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Abstract
Purpose Germline mutations in the aryl-hydrocarbon receptor interacting protein (AIP) have been identified often in the
setting of familial isolated pituitary adenoma (FIPA). To date there is no strong evidence linking germline AIP mutations to
other neoplasms apart from the pituitary. Our primary objective was to investigate the prevalence of AIP gene mutations and
mutations in genes that have been associated with neuroendocrine tumors in series of tumors from patients presenting with
both pituitary adenomas and differentiated thyroid carcinomas (DTCs).
Methods Pathology samples were retrieved from all pituitary adenomas in patients with concomitant DTCs, including one
with a known germline AIP variant. Subsequently, two additional patients with known germline AIP variants were included,
of which one presented only with a follicular thyroid carcinoma (FTC).
Results In total, 17 patients (14 DTCs and 15 pituitary adenomas) were investigated by targeted next generation sequencing
(NGS). The pituitary tumor samples revealed no mutations, while among the thyroid tumor samples BRAF (6/14, 42.9%)
was the most frequently mutated gene, followed by NRAS (3/11, 27.3%). In one AIP-mutated FIPA kindred, the AIP-variant
c.853C>T; p.Q285* was confirmed in the FTC specimen, including evidence of loss of heterozygosity (LOH) at the AIP
locus in the tumor DNA.
Conclusion Although most observed variants in pituitary adenomas and DTCs were similar to those of sporadic DTCs, we
confirmed in one AIP mutation-positive case the AIP-variant and LOH at this locus in an FTC specimen, which raises the
potential role of the AIP mutation as a rare initiating event.
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Introduction

Pituitary adenomas are mostly benign monoclonal neo-
plasms that arise from any of the five hormone-secreting
cell types of the anterior lobe of the pituitary gland, and
cause disease due to hormonal hypersecretion and tumor
mass effects. Most pituitary adenomas occur sporadically
(95%). Although in the majority of these sporadic cases the
exact molecular pathogenesis remains unknown, in a sig-
nificant proportion of somatotropinomas (30%) and corti-
cotropinomas (60%) activating somatic mutations have
been found in the GNAS and USP8 genes, respectively
[1, 2]. In addition, germline mutations may predispose to
pituitary tumorigenesis, which together represent about 5%
of patients with pituitary adenomas [3].
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Germline mutations have been described in the aryl-
hydrocarbon receptor interacting protein (AIP) gene in the
setting of either familial isolated pituitary adenoma (FIPA)
or in simplex, young-onset pituitary adenomas, such as
pituitary gigantism [4–6]. The AIP gene encodes a 330-
amino-acid co-chaperone involved in subcellular traffick-
ing, nuclear receptor stability, and transactivation potential
[4, 7]. It is postulated that in AIP-mutated pituitary adeno-
mas, AIP loses its activity as a tumor suppressor, which is
supported by the association of loss-of-function mutations
and the presence of loss of heterozygosity (LOH) at the AIP
locus in the pituitary adenoma. To date there is no strong
evidence linking germline AIP mutations to other neu-
roendocrine neoplasms apart from the pituitary.

The frequency of differentiated thyroid carcinomas
(DTCs) is increased in patients with somatotropinomas,
with papillary thyroid carcinoma (PTC) being the most
frequently reported type (up to 25%) [8–13]. As thyroid
follicular epithelial cells express insulin-like growth factor 1
(IGF-1) receptors and IGF-1 is an important factor for
promoting replication and reducing apoptosis of these cells
[14], IGF-1 could potentially be linked to the promotion of
thyroid cancer in acromegalic patients. BRAF mutations
have proved to be the most common genetic event (about
60% of cases) involved in the onset of PTC in the general
population [15]; other frequently identified genetic events
include point mutations of the RAS genes and RET/PTC and
PAX8/PPARɣ chromosomal rearrangements [15, 16]. Based
on earlier reports, LOH of chromosome 22 is particularly
common in follicular thyroid carcinomas (FTCs), and it is
associated with the widely invasive type [17–19].

Given the frequency of malignant thyroid tumors in
somatotropinomas, the potential for a common mechanism
behind both tumors remains valid. The role of an AIP
mutation as an initiating event is open to question since the
AIP protein may interact with the tyrosine kinase receptor,
encoded by the RET protooncogene in the pituitary [20–24].
Coexistence of PTCs with somatotropinomas in AIP-
mutated patients is very rare and has been described in three
cases [25, 26]. Although only one case of LOH at the AIP
locus (11q13) in FTCs is previously described [27], Daly
et al. recently described an FTC in a teenaged AIP mutation-
positive carrier in which decreased AIP staining was seen in
the FTC tumor that was accompanied by LOH at the AIP
locus in the tumor DNA [28]. Thus, the finding of DTCs and
pituitary adenomas in the same individuals or kindreds could
represent a rare association of germline AIP mutations.

To date, there has only been one study that reported in 12
patients with somatotropinomas and concomitant DTC that
AIP was not overexpressed in the thyroid tumor tissue using
immunohistochemistry [29]. Here we studied the presence
of mutations in AIP in patients with DTCs and concomitant
pituitary adenomas, including all five adenoma types.

Subsequently, the available tumors from these patients were
investigated using targeted next generation sequencing
(NGS) for mutations in AIP and additional neuroendocrine
tumor-related genes. Since these features are relative rare, a
nationwide survey was performed in the Netherlands.

Materials and methods

Patients

From Pathologisch-Anatomisch Landelijk Geautomatiseerd
Archief (PALGA), the nationwide Dutch network and registry
of histo- and cytopathology, all patient records of individuals
included 1993–2016 were retrieved matching the following
search criteria: pituitary adenoma (i.e., prolactinomas, non-
functioning pituitary adenomas (NFPAs), somatotropinomas,
corticotropinomas, and thyrotropinomas) and DTC (i.e., FTC,
follicular variant of papillary thyroid carcinoma (FVPTC),
and PTC). The standardized records contain an encrypted
patient identification number (allowing for identification of
multiple samples of one patient), data on age at diagnosis and
sex, date of arrival of the histological tissue, presence of
metastasis, and the diagnosis of the pathology report.

The PALGA search identified 15 patients with a history
of thyroid carcinoma and pituitary adenoma with no known
genetic background (i.e., sporadic), except for one with a
known germline AIP variant from the Erasmus University
Medical Center that was part of the PALGA search data
range as well. Two additional patients from this center with
known germline AIP variants were included in the study, of
which one who presented only with an FTC. The latter has a
familial history of pituitary adenomas (i.e., father was AIP
mutation carrier and diagnosed with acromegaly), however,
the pituitary gland was not affected in this patient. Therefore,
this patient was not identified in the PALGA search data
range. The second patient with a somatotropinoma and
classical-variant PTC was successfully treated by total thyr-
oidectomy in 1975, and therefore not part of the PALGA
search date range, while the tumor sample showed well-
preserved histomorphology. In total, we included 17 patients.

Approval from the Medical Ethical Committee of the
Erasmus University Medical Center and informed consent
to use the tumor tissues for research purposes were
obtained. Tumor tissues from all Dutch medical centers
were used according to the code of conduct, Proper Sec-
ondary Use of Human Tissue, established by the Dutch
Federation of Medical Scientific Societies [30].

Data collection

Anonymized data were collected on age at diagnosis, sex, year
of diagnosis, presence of metastasis, immunohistochemical
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staining results (adrenocorticotropic hormone (ACTH),
follicle-stimulating hormone (FSH), GH, luteinizing hormone
(LH), PRL) and type of DTC (FTC, FVPTC, or classical-
variant PTC).

Genetic analysis of germline AIP mutation

As mentioned above, three patients from the Erasmus
University Medical Center included in the study were pre-
viously investigated for the presence of AIP mutations. This
was performed using leukocyte DNA extracted from per-
ipheral blood as described by Vierimaa et al. [5]; multiplex
ligation-dependent probe amplification studies were per-
formed as described previously [31, 32]. Normal population
genetic databases were assessed for the presence of AIP
variant frequencies; AIP variant pathogenicity was assessed
using Alamut (Interactive Biosoftware). In addition, clas-
sification of variants was also performed according reported
guidelines [33]. All patients provided informed written
consent for genetic testing.

Tumor DNA samples

We excluded low quality tissue of pituitary adenoma
(n= 2) or thyroid carcinoma (n= 2) from the study. As
mentioned before, patient no. 17 presented only with an
FTC. In total 29 tumor DNA samples from 17 index
patients were studied; DNA obtained exclusively from
thyroid tumor was available for 14 (82.4%) of the cases, and
only pituitary tumor DNA for 15 (88.2%) of the cases.

DNA was isolated from representative tumor areas by
microdissection, from ~10 hematoxylin stained sections
from formalin-fixed, paraffin-embedded (FFPE) tumor tis-
sue, using proteinase-K and 5% Chelex 100 resin. Selection
of representative tumor areas was performed on a paraffin
slide stained with hematoxylin and eosin by a pathologist
(L.O. and F.G.). In addition, DNA was quantified with the
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher
Scientific, Waltham, MA). All tumor DNAs that were used
for mutation screening contained ≥60% of tumor cells.

Targeted NGS and data analysis

A custom-made targeted gene panel (TGP) was designed
using the TruSeq Custom Amplicon 1.5 kit system (Illu-
mina, San Diego, CA) and the Ion AmpliSeq designer
software (https://ampliseq.com/; Thermo Fisher Scientific,
Breda, the Netherlands), to study DNA from FFPE tumor
tissues (Table 1). The panel was designed specifically for
FFPE-DNA use (amplicon range 125–175 bp). Targeting
contained the entire coding sequences of AIP (coverage
based on design: 92.11%), CDKN1B (96.84%), GNAS
(82.93%), GPR101 (97.46%), HRAS (63.08%), KRAS

(82.28%), MEN1 (84.73%), NRAS (100.00%), PIK3CA
(96.55%), PRKACB (91.46%), PRKAR1A (100.00%), RET
(86.34%), SDHA (93.48%), SDHAF2 (100.00%), SDHB
(98.65%), SDHC (91.93%), SDHD (77.95%), and the hot-
spot region BRAF (p.V600E). In addition, single-nucleotide
polymorphisms (SNPs) were selected on chromosome 11

Table 1 Characteristics of the custom-made targeted gene panel

Characteristics Panel I

Type of sample FFPE-DNA

Amplicon length, bp 125–175

Amplicons designed 399 (X 2)

Common genes included (pituitary adenoma
and DTC)

1. AIP (NM_003977): exon 1–6;

2. BRAF (NM_004333): exon 15;

3. CDKN1B (NM_ 004064): exon
1–2

4. GNAS (NM_016592): exon 1–13

5. GPR101 (NM_054021): exon 1;

6. HRAS (NM_005343): exon 2–6;

7. KRAS (NM_004985): exon 2–5;

8. MEN1 (NM_000244): exon 1–10;

9. NRAS (NM_002524): exon 3;

10. PIK3CA (NM_006218): exon
2–21;

11. PRKACB (NM_207578): exon
1–10;

12. PRKAR1A (NM_212471): exon
2–11;

13. RET (NM_020975): exon 2–20;

14. SDHA (NM_004168): exon
2–15;

15. SDHAF2 (NM_017841): exon
1– 4;

16. SDHB (NM_003000): exon 1–8;

17. SDHC (NM_003001): exon 1–6;

18. SDHD (NM_003002): exon 1–4

SNPs target region chromosome 11 – rs2513613 – rs10838307

– rs34593780 – rs4267090

– rs2631403 – rs7939803

– rs330253 – rs2887046

– rs73455029 – rs11233227

– rs7949600 – rs6483324

– rs1247726 – rs2851171

– rs4943948 – rs736287

– rs681017 – rs2510718

– rs10750552 – rs1638585

– rs1620333 – rs7110021

– rs630172 – rs35787427

– rs481303 – rs611697

– rs1455113

SNPs target region chromosome 22 – rs1970640 – rs2017869

– rs3747031 – rs1894252

– rs5996639 – rs956548

– rs2285206 – rs2038010

– rs2294206 – rs2143695

– rs62636244 – rs5769583

– rs17003592 – rs1296750

– rs3884944 – rs6010046

NM and ENST are both available at http://www.ensembl.org.

DTC differentiated thyroid carcinoma, FFPE formalin-fixed, paraffin-
embedded, SNPs single-nucleotide polymorphisms
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and 22 to enable copy number variation (CNV) detection
(Table 1). Mutation detection was performed using the
S5-XL system (Ion Torrent) with manufacturer’s materials
and protocols (Thermo Fisher Scientific). Library prepara-
tions and sequencing was performed as described earlier
[34]. Data analysis was performed using SeqPilot version
4.2.2. (JSI medical systems). CNV detection was evaluated
using SNPitty, which visualizes B-allele frequencies from
NGS sequencing data [35]. The American College of
Medical Genetics and Genomics standards and guidelines
were used for interpretation of sequence variants of
unknown significance (VUS) [33]. When classifying and
reporting a variant we used the online software prediction
program Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/)
and Align GVGD (http://agvgd.hci.utah.edu/agvgd_input.
php) as well as the gnomAD database (https://gnomad.broa
dinstitute.org), cBioportal database (https://www.cbioportal.
org), and the Cosmic database (https://cancer.sanger.ac.uk/
cosmic).

In patient no. 17, we also examined the most common
FTC driver gene alterations [36] by a targeted NGS
designed to study PTEN and the TERT promoter. The panel
included the entire coding sequences of CDKN2A, KEAP1,
PTEN, STK11, and TP53, as well as hotspots: AKT1 (exon
3), AKT2 (3), AKT3 (2), ALK (20, 22–25), APC (16), ARAF
(7), BRAF (11, 12, 14, 15), CDK4 (2, 4, 7, 8), CTNNB1 (3,
7, 8), DDR2 (14–19), EGFR (12, 18–21), EIF1AX (1, 2),
ERBB2 (HER2) (8, 17–21), ERBB3 (3, 6–10, 21, 23), ESR1
(4, 5, 7, 8), EZH2 (16), FBWX7 (9, 10), FGFR1 (4, 7,
12–14), FGFR2 (7, 9, 12), FGFR3 (7, 9, 14, 15), FOXL2
(1), GNA11 (4, 5), GNAQ (4, 5), GNAS (8, 9), HRAS (2–4),
IDH1 (4), IDH2 (4), JAK2 (14), JAK3 (4, 16), KIT (8, 9, 11,
13–18), KNSTRN (1), KRAS (2–4), MAP2K1 (1–6), MET
(2, 14, 19, 20), MTOR (30, 39, 40, 43, 47, 53, 56, 57),
MYD88 (5), NFE2L2 (2), NOTCH1 (26, 27), NRAS (2–4),
OXA1L (1), PDGFRA (12, 14, 18), PIK3CA (2, 5, 8, 10, 14,
21), POLD1 (6, 8, 12, 15–17, 24), POLE (9–14, 21, 25),
RAC1 (2), RAF1 (7), RET (11, 16), RHOA (2), RIT1 (4, 5),
RNF43 (2–10), ROS1 (36–41), SF3B1 (14, 15), and SMAD4
(3, 9, 12). In addition, it also covers the known C228T,
242_243delinsTT, and the C250T of the TERT promoter.
To investigate the presence of driver fusions, the FTC
tumor of patient no. 17 was investigated using Archer
technology. RNA was isolated according to manufactures
instructions using the RNeasy kit (Qiagen). Subsequently,
Archer was performed with the Archer FusionPlex CTL
panel (Illumina) according to manufacturer’s instructions
and analysed using the S5-XL system. Sequencing data
were uploaded and analyzed using the Archer Analysis
software (https://analysis.archerdx.com). If all quality
criteria were met as indicated by the Archer’s instruc-
tions, data were considered valid. Details are available on
request.

Statistical analysis

We calculated proportions and rates for categorical vari-
ables, means ± standard deviations, or medians and ranges
for parametric or nonparametric variables. For statistical
analysis, the Statistical Package for the Social Sciences
(SPSS) version 23.0.0 (IBM Corp, Armonk, NY, USA) was
used. The significance level was set at p < 0.05 for all tests.

Results

Cohort characteristics

In total, seventeen patients were included for pathology
NGS analysis. Clinical characteristics are summarized in
Table 2. In most patients, the onset of thyroid carcinoma
was detected later than the onset of the pituitary adenoma
(median 51.5 years (IQR 48.3–66.3) versus 57.0 years
(44.0–69.0)). Thyroid carcinoma was diagnosed before the
pituitary adenoma in five cases, from 1 to 18 years before
their pituitary adenoma had been diagnosed. Classical-
variant PTC was reported in most patients (n= 9), follow-
ing by FTC (n= 5) and FVPTC (n= 3). Thyroid carcinoma
metastasis was found in five patients (29.4%); three had
locoregional lymph node metastases, one had skeletal
metastases, and the other had lung metastases.

Regarding the pituitary adenomas, no pituitary hormonal
staining was reported in most patients (i.e., NFPAs; n= 5),
while others stained positively for ACTH (n= 2), GH
(n= 2), LH (n= 1), and PRL (n= 1). Combined expression
was reported in three patients: GH and PRL, and FSH with
either LH, or TSH. The staining data were not reported in
two patients.

Genetic characterization

Detection of variants in sporadic patients

NGS analysis of the 14 patients from the PALGA search
revealed no known mutations in targeted genes in pituitary
tumor DNA and eight mutations in thyroid tumor DNA.
Table 3 summarizes the identified mutations and CNVs
(i.e., LOH) of chromosome 11 and 22. The 13 pituitary
tumor samples showed no gene mutations. Among the 11
thyroid tumor samples, BRAF (5/11, 45.5%) was the gene
most frequently mutated, followed by NRAS (3/11, 27.3%).
These classical BRAF (p.V600E) point mutation were found
in 57.1% (n= 4) of classical-variant PTC specimen and
once (33.3%) in FVPTC specimen (Fig. 1a). NRAS codon
61 point mutation is the most common among RAS muta-
tions and this was only observed in FTC specimen: p.Q61R
twice (50.0%) (Fig. 1b) and p.Q61K once (25.0%).

Endocrine (2020) 68:640–649 643

http://genetics.bwh.harvard.edu/pph2/
http://agvgd.hci.utah.edu/agvgd_input.php
http://agvgd.hci.utah.edu/agvgd_input.php
https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
https://www.cbioportal.org
https://www.cbioportal.org
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://analysis.archerdx.com


In addition, two VUSs were found in pituitary tumor
DNA. These VUSs involved AIP-variant c.433C>T; p.145S
(n= 1) and HRAS-variant c.505C>T; p.R169W (n= 1)
(Table 3). Prediction software to determine pathogenicity
predicted the AIP p.145S variant as benign (Align GVGD
Class C0) to probably damaging (Polyphen-2 score of 0.978
(sensitivity: 0.76; specificity: 0.96)). The variant was never
detected in the healthy population (gnomAD), nor is it
found in large series of different tumor types from the
cBioportal (n= 10,967 tumor samples) and Cosmic (n=

92,857 tumor samples) databases. Therefore, we considered
AIP p.145S as a VUS. The prediction software predicted
HRAS p.R169W as probably damaging (GVGD Class C15
and a Polyphen-2 score of 0.988 (sensitivity: 0.73; speci-
ficity: 0.96)). However, the variant also appeared in the
European and American population with an allele frequency
of 0.01% (rs151229168; gnomAD). In addition, a TCGA
PanCancer Atlas Studies search using the cBioportal data-
base did not report the HRAS p.R169W variant in the
10,967 tumor samples. Furthermore, the variant is also not
reported by the Cosmic database in all tumor types,
including thyroid tumors (cBioportal 500 and Cosmic 9985
thyroid samples). So, although the prediction software
indicates the HRAS variant as probably damaging, we
consider HRAS p.R169W as a VUS.

LOH of chromosome 11 was identified in two of 13
pituitary tumor samples (15.4%), both in 11q13; one had a
partial chromosome 11 LOH deletion (Table 3). A repre-
sentative example of LOH is demonstrated in Fig. 1d. No
pituitary tumor samples showed LOH of chromosome 22.
Out of the 11 patients with thyroid carcinomas, two patients
had LOH of chromosome 22. No LOH of chromosome 11
was identified in the thyroid carcinomas.

Detection of variants in patients with known germline AIP
variants

Genetic screening of germline DNA from patients 15, 16,
and 17 revealed several AIP variants. Patient no. 15 had two
AIP-variants: c.787+ 25 G>A; p.? and *60 G>C; p.?.
Variant prediction software noted *60 G>C as probably
benign, whereas c.787+ 25 G>A was noted in 2/4 predic-
tion models to lead to a new splice acceptor site at c.787+
27. In the second patient (patient no. 16), two AIP-variants
were detected: c.682 C>A; p.Q288K, which is a known
benign polymorphism, and c.920 A>G; p.Q307R; con-
sidered a benign variant. In patient no. 17, a pathological
AIP-variant c.853 C>T; p.Q285* was identified.

NGS analysis of the three patients with known germline
AIP variants revealed no known mutations in the pituitary
tumor DNA, however, two mutations were identified in the
thyroid tumor DNA. In patient no. 17, the AIP-variant c.853
C>T; p.Q285* was confirmed in FTC specimen (allele
frequency 83%), while no mutations in other genes or
translocations were observed (Fig. 1c). The BRAF (p.
V600E) point mutation was found in patient no. 16. No
pituitary tumor samples showed LOH of chromosome 11.
LOH of chromosome 11 was identified in two (patient no.
16 and 17) of the three thyroid carcinomas (66.7%); one
was a partial chromosome 11 deletion. No LOH of chro-
mosome 22 was identified in both pituitary adenomas and
thyroid carcinomas.

Table 2 Clinical characteristics of patients included in the study

Characteristics Value

Patients from PALGA search n= 14

Type of sample available Pituitary tumor DNA, n= 13
(92.9%)

Thyroid tumor DNA, n= 11
(78.6%)

Patients with known AIP germline
variants

n= 3

Type of sample available Pituitary tumor DNA, n= 2
(66.7%)

Thyroid tumor DNA, n= 3
(100.0%)

Sex Female/male: n= 15 (88.2%)/2
(11.8%)

Age at onset pituitary
adenoma (yrs)

Median, 51.5 (IQR 48.3–66.3)

Age at onset thyroid
carcinoma (yrs)

Median, 57.0 (IQR 44.0–69.0)

No. and type of pituitary adenoma
from available samples

Single, n= 12
(80.0%)

Multiple,
n= 3 (20.0%)

Nonfunctioning,
n= 5 (33.3%)

FSH+ LH,
n= 1 (6.7%)

ACTH, n= 2
(15.0%)

FSH+ TSH,
n= 1 (6.7%)

GH, n= 2
(15.0%)

GH+ PRL,
n= 1 (6.7%)

LH, n= 1 (6.7%)

PRL, n= 1 (6.7%)

Unknown, n= 1 (6.7%)

No. and type of thyroid carcinoma
from available samples

Single, n= 14 (100.0%)

PTC, n= 7 (50.0%)

FTC, n= 4 (28.6%)

FVPTC, n= 3 (21.4%)

Metastasis n= 5 (29.4%)

ACTH adrenocorticotropic hormone, FSH follicle-stimulating hor-
mone, FTC follicular thyroid cancer, FVPTC follicular variant of
papillary thyroid carcinoma, GH growth hormone, IQR interquartile
range, LH luteinizing hormone, SS Sanger sequencing, TSH thyroid-
stimulating hormone, PA pituitary adenoma, PRL prolactin, PTC
papillary thyroid carcinoma, TC thyroid carcinoma, yrs years
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Discussion

To our knowledge, this is the first study to analyze the
prevalence of AIP gene mutations and mutations in genes
that have been associated with neuroendocrine tumors in
series of tumors from patients presenting with both pituitary
adenomas and DTCs. We showed that genetic alterations
were observed in 71.4% (10/14) of DTCs and in 13.3%
(2/15) of pituitary adenomas tissues, while there was no
overlap between genetic alterations within tissues from the
same patient. Among patients with pathological germline
AIP variants, one AIP variant c.853 C>T; p.Q285* was
confirmed in the FTC specimen (patient no. 17), including
evidence of loss of the AIP wild-type allele, based on the
relatively high allele frequency (83%) of the germline
mutation in the tumor DNA. Unfortunately, we were unable
to confirm this LOH based on the SNPs analysis, due to low
quality of the FTC tissue. This patient came from an AIP-
mutated FIPA kindred, however, her pituitary gland was
unaffected. This supports that the finding of DTCs and
pituitary adenomas are not totally fortuitous coexistence in
an AIP mutation-positive FIPA kindred, thereby echoing a
recent finding of FTC in an AIP mutation carrier by Daly
et al. [28]. In a second patient with a somatotropinoma with
two benign AIP-variants (p.Q288K and p.Q307R), a
somatic BRAF (p.V600E) mutation was detected in PTC
specimen in combination with a partial chromosome 11
LOH deletion. Although the partial chromosome 11 LOH
deletion could indicate a second hit in the thyroid tissue, the
observed LOH concerns SNPs located downstream (3′) of
the AIP gene, while the SNPs located in the AIP gene did
not indicate LOH.

It is noteworthy that although the most common
mechanism to lose the wild-type copy of a tumor suppressor
gene (e.g., AIP) in DTC specimen is a large deletion
affecting the wild-type allele, other mechanisms could also

play a role, such as another somatic mutation in other parts
of the gene, or silencing of the wild-type copy with epi-
genetic mechanism-promoter methylation or microRNAs
which are not covered by NGS. Moreover, we should
emphasize that DTCs are more progressed in transformation
since they are malignant when compared with pituitary
adenomas. Therefore, it might be interesting to investigate
the role of AIP mutation in thyroid adenomas (i.e., earlier in
the transformation) in further studies.

In the total cohort, the most common oncotype in
pituitary adenoma-related DTC was classical-variant PTC
(9 out of 14 cases; see Table 2) with a high frequency
(42.9%, 6/14) of BRAF (p.V600E) mutations, whereas none
of these cases harbored NRAS mutations. These results
confirm and build upon previous studies stating that among
PTC, virtually all tumors that harbor a RAS mutation grow
forming neoplastic follicles and no papillary structures and
are, therefore, diagnosed as the FVPTC, while BRAF is the
most frequent genetic alteration in classical-variant PTC
[15, 16]. In line with this, the NRAS codon 61 point
mutations were only observed in FTC specimen in three
cases (21.4%) [37], which was the second most frequently
mutated gene among the thyroid tumor samples. Although
the limited number of DTCs in the present series prevents
us from drawing any final conclusions on the prevalence of
BRAF and NRAS mutations in DTCs in patients with versus
those without pituitary adenomas, BRAF and NRAS seems
the main genetic drivers of thyroid follicular epithelial cell
transformation in our cases.

Our results are not in accordance with previous data,
which suggested that BRAF mutation may not play a
dominant role in development of DTC in patients with
acromegaly [11, 38]. In these studies only one (9.1%) [11]
or two (14.3%) [38] patients with concomitant PTC had the
BRAF mutation, which in both studies was more frequently
present in PTC patients without acromegaly. This

Table 3 Cluster of mutations and CNVs

Pa�ent ID 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17

Tumor studied

Known germline AIP variants p.?  and p.? p.Q288K and p.Q307R   p.Q285* 

Type of tumor 

Type of pituitary tumor UK PRL Non ACTH ACTH LH Non FSH/LH Non FSH/TSH UK Non Non GH/PRL GH GH N/A

Type of thyroid carcinoma FTC FVPTC FTC PTC FVPTC FTC FVPTC FTC PTC PTC PTC PTC PTC PTC PTC PTC FTC

Male

Age at diagnosis (yrs) 25 37 51 58 50 42 70 70 68 69 67 74 49 59 48 45 60 60 47 43 53 45 64 69 48 48 50 57 70 69 52 34 45

Metastasis

Type of muta�on

AIP p.145S (16%) p.Q285 (83%)

BRAF p.V600E (39%) p.V600E (40%) p.V600E (24%) p.V600E (28%) p.V600E (38%) p.V600E (21%)

GPR101

HRAS p.R169W (53%)

MEN1

NRAS p.Q61R (41%) p.Q61R (38%) p.Q61K (32%)

PIK3CA

RET

SDHA

SDHB

LOH chr. 11 par�al par�al
LOH chr. 22

Yes
No
Unreliable
Pituitary adenoma
Thyroid carcinoma

Cases are categorized by pituitary adenoma and differentiated thyroid carcinoma

ACTH adrenocorticotropic hormone, FSH follicle-stimulating hormone, FTC follicular thyroid cancer, FVPTC follicular variant of papillary
thyroid carcinoma, GH growth hormone, LH luteinizing hormone, LOH loss of heterozygosity, Non nonfunctioning pituitary adenomas, TSH
thyroid-stimulating hormone, PA pituitary adenoma, PRL prolactin, PTC classical-variant papillary thyroid carcinoma, TC thyroid carcinoma, UK
unknown, VUS variant of unknown significance, yrs years
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discrepancy might be explained by [1] the inclusion of
relative more FVPTC patients in the study from Aydin et al.
[38] which is different to our cohort, or [2] our distinct
study population, as included patients had not only of GH-
producing adenomas but all five hormone-secreting cell
types. In fact, previous studies [11, 29, 38] were carried out
exclusively in acromegaly patients, while the patients we
studied included only one patient with a GH-producing
tumor. Therefore, direct comparison between our cohort and
the acromegaly cohorts is limited.

In line with our findings, studying 12 DTC patients with
acromegaly, Mian et al. reported that 70% of PTC patients
with acromegaly were BRAF positive [29]. Moreover, AIP
expression was similar between neoplastic and normal

tissue, while the aryl-hydrocarbon receptor (AHR) was
expressed more in PTCs carrying BRAF mutations than in
normal tissue, irrespective of acromegaly status [29]. These
data suggest that BRAF mutations and AHR overexpression
may be associated with DTC risk in acromegaly, at least in
patients with concomitant PTC.

Although there is no gender preponderance in pituitary
adenoma patients, the vast majority of those with con-
comitant DTCs were female (15 out of 17) and is in
accordance with previous literature, probably reflecting a
trend seen in the general population. When comparing
differences between patients with and without concomitant
DTC, ist seems the former were relatively older. The mean
age at onset and diagnosis of pituitary adenoma was mean

Fig. 1 Direct sequencing of PCR antisense products in thyroid tumor
samples obtained from 14 patients revealing the presence of (a cor-
responding with patient no. 2) the BRAF p.V600E variant in six
patients, (b corresponding with patient no. 1) the NRAS p.Q61R var-
iant in two patients, and (c corresponding with patient no. 17) the AIP
p.Q285 variant in one patient. LOH of chromosome 11 was identified
in two of the 15 pituitary tumor samples; one was a partial

chromosome 11 LOH deletion. In thyroid tumor samples, in 2 of the
14 samples chromosome 11 was identified; one was a partial chro-
mosome 11 LOH deletion. Chromosome 22 was identified in two of
the 14 thyroid tumor samples. (d arrow: corresponding with patient no.
12) Demonstrates a representative example of LOH. LOH loss of
heterozygosity
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55 years [SD 12] in the cohort vs. mean 44 years [SD 17] in
the general population, with the mean age at diagnosis in
female patients being younger; 34 years [39]. The onset and
diagnosis of DTC was median 57 years [IQR 44–69] in the
cohort vs. 46 years [IQR 10–85] in the general population
[40], with the median age at diagnosis in female patients
being younger; 45 years [40]. In addition, in the two pre-
viously reported cases of acromegaly and concomitant PTC,
and harboring a germline AIP variant, both patients were
female and diagnosed with acromegaly at age 67 and 74,
respectively.

This is in contrast to the clinical characteristics of
patients bearing germline AIP mutations; the disease usually
manifests in the second decade of life, almost all cases are
diagnosed before the age of 30 years [28, 41–44] and they
are predominantly males [45]. With this in mind, it should
be stressed that after progress is made in the treatment of
pituitary adenomas and its complications, these patients
may live long enough to reach the age of increased
cancer risk.

Strength of our study lies in the relatively large number
of patients in which the pituitary adenoma and concomitant
DTC tumor tissue were systematically investigated by tar-
geted NGS. The main limitations of our study lie in the
retrospective collection of tumor samples, and we had to
exclude several tissues due to low quality. Another limita-
tion is the lack of clinical data from the patients, including
follow-up and family history data. Therefore, it should be
stressed that we cannot rule out if patients from the PALGA
search had additional risk factors for DTCs (e.g., received
radiotherapy). At last, we should be borne in mind that the
increased number of the diagnoseis of thyroid cancer in
these patients could be due to the fact that they are exam-
ined more accurately and more frequently than before (i.e.,
surveillance bias).

In conclusion, the absence of somatic AIP mutations
observed in patients with pituitary adenomas and con-
comitant DTCs suggest that their contribution to tumoral
pathogenesis is probably limited and seems unlikely the
genetic cause predisposing to the higher DTC risk
observed in these patients. Though the finding of DTCs
and pituitary adenomas could represent a new variant of
MEN syndrome with a de novo germline mutation in a not
yet identified gene, we suggest that this may be a for-
tuitous coexistence based on our observed variants that
were similar to those of sporadic DTCs. In view of this
and in line with the clinical practice guidelines from
Katznelson et al. [46], we recommend including regularly
thyroid examination and thyroid ultrasound only if there is
a palpable thyroid nodularity. While the finding of the
AIP-variant and LOH at this locus in FTC specimen in one
AIP mutation-positive case, opens up a potential role for

AIP mutation as an initiating event, further studies of AIP
genetic status among DTCs in FIPA kindred cohorts are
warranted to answer this question.
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