in females,
between 9.5 and 13.5 years old (on average 11.5 years old),
and the first sign is the testes volume increase (>4 mL),
followed by the pubarche within 6 months. After
12–18 months, the enlargement of penis is usually observed.
All the clinical modifications that occur during the puberty
are the consequence of the hypothalamus–pituitary–gonad
axis activation, represented by the increase of the GnRH
pulsatility and therefore of FSH, LH, and gonad steroids
[49, 50]. The literature reports several studies investigating
the relationship between potential endocrine-disrupting
agents and the onset of puberty in boys and girls. Many
cross-sectional and longitudinal human studies have eval-
uated the association between pubertal timing onset and
prenatal or pubertal exposure to several chemical agents with
plausible endocrine interference. Most studies were referred
to girls, while few were committed for males’ puberty. Den
Hond et al. [51] evaluated 80 boys who were exposed,
during the pubertal period, to PCBs and dioxin. They found
a negative association between the elevated serum PCBs
exposure and pubertal stages, particularly the genital
maturation and the pubic hair presentation. On the contrary,
they did not find negative effects of dioxin. Saiyed et al. [52]
reported an association between pubertal exposure to the
pesticide endosulfan and low level of pubic hair, testis, and
penis maturation, suggesting a delay in sexual maturation. A
work published in 2008 involved 18 girls and 15 boys who
were exposed to dioxin-contaminated breast milk. The
authors observed a delayed breast development in females
and a delayed age at first ejaculation in males [53]. Con-
sidering more recent works, Ferguson et al. longitudinally
analyzed prenatal and infantile effects of phthalates and BPA
on 118 boys (aged 8–14). Prenatal exposure was negatively
associated to the adrenarche and pubarche onset (with high

SHBG levels), whereas the infantile exposure caused low
testosterone levels but no association with puberty was
reported [54]. A similar work evaluated the impact of in
utero phthalate and BPA exposure on the sexual pubertal
maturation of 109 males. In particular, first- and second-
trimester pregnancy exposure to DEHP was linked to
increased peripubertal serum estradiol levels, whereas third-
trimester exposure was associated to a delay on the onset of
pubarche, with increased SHBG levels [55]. A longitudinal
study conducted on 516 boys considered the effects of many
organochlorine chemicals, lead (Pb) and non-dioxin-like
PCBs. The authors evaluated EDs concentrations at the age
of 8–9 years, and successively annual visits were carried out
until the age of 18–19. The endure of blood EDs negatively
influenced the growth during the puberty; in particular,
dioxin-like compounds, organochlorine pesticides and the
Pb delay puberty onset, whereas non-dioxin-like PCBs tend
to advance puberty beginning [56]. These studies are sum-
marized in Table 2.

Effects of EDs on anogenital distance

The AGD refers to the distance between the anus and the
external genitalia and it is approximately twice the length in
male compared to female newborns [57]. AGD is con-
sidered a broad biomarker capable of both retrospectively
determine early life androgen disruption and predict late-life
reproductive disorders in male offspring [57–59]. Prenatal
androgen action determines reproductive organ size and
AGD, and the action can be disrupted by EDs [60–62].
Further studies have identified a fetal “masculinization
programming window” (MPW), a period from the second to
the third month after conception when androgen action
could be remarkably affected. The difference of AGD
between male and female may be explained by divergent
androgen secretions in this period [63]. This sexual
dimorphism is apparent in rodents as well as humans
[64, 65]. Reproductive parameters at birth and in adulthood
appear to be influenced by androgen action in the MPW,
similar to their correlation with AGD in human studies [58].
Therefore, a short male AGD is considered a marker of
disrupted androgen action. In rodents, a short male AGD
largely predicts adverse effect outcomes and it had been
used for decades as a marker of impaired fetal androgen
action [57].

Animal studies

Compounds most frequently reported to affect male AGD
are phthalate esters. Many have been tested in rats, with
DBP and DEHP being the most prevalent. Fetal exposure to
certain phthalates results in a short AGD in rat male
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offspring, without any significant effect on female AGD. It
is, for the most part, a dose-dependent effect, where
increasing dose levels result in progressively shorter AGD,
as recently reported [66]. In mice, newborn males exposed
to phthalates during the postnatal phase showed a sig-
nificant short-term reduction of AGD as a possible result of
prepubertal hormonal interference [67], although the exact
mechanism is still unknown, given the embryonal deter-
mination of AGD.

Other substances with a clear antiandrogenic action can
affect AGD in rat offspring. Prenatal exposure to high doses
of certain AR antagonists, such as pesticide procymidone,
vinclozolin, dichlorodiphenyltrichloroethane (DDT), and
the non-steroidal prostate cancer drug flutamide, reduces
male pup AGD up to 50% compared to controls [68–72].
After exposure to these compounds, the male offspring also
displays an increased rate of nipple retention, genital mal-
formations, and severely reduced male reproductive organ
weights [57, 68, 73–75]. Fetal exposure to both the anti-
microbial preservative butyl paraben [76, 77] and the
industrial plasticizer BPA [78] has been shown to shorten
male AGD around 7–16% in the male offspring, albeit there
are studies reporting no effects on AGD for both butyl
paraben [79] and bisphenol A [80–84]. PCB exposure in
female rats during lactation resulted in reduced AGD in
male progeny aged 60 days, even at the lowest dose tested,
possibly through a reduction of circulating androgens [85].
Therefore, all these studies suggest that exogenous chemi-
cals can affect AGD in pre- and peri-natally exposed
animals.

Human studies

Several epidemiological studies have investigated the
effects of EDs on AGD, but the results have been con-
troversial. Most studies focused on male infants, whereas
less evidence is available to support a reduction in AGD
following prenatal exposure to EDs even in puberty and
transition periods. In fact, fetal exposure to different EDs
has been frequently associated with a short AGD in new-
born boys, in particular phthalates [86–90], but also PFAS
[91], dioxins [92], BPA [93, 94], and DDT [95]. Notably,
several studies have not found significant correlations
between exposure levels and short AGD in boys, including
some phthalates [96, 97], DDT [98], triclosan [99], PFAS
[100], and various pesticides [101]. These discrepancies do
not necessarily diminish the cause for concern, but rather
highlight the challenges of obtaining evidence for causal
relationships from human epidemiological studies [57].
Swan et al. [89] examined AGD and other genital mea-
surements in relation to prenatal phthalate exposure in 134
newborns aged 2–36 months. The results showed that
urinary concentrations of four phthalate metabolites and the

summary score were inversely related to AGD. The con-
clusion supported the hypothesis that prenatal phthalate
exposure at environmental levels may adversely affect male
reproductive development in humans [89]. Successively,
the same group confirmed these results in 2015 [90];
moreover, they observed the same association with reduced
AGD when the daily exposures were substantially lower
than current US Environmental Protection Agency (EPA)
reference doses [102]. Suzuki et al. [88] examined the
relationship between prenatal exposure to seven urinary
phthalate ester metabolites and AGD in 111 newborns. The
results showed the MEHP was negatively associated with
AGD. In a Swedish cohort of 196 infants aged 21 months,
Bornehag et al. [86] reported a reduced AGD in relation to
phthalates concentration in mothers. In a more recent study,
the authors investigated phthalates and BPA prenatal
exposure in 198 male infants aged 6 months. Surprisingly,
the results showed that both MBP and the molar sum of low
molecular weight phthalates were positively associated with
AGD, although no mechanism to explain this association
was suggested [103].

Regarding puberty age, a study on 153 male children
aged 0–17 years examined the effect of maternal and
paternal exposure to BPA on AGD. Although the cohort
included mainly children <5 years old, after correction for
age the negative association between either paternal or
maternal BPA exposure and AGD remained significant,
although the effect was greater when considering mothers’
BPA levels [94]. Another study on young men aged 18–23
reported a reduced AGD associated with maternal exposure
to pesticides during pregnancy [104], suggesting that the
previously reported associations between EDs prenatal
exposure and neonatal and perinatal AGD in male infants
can be extended also to later ages. In the same way, these
results were also recently confirmed for PFAS: in 212
young men aged 18–19 years, direct exposure to these
chemicals resulted in a 10% reduction of AGD [91].
Although PFAS were measured directly in subjects, it could
be considered a proxy of prenatal exposure, given the very
long half-lives of PFAS [105] and the long-lasting pollution
in the geographic area of the exposed subjects. Interestingly,
the same study reported a significant negative association
between PFAS exposure and another androgen-dependent
parameter, penile length [91]. Human studies characteristics
are summarized in Table 3.

Effects of EDs on penile length

Penile length is a parameter that positively correlates with
postnatal androgen levels [74]. Several studies investigated
this correlation, though in newborns. To date, there is only
one study that evaluated penile length in pubertal boys in
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association with EDs exposure: in a cohort of 55 boys aged
11–14, maternal exposure to PCBs during pregnancy was
associated with reduced penile length [106]. As previously
mentioned, Di Nisio et al. observed similar results in young
men aged 18–19, suggesting exposure to EDs can result
also in reduced penis size in adolescence [91]. On the
contrary, Leijs et al. reported no correlation in 15 young
boys (14–19 years of age), exposed to PCBs and dioxin-like
compounds, but results were not shown [53].

Effects of EDs on testicular volume

Only few studies investigated the association between EDs
and TV in pubertal or transition age. In most studies, TV
has been evaluated only for staging puberty [54–56]. In
addition, studies are extremely heterogeneous, investigating
different EDs, considering different primary outcomes, and
using different methods for testicular sizing. In fact, TV was
evaluated using Prader orchidometer [51, 53, 107–109],
ultrasound [91], both [110–112], or a digital caliper [104].
Moreover, TV may be affected by both in utero and adult
exposure [113, 114], with no study investigating the one
and the other at the same time. As said before, TV > 4 mL is
considered the first pubertal sign, while a TV > 12 mL is
considered normal at the end of puberty. Therefore, TV
comparison was performed after adjustment for genital
stage and in most studies was made according to tertiles or
quartiles of exposure, without a control group. Mol et al.
[110] observed no significant differences in mean TV,
hormonal concentration, and Tanner stage after prenatal
PCB exposure in a cohort of children examined at mid
puberty. Grandjean et al. [112] evaluated from the same
birth cohort 438 adolescent boys, at age 14 years, con-
firming the same results. On the contrary, Den Hond et al.
evaluated postnatal PCB and dioxin-like compounds
exposure in 80 boys coming from three different areas of
Belgium. The authors reported differences in TV between
the areas, even after adjustment for genital stage. However,
TV did not correlate with any of the investigated bio-
markers of exposure, suggesting it may be a consequence of
maternal exposure or other not explored factors [51]. Leijs
et al. reported the same no association, but results were not
shown [53]. Different results were observed by Cremonese
et al., though they used a questionnaire to investigate
occupational exposure to pesticides in young Brazilian men.
Testicles were larger in rural men, in men using pesticides
for more than 1 year, and also among men born to women
who worked in agriculture during pregnancy [104]. This is
the only study reporting an increase in TV. Authors sug-
gested two possible mechanisms: fetal life exposure with
prevalent androgen effect or adult exposure with inflam-
mation of the testicles. Concerning other EDs, Vested et al.Ta
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[107] recruited 169 young male, aged 19–21 years, whose
mothers’ blood had been previously collected during preg-
nancy. No correlation between PFOA, PFOS, and self-
measured TV was observed [107]. Same results were
recorded by Joensen et al., who investigated PFAS postnatal
exposure in 247 randomly selected healthy young Danish
men [111]. On the contrary, Di Nisio et al. reported smaller
mean TV in exposed PFAS group (mean age 18.5 ± 0.8
years). Interestingly, both serum and semen PFOA, but not
PFOS, were associated with reduced TV [91]. Regarding
phthalates, Axelsson et al. investigated prenatal exposure in
112 young Swedish men, aged 17–20 years. Maternal blood
samples were recovered in a biobank. The only significant
result was that men in the highest tertile of prenatal mono
(carboxy-isooctyl) phthalate exposure had smaller TV than
men in the lowest [108]. On the contrary, Durmaz et al.
found plasma levels of DEHP and MEHP significantly
higher in 40 newly diagnosed pubertal gynecomastia cases,
aged 11–15 years. However, there was no significant
association between their concentration and TV [109].
Studies characteristics are summarized in Table 4.

Effects of EDs on testicular cancer

Few studies investigated a possible correlation between EDs
exposure and TC. None of these was performed specifically
in adolescents or in transition age. Some papers did not
report the age of the studied group or all included patients
were older than transition age [115–119]. However, TC is
the most common tumor diagnosed in men aged 14–44
years [120]. Most studies evaluated a possible correlation
between TC and PCBs. Indeed, the International Agency for
Research on Cancer (IARC) rendered PCBs as definite
carcinogens in humans [121], while according to the US
EPA PCBs cause cancer in animals and are probable human
carcinogens (http://www.epa.gov/epawaste/hazard/tsd/pcbs/
pubs/effects.htm). However, results regarding TC, as well
as other neoplasms, are limited and often discordant. The
only study taking into consideration a subgroup of adoles-
cents was performed by Koifman et al. An epidemiological
study was carried out by comparing the total amount of
pesticides sales in 1985 and health data traced in a National
database. A non-statistically significant correlation was
observed for TC hospitalization in both age groups (0–14,
15–49 years old) [122]. However, authors did not quantify
either the exact amount of pesticides used or the exact area
where they were used. In a similar registry-based study, Le
Cornet et al. showed no evidence of an association between
parental exposure to pesticides and TC [123]. In a cohort of
US soldiers, McGlynn et al. reported an increased TC risk
in patients with higher plasma levels of DDE and chlordane
components [124]. Surprisingly, postnatal PCBs exposure

was associated with decreased TC risk in the same cohort
[125]. At the same way, Biggs et al. evaluated 246 TC
patients after the first course of cancer treatment; however,
only 33 were aged 18–24 years (13,4%). TC risk was
similar across groups and no trend with increasing serum
pesticide levels was observed [126]. Different results were
reported by Paoli et al., who observed a statistically sig-
nificant increase in TC risk in cases with detectable values
of total PCB [127]. On the contrary, Hardell et al. investi-
gated both prenatal and postnatal PCB exposure. In patients,
only the concentration of cis-nonachlordane was sig-
nificantly increased, whereas their mothers showed sig-
nificantly increased concentrations of the sum of PCBs,
hexachlorobenzene, trans- and cis-nonachlordane, and the
sum of chlordanes [128, 129]. Studies characteristics are
summarized in Table 5.

Limitations

Several studies have focused on the effects of EDs, espe-
cially on testis development; however, they used different
animal models, different EDs doses, and different meth-
odologies, with results not easily comparable among them.
In humans, there are only few original papers on the effects
of EDs on puberty in males, as the majority focus on female
puberty. This aspect could find an explanation in the fact
that females’ puberty is more easily detectable, since
menarche represents an undisputed sign of sexual matura-
tion. Given the lack of homogeneity across the different
studies, because of the wide spectrum of EDs and different
exposure sources, age of subjects, and analytical measure-
ments, it is difficult to infer a comprehensive conclusion on
the effect of EDs on puberty and transition period. More-
over, we should consider the lack of longitudinal studies in
the literature, and in most cases the quantification of EDs
levels was performed only in mothers during pregnancy or
only in children after birth, thus not providing a direct
assessment of mother–fetus exposure levels. In other cases,
the analytical measurement of chemicals is missing and it is
only presumed by occupational exposure. In addition,
humans are exposed to several chemicals, which could
affect male health in a dose-additive manner. In fact, testi-
cular toxicity was reported in rats exposed to a mixture of
phthalates, though dosage of each was below the adverse
effect threshold [130]. Therefore, bioaccumulation in adi-
pose tissue of several EDs may be responsible of a “cocktail
effect,” a possible sum of effects with unknown outcomes
that may unexpectedly appear after years of exposure to
low dosages [131]. Moreover, as said before, recent data
suggest that EDs detrimental effects may even be inherited
by future generations [132]. All these factors may partially
contribute to the heterogeneity of results reported in
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literature. In the same way, lifestyle factors in young adults
should not be neglected. An increasing trend of health risk
behaviors, such as smoking, use of illegal drugs and alco-
hol, has been recently reported in adolescents. All these
behaviors have been associated with andrological disorders
and could impair testicular development [133].

Conclusions

Current evidence does not clarify the impact of EDs on
human male reproductive health. In animal models, severe
harmful effects were observed. However, human studies
have shown controversial results. This discrepancy may be
due to several factors, as said above. Despite the lack of
consistency in the results, overall conclusion points toward
a positive association between exposure to EDs and repro-
ductive system damage. Among the studies based on the
consequences of EDs exposure on males’ puberty, the main
findings concern on delayed puberty, probably associated to
the xeno-estrogens effects of PCBs, polychlorinated
dibenzofurans, and endosulfan. In the same way, by using
AGD as a proxy of fetal exposure to endocrine-disrupting
chemicals, most studies agree on an antiandrogenic effect of
different classes of EDs (phthalates, BPA, pesticides,
PFAS), which results in reduced AGD after birth, as mea-
sured from newborns until transition period. On the con-
trary, the correlation between EDs and TV, as well as that
with testicular cancer, is more uncertain. EDs mechanisms
of damage and the adverse consequences on male puberty
and andrological health are summarized in Fig. 1. Although

the observed effects may be subtle on an individual level,
the biological link between them (i.e., TDS: decreased
androgen levels contributing to cryptorchidism, reduced
penile length, reduced TV) should raise concern about the
effects of EDs at population levels in young men. Further
long-term studies performed on a wide number of subjects
are necessary in order to identify damaging compounds,
clarify sources of exposure, and replace them with harmless
substances.
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